2403.18832v1 [cs.SE] 6 Feb 2024

arXiv

Rationale Dataset and Analysis for the Commit Messages of the
Linux Kernel Out-of-Memory Killer

Mouna Dhaouadi
DIRO, Université de Montréal
Montréal, Canada
mouna.dhaouadi@umontreal.ca

ABSTRACT

Code commit messages can contain useful information on why a
developer has made a change. However, the presence and structure
of rationale in real-world code commit messages is not well studied.
Here, we detail the creation of a labelled dataset to analyze the code
commit messages of the Linux Kernel Out-Of-Memory Killer com-
ponent. We study aspects of rationale information, such as presence,
temporal evolution, and structure. We find that 98.9% of commits
in our dataset contain sentences with rationale information, and
that experienced developers report rationale in about 60% of the
sentences in their commits. We report on the challenges we faced
and provide examples for our labelling.

CCS CONCEPTS

« Software and its engineering — Requirements analysis;
Maintaining software; Documentation.

KEYWORDS

developer rationale, dataset, Linux kernel, commit messages

ACM Reference Format:

Mouna Dhaouadi, Bentley James Oakes, and Michalis Famelis. 2024. Ratio-
nale Dataset and Analysis for the Commit Messages of the Linux Kernel
Out-of-Memory Killer. In 32nd IEEE/ACM International Conference on Pro-
gram Comprehension (ICPC °24), April 15-16, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3643916.3644413

1 INTRODUCTION

To be effective in evolving software systems, developers who desire
to propose code changes have to deeply understand the system and
its behavior. Developing this understanding is not easy, yet it is
crucial to grasp the rationale behind the decisions that shaped the
system to its current state. Communities of software developers
may put in place norms to encourage documenting this rationale,
to describe why each change was made. In modern software devel-
opment, such information is often contained in the commit message
that accompanies a proposed code change that is submitted in a
shared version control repository, such as Git.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’24, April 15-16, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0586-1/24/04...$15.00
https://doi.org/10.1145/3643916.3644413

Bentley James Oakes
GIGL, Polytechnique Montréal
Montréal, Canada
bentley.oakes@polymtl.ca

Michalis Famelis
DIRO, Université de Montréal
Montréal, Canada
michalis.famelis@umontreal.ca

Although several researchers have discussed the importance of
rationale [7], and proposed various approaches for structuring and
extracting it [5, 10, 11, 16, 20, 26, 35], there are scant details in the
literature about the characteristics of rationale in real-world sys-
tems. In fact, only few researchers have attempted to develop a deep
understanding of developers’ rationale in Open Source Software
(OSS), e.g., by studying chat messages or email archives [2, 27]. To
the best of our knowledge, there is no prior work studying developer’s
rationale in the code commit messages of open source projects, specifi-
cally their structure. We expect that the results of such studies could
be used a) to better understand the characteristics of rationale (such
as its presence, structure and evolution over a project’s lifetime), b)
as first steps towards setting rationale documentation guidelines to
improve commit messages to justify the commits for OSS commits
in the future, which would reduce the developer’s need to access an
issue tracker (avoiding inconsistencies or traceability errors), and
c) as baselines for automated solutions (e.g. GitHub pull request
bots) to identify rationale in software.

To fill this gap, we propose to study developers’ rationale in the
commit messages of an open source project. Our main research
questions is: What are the characteristics (presence, impact factors,
evolution, structure) of how rationale information appears in collab-
orative open-source commit messages? Specifically, we report on
our creation of an annotated, high-quality rationale dataset for the
Out-of-Memory Killer (OOM-Killer) component of the Linux kernel
project. We have previously argued that this project is well suited
for studying rationale [10]. In this work, we systematically anno-
tate the content of these commit messages, using a categorization
of sentences as Decision, Rationale and Supporting Facts [11]. We
then analyze quantitatively the resulting dataset to characterize
rationale in the OOM-Killer subsystem. Specifically, we follow the
empirical standards of a repository mining study [24].

We previously proposed Kantara [10], an end-to-end automatic
rationale extraction and management pipeline, and evaluated it on
some example commits from the Linux OOM-Killer component. Our
then-partial labelling of the OOM-Killer dataset is completed here,
as a stepping stone to future work on automatic extraction [9]. We
also described how this rationale information can be represented
using an ontologically-based knowledge graph, along with some
initial reporting and visualization functionalities of Kantara [11].

The contributions of this paper are twofold: 1) a high-quality
dataset of labelled commits of the OOM-Killer component, and 2) an
analysis of the dataset of seven research questions (see Section 4.2)
that touch on topics ranging from the frequency of the presence
of rationale, the factors that impact it, its temporal evolution, to

https://doi.org/10.1145/3643916.3644413
https://doi.org/10.1145/3643916.3644413

ICPC *24, April 15-16, 2024, Lisbon, Portugal

the structure of commit messages. The dataset and the source code
used to perform our analysis are publicly available!.

The remainder of this paper is organized as follows. We present
the OOM-Killer subsystem in Section 2, and discuss our work on
creating the labelled dataset of the OOM commits in Section 3.
Then, we describe the obtained dataset and analyze it in Section 4.
We introduce the threats to validity we encountered in Section 5,
overview related work in Section 6, and conclude in Section 7.

2 LINUX OUT-OF-MEMORY KILLER
SUBSYSTEM

The Linux kernel is a large open-source project that is being contin-
uously developed collaboratively since 1991. Its main collaboration
channel is the Linux Kernel Mailing List (LKML), which contains
code patches and discussions. Since 2005, code patches for the Linux
kernel have been structured as Git commits. Table 2 shows an ex-
ample of a commit message. Developers are encouraged to explain
the motivation for the commit and explain its impact on the kernel
in the commit message?. This community practice makes the Linux
kernel commits a rich repository of rationale information [10].

