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In this paper, we introduce DeepTraderX (DTX), a simple Deep Learning-based trader, and present results
that demonstrate its performance in a multi-threaded market simulation. In a total of about 500 simulated
market days, DTX has learned solely by watching the prices that other strategies produce. By doing this, it
has successfully created a mapping from market data to quotes, either bid or ask orders, to place for an asset.
Trained on historical Level-2 market data, i.e., the Limit Order Book (LOB) for specific tradable assets, DTX
processes the market state S at each timestep 7 to determine a price P for market orders. The market data
used in both training and testing was generated from unique market schedules based on real historic stock
market data. DTX was tested extensively against the best strategies in the literature, with its results validated
by statistical analysis. Our findings underscore DTX’s capability to rival, and in many instances, surpass, the
performance of public-domain traders, including those that outclass human traders, emphasising the efficiency
of simple models, as this is required to succeed in intricate multi-threaded simulations. This highlights the

potential of leveraging “black-box” Deep Learning systems to create more efficient financial markets.

1 INTRODUCTION

Recent advancements in computing have catalysed
profound transformations in Artificial Intelligence
(AI), which now permeates many facets of our daily
lives.

One area impacted by this transformation is the
financial sector, or more specifically, financial mar-
kets. They are made up of traders, whether hu-
man or machine, with the core objective of being as
profitable as possible. We call “algorithmic traders”
the software-driven entities that have replaced human
traders, performing based on pre-defined, complex al-
gorithms derived from complex financial engineering.
As markets and technology evolve together, the need
for adaptability to fluctuating conditions is of fore-
most importance. Enter the age of Al traders: more
efficient, enabled to make decisions based on instan-
taneous data analysis, and navigating markets better
than their predecessors.

However, the true paradigm shift is heralded by
the rise of Deep Learning. Its changing potential
is evident across sectors, from chatbots to advanced
medical diagnostics. Deep Learning Neural Networks
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(DLNNs), modelled after human neural pathways
(Shetty et al., 2020), are at the forefront of this Al
revolution. Their applications span diverse domains
such as speech recognition, natural language process-
ing, and even cancer detection (Abed, 2022)). Re-
cent studies underscore the effectiveness of DLNN-
based traders, which have demonstrated capabilities
rivalling, if not exceeding, traditional algorithmic
traders (Calvez and Clitf, 2018). Moreover, the rapid
democratisation of computational power has led to in-
creasingly sophisticated market simulations, enabling
a vast number of research prospects — especially for
the Al community.

Algorithmic traders execute the majority of daily
trades in a market, processing millions of transactions
at sub-second rates. While much of the existing lit-
erature evaluates trading strategies in simplified mar-
ket simulations, the intricate and asynchronous nature
of real-world financial markets often remains unad-
dressed. The purpose of this work is to bridge this
research gap in the literature with these core contribu-
tions:

* Train an intelligent trader based on an extended
and enhanced, proven DLNN architecture.

* Adapt an asynchronous market simulator to use
our autonomous strategy and enable a solid base



for experiments.

* Evaluate the performance of our trader against
other traders in the literature based on profits ob-
tained.

* Validate the results by performing the relevant sta-
tistical analysis and discussing the successes and
shortcomings of our model.

The aim is to build and tune a system that could
outperform existing strategies, in that case raising
questions such as: Why rely on traditional meth-
ods when Al-powered strategies offer superior perfor-
mance?

A positive result could have an impact in the real
world, with the only barrier represented by the access
to some of the LOB data the model requires. Cus-
tomer limit prices are not public when trading, so
owning that kind of historical data would prove to be
great leverage. In the case of a negative result, this
research would prove useful underlying causes and
ascertain the vulnerabilities that a DLNN trader has
when deployed in a realistic setting, albeit with the
caveat of accessing certain proprietary LOB data. Our
exploration is both an homage and an extension of the
efforts of two previous pieces of research, DeepTrader
(Wray et al., 2020) and the Threaded Bristol Stock
Exchange (Rollins and Cliff, 2020), seeking to chart
new horizons in the confluence of Al and financial
trading.

1.0.1 Context on Financial Markets and
Algorithmic Traders

Over the course of this project, there are a number of
specialised terms and concepts relevant to our work,
especially regarding the LOB, which are going to be
expanded on in the following sub-section.

At the core of most financial markets lies the Con-
tinuous Double Auction (CDA) mechanism (Smith,
1962). Unlike the traditional auction setup, where
items are sold one at a time with bidders actively
competing until the highest price is reached, the CDA
operates continuously, allowing buyers and sellers to
place orders at any time. The ’double’ in CDA signi-
fies that it facilitates both buying and selling, dynami-
cally matching buy orders with corresponding sell or-
ders based on price preferences.

Central to the operation of the CDA is the LOB.
The LOB is a dynamic, electronic record of all the
outstanding buy and sell orders in the market for a
particular asset. These orders are organised by price
level, with the "bid’ price representing the maximum
amount a buyer is willing to pay and the ’ask’ price
indicating the minimum amount a seller is willing to
accept. The difference between the highest bid and

the lowest ask is known as the ’spread.” A key fea-
ture of the LOB is that orders are processed based on
price-time priority. This means that orders at the best
price are always executed first, and among orders at
the same price, the one placed earlier gets priority. In
a typical market scenario, traders—either humans or
algorithms—submit orders. These orders can be of
two main types:

e Limit Orders: A trader specifies a price and quan-
tity. For buyers, this price is the maximum they’re
willing to pay, and for sellers, it’s the minimum
they’re willing to accept. These orders are added
to the LOB and wait for a matching order to ar-
rive.

e Market Orders: A trader specifies only the quan-
tity, aiming to buy or sell immediately at the best
available price. These orders are not added to
the LOB; instead, they are matched with the best
available opposite order from the LOB.

The market’s primary objective is to facilitate
trading by matching buy and sell orders. The continu-
ous updating and matching in the LOB ensure liquid-
ity and dynamic price discovery, reflecting the current
consensus value of an asset.

The data we require from the LOB is referred to
as “Level-2” data, meaning that we get all the current
active orders. For context, ”Level-1" market data con-
tains only the prices and quantities of the best bid and
ask in the market.

The Threaded Bristol Stock Exchange (TBSE)
is an advanced, asynchronous version of the open-
source Bristol Stock Exchange (BSE) (Cliff, 2022),
a faithful, detailed simulation of a financial exchange
where a variety of public-domain automated trading
algorithms interact via a CDA. It is asynchronous in
the way traders interact with the market, with each
competing for an asset and placing orders concomi-
tantly. Abiding by Smith’s guidelines (Smith, 1962),
traders solely aim for profit, ensuring no trades occur
at a loss. Unlike its predecessor, where traders were
sequentially and randomly polled for orders, TBSE
grants each trader its own thread. Throughout a mar-
ket session, traders continuously receive market up-
dates and decide on placing orders. This structure
privileges faster algorithms, as orders are queued on a
“first in, first out” (FIFO) basis, emulating real-world
market dynamics more closely.

The following terms will be relevant when defin-
ing our model’s features. The LOB midprice is the
average of the highest bid and the lowest ask prices
in the LOB. The microprice refines this midprice by
factoring in the order imbalance and the depth of the
order book. Imbalance represents the proportionate



difference between buy and sell orders, highlighting
directional pressure. Total quotes on the LOB refer to
the aggregate of all buy and sell orders present. The
estimate Px of the competitive equilibrium price pre-
dicts where supply meets demand, ensuring market
clearance. Lastly, Smith’s “alpha” o metric gauges
how closely the market price approaches this equilib-
rium, serving as a measure of market efficiency.

Now having cleared the domain-specific con-
text, we transition to showing how experimental eco-
nomics evolved from Smith’s inaugural work to Al al-
gorithmic traders, understanding how our work builds
on existing knowledge in Section[2] The rest of this
paper, based on (Cismaru, 2023)), will detail how the
model that DTX uses was trained and the experimen-
tal setup in Section [3] The results showing how DTX
outperforms existing traders are shown in Section [4]
Section [5] will further analyse these findings, with
Section [6] providing a view on limitations and future
work, concluding with Section (OpenAl, 2023)

2 BACKGROUND

2.0.1 Beginnings of Experimental Economics
and Agent Based Modelling

The groundwork for experimental economics was laid
by Vernon Smith in 1962 by publishing "An Ex-
perimental Study of Competitive Market Behaviour”
in The Journal of Political Economy (JPE) (Smith,
1962). Smith has implemented a series of experi-
ments based on the CDA system, where buyers and
sellers are announcing bids and others in real-time,
with the possibility of a trade being executed any time
the prices match.

The experiments were performed with small
groups of human traders. They were instructed to
trade an arbitrary commodity on an open-pit trading
floor with the intention of maximising profitability,
namely the difference between the limit price and the
trade price. Each trader was given a pre-defined limit
price: for sellers, the minimum they are allowed to
sell their units at, and for buyers, the maximum price
they can pay for a unit of the traded asset, thus pre-
venting loss-making trades. The simulations were
carried out as “trading days”, namely time intervals
of 5 to 10 minutes. The quotes that were shouted by
the traders resembled the LOBs of modern markets.
Once a trader agreed on a trade with its counterparty,
both would leave the market as they only had a sin-
gle unit to trade. The results showed rapid conver-
gence to the theoretical equilibrium price, measured
by Smith’s o metric. It measures how well and ef-

ficiently the market is converging to the equilibrium
price. The experiments capture the asynchronous na-
ture of financial markets, one of the issues that this
work is aiming to explore. Vernon Smith received the
Nobel Prize in 2002 for his pioneering work in exper-
imental economics, with his experiment styles being
the basis of most research carried out in this field and
the methodology used in this paper.

Three decades later, in 1993, Gode and Sunder
introduced the Zero Intelligence traders (Gode and
Sunder, 1993). Their focus is on studying how auto-
mated traders perform in markets dominated by hu-
man traders. They introduced two trading strate-
gies: Zero Intelligence Unconstrained (ZIU) and Zero
Intelligence Constrained (ZIC). ZIU is generating
purely random quotes, while ZIC is limited, con-
strained to a price interval. Their experiments, carried
out in the style of Vernon Smith, showed ZIC to out-
perform human traders. A few years later, in 1997,
CIiff published a paper proposing Zero Intelligence
Plus (ZIP) traders, which, by using a simple form of
ML, can be adaptive and converge in any market con-
dition (Cliff, 1997). ZIP is based on a limit price and
an adaptive profit margin. The margin is influenced
by a learning rule and the conditions of the market.

In 1998, Gjerstad & Dickhaut described an adap-
tive agent, GD (Gjerstad and Dickhaut, 1998), with
Tesauro & Bredin publishing a paper in 2002 de-
scribing the GD eXtended (GDX) trading algorithm
(Tesauro and Bredin, 2002)). In 2006, Vytelingum’s
thesis introduced what is called the Aggressive-
Adaptive (AA) strategy (Vytelingum, 2006), which
was thought to be the best-performing agent until re-
cently. In 2019, CIliff and Snashall performed com-
prehensive experiments comparing AA and GDX,
simulating over a million markets. The results show
that AA is routinely outperformed by GDX, argu-
ing that advancements in cloud computing and com-
pute power open new possibilities for strategy evalua-
tion that were not possible before (Snashall and CIiff,
2019).

2.0.2 Rise of Intelligence in Market Modelling
and Price Prediction

The advent of Al has attracted increased attention in
the fields of finance and trading. More and more pa-
pers detail how advanced Deep Learning methods be-
came very powerful tools in the world of agent-based
trading, market making, and price forecasting. Ax-
tell and Farmer present in their 2018 report how ad-
vances in computing have enabled agent-based trad-
ing (ABM), which has impacted how trading is per-
formed today (Axtell and Farmer, 2018)). In finance,
ABM helped us understand markets, volatility, and



risk better. Their report is comprehensive and can be
considered a higher-level point of reference on how
agents are being applied in different branches of fi-
nance and economics. Njegovanovi¢ published a pa-
per in 2018 that discusses the implications of Al and
ML in finance, with a focus on how the human brain
and its behaviour have inspired the architecture of au-
tomatic decision models (Njegovanovic, 2018)).

In the past decade, a number of studies have ex-
plored the potential of Machine Learning (ML) and
Deep Learning in finance. In 2013, Stotter, Cartlidge,
and CIliff introduced a new method for assignment
adaptation in ZIP, performing balanced group tests
against the well-known ZIP and AA strategies (Stot-
ter et al., 2013). Their results show that assignment-
adaptive (ASAD) traders equilibrate more quickly af-
ter market shocks than base strategies. In 2019, Ji,
Kim, and Im performed a comparative study of DNN
vs. LSTM for Bitcoin price prediction, trained on
historical data from public ledger records. They con-
clude that classification models (DNN) perform better
than regression models (LSTM) for price prediction
(Jietal., 2019).

Another paper from 2020 by Silva, Li, and Pam-
plona uses LSTM-based trading agents to predict fu-
ture trends in stock index prices. Their proposed
method, named LSTM-RMODYV, demonstrates the
best performance out of all studied methods, and it
is shown to work in both bear and bull markets (Silva
et al., 2020). The results found Deep Reinforcement
Learning to be performant in market-making appli-
cations by Sun, Huang, and Yu in 2022 (Sun et al.,
2022), with a similar piece of work being published
in 2019 (Sirignano and Cont, 2019). They propose
a Deep Learning model applied to historic US equity
markets. The information extracted from the LOBs
uncovers a relationship between past orders and the
direction of future prices. They conclude that this is
better than specialised predictions for specific assets.
Their results illustrate the applicability and power
of Deep Learning methods in modelling market be-
haviour and generalisation.

2.0.3 Need for Intelligence and Realistic
Modelling

The work in this paper continues what Calvez and
CIliff started in 2018 (Calvez and Clhiff, 2018)), when
they introduced a DLNN system trained to replicate
adaptive traders in a simulated market. Purely based
on the observation of the best bid and ask prices, the
DLNN has managed to perform better than the trader
observed. In 2020, Wray, Meades, and Cliff will take
this further by introducing the first version of Deep-
Trader, a high-performing algorithmic trader (Wray

et al., 2020) trained to perform in a sequential mar-
ket. Based on a LSTM, it automatically replicates a
successful trader by training on 14 features derived
from Level-2 market data. The first version of Deep-
Trader matches or outperforms existing trading algo-
rithms in the public-domain literature. Most studies
are performed on sequential simulations, in which the
speed at which the traders react to changes in the
market does not matter. Axtell and Farmer argue in
their report ”Agent-Based Modelling in Economics
and Finance: Past, Present, and Future”, mentioned
above (Axtell and Farmer, 2018)), that the real social
and economic worlds are parallel and asynchronous,
but we try to replicate it with single-threaded code.
Rollins and CIiff try to mitigate this in a paper they
published in 2019 (Rollins and Cliff, 2020). They
propose TBSE, as we introduced in Section[I.0.1] on
which they perform pair-wise experiments between
well-known trading strategies. The results reported
intriguing insights, with a new dominance hierarchy
of trading algorithms emerging, opening a new area
of research.

Our work aims to build a new strategy to trade in
the TBSE, leveraging the advantages of the architec-
ture of DeepTrader. We will dive into the details of
this in the next section, asking the question: Can we
extend this model to learn from a variety of traders
and study its behaviour in a parallel simulation? We
hope that the results of our study can provide more
insight into its potential real-world performance.

3 METHODS

The core of our work relies on TBSE, as intro-
duced in Section [[.0.I} It was used to gener-
ate the large amounts of data required for train-
ing the LSTM network used by DTX when run-
ning against the legacy trading strategies. The
code of our project is available online at GitHub at
github.com/armandcismaru/DeepTraderX for easy re-
producibility.

TBSE was designed to use real-world historical
data to introduce variability in its supply and demand
schedules, generating more realistic data. The sim-
ulator uses a stochastically-altered schedule at each
session, avoiding repetition and bias. For our train-
ing and experiment sessions, we used IBM stock price
data from the August 31, 2017 NYSE trading day.

The simulator provides the means to produce large
quantities of “historical” market data. The one met-
ric we are interested in is the profit that each trader
type achieves at the end of the session, namely profit
per trader (PPT). We cannot assess these algorithmic
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traders the same way we would with real traders, as
TBSE doesn’t simulate loss, so we are judging based
on profits only.

The data used as input to the model is curated by
taking snapshots of the Level-2 LOB data, updated
each time a trade occurs. We use 14 multivariate input
features as training data for our DLNN-based model,
deriving from these LOB snapshots, as detailed in
Section[I.0.1] When performing inference, our model
uses this data to produce the target variable, namely
the price at which it is willing to trade at a specific
time in the market (the quote placed by the trader).
The 14 features are as follows:

1. The time ¢ of the trade when it took place.

2. The type of customer order used to initiate the
trade, either a ”’bid” or an ”ask” order.

3. The limit price of the trader’s quote that initiated
the trade.

. The midprice of the LOB at time ¢.

. The microprice of the LOB at time ¢.

. The LOB imbalance at time ¢.

. The spread of the LOB at time 7.

. The best (highest) bid on the LOB at time ¢.
. The best (lowest) ask on the LOB at time ¢.

O 0 N O L b

10. The difference between the current time and the
time of the previous trade.

11. The quantity of all quotes on the LOB at time ¢.

12. An estimate P* of the competitive equilibrium
price.

13. Smith’s a metric using the P* estimate of the com-
petitive equilibrium price at time ¢.

14. The target variable: the price of the trade.

As in real markets, when trading live in the sim-
ulation, DTX will only have access to its own limit
price, w.r.t. feature number 3. The data used for train-
ing includes each trader’s own limit price.

3.0.1 Data Generation and Preprocessing

TBSE provided five working trading agents that
were used to generate the training data, as
included here: |github.com/MichaelRol/Threaded-
Bristol-Stock-Exchangel In order to diversify the data
and cover a lot of market scenarios, the simulations
were run using different proportions of the trading
strategies, adding to a total of 40 traders per simu-
lation. The following proportions of 20 traders per
side of the exchange (buyers or sellers) were used to
generate the training data: (5, 5, 5, 5, 0), (8, 4, 4, 4,
0), (8,8,2,2,0), (10,4, 4,2,0), (12,4, 2, 2,0), (14,

2,2,2,0), (16, 2, 2,0, 0), (16, 4, 0, 0, 0), (18, 2, 0,
0, 0), and (20, 0, 0, 0, 0). Each number in a specific
position corresponds to a population of traders of a
certain type for a market simulation. For example, for
the specification (12, 4, 2, 2, 0), there are 12 ZIC, 4
ZIP, 2 GDX, 2 AA, and no Giveaway traders for both
the buyers and sellers sides.

Using all the unique permutations of the sched-
ules resulted in 270 trader schedules, ensuring that the
traders were used evenly. Each schedule was executed
for 44 individual trials, amounting to 270 x 44 =
11880 market sessions. Each session represented an
hour of simulated market time, requiring a bit over
one minute of real wall-clock time. Running on a sin-
gle computer, generating this amount of data would
require approximately 8.6 days of continuous execu-
tion. Given this time constraint, the decision was
made to use cloud computing.

The data generation system was made possible by
running the code as Docker containers, with the com-
putation parallel distributed across 10 AWS Elastic
Compute Cloud (EC2) instances. The workload was
split equally amongst the virtual machines (VMs) by
Kubernetes, with their provisioning done by AWS’s
Elastic Kubernetes Service (EKS).

The files generated amount to roughly 13 million
LOB snapshots, one per line. In order to save time
and prepare the data for training, the Python Pickle
library was used to serialise the CSV files to a large
byte stream file.

It is generally good practice to normalise the in-
puts of a network due to performance concerns, par-
ticularly for Deep Learning architectures like LSTMs.
Normalising the inputs helps ensure that all features
are contained within a similar range and prevents one
feature from dominating the others. For example,
we have features with different scales, such as the
time, which runs from 0 to 3600, while the quote
type is binary. So by normalising, we only have val-
ues in the [0,1] interval. Doing this ensures improved
convergence of the optimisation algorithm and helps
the model generalise better to new data. The choice
was to use min-max normalisation, given that we are
working with multivariate features derived from fi-
nancial data, so it is important to preserve their scale
while using an easy-to-understand model.

3.0.2 Model Architecture and Training

Contrary to the usual practices for training and vali-
dating a DLNN, which consist of splitting the dataset
into training, validation, and fest subsets, we used all
the dataset for training. Markets are a combination
of unique factors, so our trader’s profit is heavily de-
pendent on what is happening in a specific simula-
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activation = relu
batch_input_shape = null, 1, 13
implementation = 2
recurrent_activation = sigmoid
time_major = false

units =10

unroll = true

InputLayer

ragged = false
sparse = false

?x1x13

activation = relu
bias_constraint =
kernel_constraint =
units = 5 units = 3

activation = relu
bias_constraint =
kernel_constraint =

bias_constraint =
kernel_constraint =
units =1

Figure 1: Architecture diagram for the DLNN model used by DTX.

tion. Considering this, it is without purpose to as-
sess its performance relative to historic data by judg-
ing the absolute values of our target variable. Rather,
as the model produced a good drop in the loss level
during training, the DLNN was validated by quantify-
ing how well DTX performed in live market simula-
tions against other traders in terms of PPT. Our dataset
is large and was generated using unique simulations;
thus, DTX doesn’t learn to replicate specific scenar-
ios; rather, it grows its ability to adapt and generalise
in any condition.

The model DTX relies on is illustrated in the ar-
chitecture diagram in Figure [I] It is comprised of
three hidden layers, a LSTM with 10 units (neu-
rons), and two consequent Dense layers with 5 and 3
units, respectively, all using the Rectified Linear Unit
(ReLU) activation function. The output layers use a
”linear” activation function, chosen as suitable for a
continuous output variable.

When dealing with large datasets, training should
be done in batches in order to accommodate memory
limitations and speed up training. Our network ac-
commodates this by having a custom data generator
that implements the Sequence class, which Keras uses
to train a model in batches. To balance accuracy and
training times, a batch size of 16384 was chosen. The
learning rate of u = 1.5 x 10~ was deemed the sensi-
ble choice, trying to balance potential overfitting and
long convergence times. The DLNN uses the Adam
optimizer for its ability to efficiently converge to a
good solution, prevention of overfitting, and incorpo-
ration of momentum, which helps speed up learning
and improve generalisation performance.

To speed up the training, the LSTM layer uses un-
rolling, which processes input sequences in parallel
instead of sequentially. During training, 28 worker
nodes were used to pre-load the batches in memory
to reduce computational overhead. The network was
trained using the Blue Crystal 4 supercomputer, lever-
aging the power of its powerful GPUs, which Tensor-
flow is designed to optimise on. The training time
required is approximately 22 hours.

The model was trained for 20 epochs. An epoch
refers to a single pass of the entire dataset through
the neural network. During each epoch, the model

is exposed to each point of the dataset once. So, at
the end of the training session, DTX gets exposure
to 11880 x 20 = 237600 market sessions. With each
experiment producing ~ 1100 LOB snapshots, DTX
is trained using a total of roughly 261 million snap-
shots. The training error (loss) was calculated using
the Mean Square Error (MSE). The error decreased
considerably during the first 4 epochs and approached
0 in the last epoch with a loss curve rather resembling
an asymptote to the X axis.

3.0.3 Experiment Design and Evaluation

Finding the right methodology for comparing trad-
ing strategies is as important as the strategies them-
selves, as it is essential to isolate market conditions
in repeatable experiments. Traders are dependent on
the behaviour of other strategies, so this mandates
the need to study them in a controlled environment,
allowing quantitative analysis of their performance.
Drawing inspiration from the work of Tesauro and
Das (Tesauro and Das, 2001)), we have chosen two
testing methodologies.

The first experiment design is the Balanced Group
Tests (BGTs), in which the buyer and seller popu-
lations are evenly split between two types of strate-
gies. The choice of balanced-group tests provides
benefits to our research, namely that it is a stochastic-
controlled trial method that helps reduce bias sources
and improve the internal validity of the study. We
want to make sure that the differences observed come
from differences between trading strategies, not noise.
The tests allow full control of the experiment’s condi-
tions. The time frame of the simulation, the supply
and demand schedules, and the order interval can all
be controlled to isolate the differences between the
chosen strategies. The second type of experiment is
the One to Many tests (OTMs), where the trading
strategy that you want to observe becomes the “de-
fector” out of a homogenous population made up of
different strategies. This is useful for testing how an
algorithm behaves when faced with defection and in-
vasion. For fairness, there is one defecting strategy on
both buyer and seller sides.

The research on the profitability of DTX has been
conducted against four “competitor” traders: ZIC,



ZIP, GDX, and AA, adding up to eight sets of head-
to-head experiments. These strategies were chosen as
they are the most relevant in the literature, with AA,
GDX, and ZIP being “’super-human” traders, amongst
the first to be proven to outperform humans.

For each experiment, the trained model that DTX
uses has been run in n = 500 independent market sim-
ulations. It is worth specifying that each set of 50 tri-
als was run on a different cloud machine, resulting in
a broad distribution of profits, with each set of 50 ex-
periments using the same seed for functions involv-
ing randomness. This is due to the well-known and
researched issue in computer science that machines
cannot emulate perfect randomness (Bridle, 2022)).

4 RESULTS

The following section presents the results of our ex-
periments, obtained through 4,000 individual market
simulations. The outcome largely supports our re-
search hypothesis, with DTX dominating in 6 out of 8
experiments, with very significant differences in PPT
for a number of them.

Due to space constraints, we have limited the
choice of graphic support to profit distribution box
plots and scatter plots of individual trials. An ex-
tended, different summary of the results can be found
in Chapter 3.8 of (Cismaru, 2023). In the box plots,
the vertical axis is represented by PPT across tri-
als. The box represents the interquartile range, the
range between the first quartile and the third quar-
tile. The line inside the box represents the median
of the dataset. The whiskers represent the data within
1.5 times the interquartile range, with the diamond-
shaped points outside them being considered outliers
from a data distribution point of view. The scatter
plots show individual trials in terms of PPT obtained
by both traders. The line in the scatter plot is a di-
agonal reference line, where the points would lie if
the profits per trader for both strategies were equal.
Points above the line indicate higher profits achieved
by DTX and are analogous for the other trader.

The figures are grouped on an opponent basis,
with each set of two box-plots showing the PPT dis-
tributions of the BGTs and OTMs, followed by their
corresponding scatter plots. We present them in the
following order: ZIC, ZIP, GDX, and AA. Chap-
ter 4 in (Cismaru, 2023) also provides an extensive
description of the statistical significance tests con-
ducted for each experiment. Thus, for each time DTX
was poised against the other traders, we performed a
Wilcoxon-signed rank-test with a significance level of
95%. The null hypothesis is that there is no statistical

difference between the means of the profits achieved
by the traders. A p-value lower than 0.05 indicates
that we can reject the hypothesis, concluding that one
strategy outperforms the other in a given experiment.

4.0.1 ZICvs. DTX

Figure [2a] shows a narrow difference in means be-
tween ZIC and DTX in the BGTs, a fact visible by
the dispersion of profits in Figure [3| The statistical
test for 95% significance level has confirmed DTX as
the dominant strategy of this experiment. In the case
of OTMs, the difference in profits is more sensible in
favour of DTX, supported by the profit distribution in
Figure[2b|and by the cluster of profits above the diag-
onal in Figure[d] The statistical test has confirmed the
significant dominance of DTX in this experiment.
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(a) Balanced Group Tests for ZIC vs. DTX. (b) One to Many Tests for ZIC vs. DTX.

Figure 2: Box-plots showing PPT for ZIC vs. DTX tests.
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Figure 3: Scatter plot of PPT in BGTs for ZIC vs. DTX.

4.0.2 ZIP vs. DTX

The BGT experiment between ZIP and DTX is our
model’s only categorical loss. While Figure[6|doesn’t
indicate any immediate winner, Figure @ shows a
slight advantage for ZIP, with a higher mean PPT.
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Figure 4: Scatter plot of PPT in OTMs for ZIC vs. DTX.

The Wilcoxon signed-rank test has confirmed the re-
sult, confirming that there is a significant difference
in profits in favour of ZIP.

On the other hand, Figure 5B shows higher mean
profits for DTX, although with a much bigger vari-
ance and a number of outlier values. Visual inspec-
tion of the points in Figure [7 suggests that DTX sig-
nificantly outperforms, a fact backed by the result of
the statistical test.
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Figure 5: Box-plots showing PPT for ZIP vs. DTX tests.
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Figure 6: Scatter plot of PPT in BGTs for ZIP vs. DTX.
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Figure 7: Scatter plot of PPT in OTMs for ZIP vs. DTX.

4.0.3 GDXvs. DTX

Figures [8a] and [9] show BGT comparison of PPT
scores between DTX and GDX. Upon visual inspec-
tion, the bar plot shows a significant difference be-
tween the means of DTX and its competitor, with the
scatter plot placing most of its points above the diag-
onal, indicating the clear dominance of DTX in this
experiment, with the same outcome confirmed by the
outcome of our statistical test.

Figures[8b|and[I0]show PPT score comparisons in
the OTM experiment. The profits obtained by DTX,
although they are dispersed and have high variance,
lay on a superior magnitude scale than those of GDX,
as visible in the plots. The Wilcoxon signed-rank test
confirms this hypothesis.
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Figure 8: Box-plots showing PPT for GDX vs. DTX tests.

4.04 AA vs. DTX

Figures [TTa and [T2] present a visual representation of
the profits obtained by AA and DTX in the BGTs, in-
dicating similar results for both traders. The statistical
test applied failed to prove that there is a significant
difference in terms of mean profits between AA and



Balanced Group Tests - GDX Trader

25001

N
=3
1s)
S
By
\.

1500} L

1000

Profit per Trader - DTX
\

500

0 500 1000 1500 2000 2500
Profit per Trader - GDX

Figure 9: Scatter plot of PPT in BGTs for GDX vs. DTX.
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Figure 10: Scatter plot of PPT in OTMs for GDX vs. DTX.

DTX. Thus, this is our only inconclusive experiment.

On the other side, Figure @l shows a high-
profit but high-variance DTX in the OTM experiments
against AA, a fact also visible by looking at the points
above the diagonal in the scatter plot in Figure [T3]
The statistical test concludes that DTX is the higher-
performing strategy in this experiment, but with in-
creased variance.
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Figure 11: Box-plots showing PPT for ZIC vs. DTX tests.
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Figure 12: Scatter plot of PPT in BGTs for AA vs. DTX.
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Figure 13: Scatter plot of PPT in OTMs for AA vs. DTX.

4.0.5 Summary of Results

The results presented in this section are used to objec-
tively highlight what a trader based on a simple LSTM
architecture is able to achieve. To recap, our model
was exposed to market orders issued by traders and
the corresponding LOB market data during training.
The purpose of this is to enable the model to learn
a mapping from the input, a variety of market statis-
tics, and its own limit price, and generate an output, a
quote that can be used to place an order. The success
of a particular output quote is a combination of adapt-
ability to the multi-threaded market’s conditions, ra-
pidity of response, and competitor’s behaviour.

In summary, our empirical analyses reveal that
DTX exhibits superior performance in six out of eight
experiments and matches profits in one out of the
eight. DTX achieves its sole purpose, which is to
make profit. Notably, DTX either matches or sur-
passes the performance of three out of the four traders
tested, including those deemed super-human. Specif-
ically, DTX recorded two victories over GDX and
exhibited a win-tie performance against AA. How-
ever, the results against Cliff’s ZIP are more nuanced;



DTX registered both a victory and a defeat in markets
where both traded concurrently.

As we draw a line at the end of this section, hav-
ing presented a detailed analysis of the results, we
are nevertheless warranted to give credit to DTX, our
Deep Learning powered trader, for its notable perfor-
mance against the other traders in the literature. As
we transition into the discussion, we will delve deeper
into the implications of these results, discussing the
strengths and weaknesses of DTX, relating its per-
formance to previous results in TBSE, and exploring
their broader impact on the field at the intersection of
finance and artificial intelligence.

S DISCUSSION

The central aim of our research was to create a Deep
Learning model as part of a trading algorithm that
trades in an asynchronous, more realistic market sim-
ulation, juxtaposing its efficacy against established
trading strategies. Our findings, derived from rigor-
ous experiments, offer valuable insights into the nu-
ances of DTX’s behaviour and its potential applica-
tions.

A salient observation from our results is the con-
sistent profitability of DTX across all the experimen-
tal setups. This accomplishment is particularly note-
worthy when considering the volatility of markets,
which is better captured in the multi-threaded simu-
lation that we use. DTX’s ability to outperform or
match traders such as AA, GDX, or ZIC suggests that
the model can generalise effectively across various
scenarios and aggregate on-the-spot information bet-
ter than humans. Our trader relies on an opaque model
that doesn’t keep track of market changes, so it reacts
consistently and quickly no matter the conditions.

However, its performance against traders like ZIP
varied. Particularly, its profits have high variability,
especially when trading as a defector. DTX does not
behave under a pre-defined set of rules but instead
tries to estimate the best price to trade at. Some-
times the model generates prices that would produce
a loss if used, but DTX has a number of fallbacks
that handle this behaviour, such as quoting prices right
above or below the best bids or asks when that hap-
pens. These variations might be attributed to DTX not
understanding the market but rather replicating pre-
learned scenarios.

Within the broader academic discourse on trading
algorithms, our findings resonate with (Wray et al.,
2020). They proposed this DLNN architecture, man-
aging to outperform other strategies, but only trained
it to copy specific traders in a sequential simulation.

When they introduced TBSE (Rollins and Cliff,
2020), Rollins and Cliff proposed the idea that the
traders in the literature might have a different be-
haviour when tested in a concurrent simulation, bet-
ter reflecting what real markets look like. The re-
sults they presented challenged the status quo” of
the trader dominance hierarchy, finding that they now
come as follows: ZIP > AA > GDX > ZIC. By quan-
tifying the difference in results between DTX and the
four traders, we can say that the relative performance
of DTX follows the same ranking.

The broader implications of our research under-
score the potential of Deep Learning trading algo-
rithms in real-world trading scenarios. Their ability to
be consistent, resilient, and generalise in any scenario
suggests that they could be pivotal in creating fairer
and more efficient markets. However, it’s crucial to
consider that markets populated solely by these intel-
ligent automated systems might result in inexplicable
events and our inability, as humans, to understand the
new mechanisms of the financial markets we rely on.

6 LIMITATIONS & FUTURE
WORK

Our study, while comprehensive, is not without lim-
itations. DTX was trained using rich data, but from
only so many traders and scenarios. Also, our ex-
perimental setup was focused on only two types of
traders at a time. Not to mention the considerable
resource overhead involved in data collection, model
training, and testing. Addressing these in future re-
search would offer even more nuanced insights into
DTX’s capabilities. Moreover, an intriguing avenue
for future exploration would be quantifying the corre-
lation between the model’s inference time and perfor-
mance, as well as the degree of impact of each one of
its 14 features.

In practical applications, a financial institution en-
gaged in active trading could potentially deploy the
DTX algorithm, provided they have access to exten-
sive historical LOB data as well as their proprietary
trading data. Given that access to limit order prices
is typically restricted to an entity’s own trading oper-
ations, DTX could be trained on this comprehensive
dataset, thereby amalgamating the strengths of multi-
ple established strategies and leveraging vast comput-
ing resources. A market populated with traders like
DTX can be more efficient in allocating resources,
creating a fair and predictable space. (OpenAl, 2023)



7 CONCLUSION

In the rapidly evolving domain of automated trad-
ing, our study carves out a distinct space, emphasis-
ing the potential of Deep Learning trading algorithms.
As markets continue to evolve, the quest for algo-
rithms that can adapt and thrive remains paramount,
and DTX, as evidenced by our research, stands as a
promising proof-of-concept in this landscape. In the
quest for novelty and realism, we researched this in
a distributed market simulation that has previously
overturned the trader dominance hierarchy, with DTX
being consistent with these findings.

As we stand on the cusp of this new frontier,
it beckons researchers, practitioners, and policymak-
ers alike to collaboratively shape a future where Al-
augmented trading systems contribute to more effi-
cient, stable, and equitable financial markets.
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