The Out-Of-Memory Killer (OOM-Killer) subsystem is a Linux
module [6] that is in charge of freeing up the memory to prevent
a system crash when all the available memory has already been
allocated. It embodies one approach to handling OOM problems [15]
by using a set of heuristics to select a task (the OOM victim) and
“killing” it, i.e., forcing it to terminate. The victim is thus forced to
release its memory and exit. We have previously argued that this
OOM-Killer component is a particularly good source of rationale,
as its commit messages reveal interesting decisions about the best
selection strategy of the OOM victim [10].

Thus, we have applied purposeful sampling [30]. We have se-
lected a component (the OOM-Killer) with high-quality justification
in commit messages as a critical case, i.e., a case where rationale of
high quality is expected to be present and identifiable. Absence of
rationale in this case would signify deeper problems for rationale
identification in general.

3 DATASET CREATION

This section discusses labelling the rationale information of all com-
mits of the OOM subsystem, as well as the final data set structure.

3.1 Commit Pre-processing

We obtained the initial set of commits downloading the available
commit history for the oom_kill.c file which contains the C source
code of the OOM Killer module®. This initial set contained 418 com-
mits since the Linux development moved to Git on 2005-04-16 up
until 2022-09-27 (the commit date of the latest commit we pulled).
We excluded Git merge commits, as they do not typically contain
informative commit messages. In fact, in this particular module,
we have 13 merge commits that restate previous commits (e.g.,
“Pull updates from X"4), contain no description of the changes (e.g.,

1https://zenod(Lorg/records/10063089
2https://Www,kernel,org/doc/html/latest/process/submittingfpatches.html.
3https://githubx;om/torvalds/linux/«:ommits/master/mm/oomikill.c, accessed on 12/01/2023.
“https:/github.com/torvalds/linux/commit/35ce8ac9ae2e471f92759f9d6880eaba2cc1c3b6

Dhaouadi, et al.

Table 1: Labelling codebook

Label Meaning

Decision An action or a change that has been made, includ-

ing a description of the patch behaviour

Rationale Reason for a decision or value judgment
Supporting Facts A narration of facts used to support a decision
Inapplicable Pre-processing error or bad sentences

(i.e., does not contain English sentences)

enumerate a list of patches®) or summarize the changes in a non-
informative manner (e.g., “updates”®). Therefore, removing them
does not present a threat to validity. Only one merge commit con-
tains informative description as it fixes some conflicts’. Although
removing this specific commit presents a small threat, we chose to
do so for consistency reasons.

We then performed pre-processing of the messages of the re-
maining 404 non-merge commits. For each message, we removed
the meta-data at the end of the message, such as the tags Signed-off-
by and Suggested-by, that are not relevant for the study of rationale.
We also removed URLSs, references to other resources, and call traces
using regular expressions. We then split the message to sentences,
keeping only sentences with: a) more than three characters, and
b) that are not source code. We used heuristics to detect whether a
sentence is source code, like the existence of keywords or symbols
such as git, $cd or $echo. We chose these keywords by manually
investigating the data.

Since the data was not properly formatted, the pre-processing
step was challenging and only partially successful. For instance, en-
tries such as “BUG: scheduling while atomic: rsyslogd/1422/0x00000002
INFO: lockdep is turned off”® were not removed. To overcome this
limitation, we will continue cleaning the data during the labelling,
using the Inapplicable label (see Section 3.2.2). The pre-processed
sentences could be also be corrected manually but that would be
time consuming and error-prone.

3.2 Sentence Labelling Procedure

3.2.1 Piloting. We continue the categorization of Decision, Ratio-
nale and Supporting Facts from [11], as shown in Table 1. We note
that a sentence can have multiple labels, or no labels. To develop a
shared understanding regarding the meaning of the labels we will
be using, we performed five iterations of piloting rounds and consol-
idation meetings during which the three annotators’ independently
annotated 33 randomly-chosen commits in total. We elaborated
a common protocol to consistently label the dataset based on the
diverse cases we encountered during our piloting rounds.

3.2.2 Codebook. As shown in Table 1, a Decision provides infor-
mation about the state of the system after the patch is applied, i.e.,
it refers to the system’s future state. Rationale is the reason why a
decision is taken, such as a value judgement about undesirable be-
havior. Supporting Facts are bits of information in a sentence where
a developer discusses the currently existing state of the system, at

5https://github.com/torvalds/linux/commit/S12b7931ad0561f’fe14265f9f’f55433c081])476])
6https://githuhcom/torvalds/linux/commit/zzée‘)2f990337b8b4c5fdec47667f8b96089c503e
7https://github.com/torvalds/linux/commit/ZbS28925652340277a889cbcl1b2d0637f7cdaf7
8https://api.github.com/repos/tarvalds/linux/git/commits/bS272305607f7684c2c0&:()75f86f86claOcl7fbédO
A PhD student, a post-doctoral researcher, and a professor.

https://zenodo.org/records/10063089
https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://github.com/torvalds/linux/commits/master/mm/oom_kill.c
https://github.com/torvalds/linux/commit/35ce8ae9ae2e471f92759f9d6880eab42cc1c3b6
https://github.com/torvalds/linux/commit/512b7931ad0561ffe14265f9ff554a3c081b476b
https://github.com/torvalds/linux/commit/28e92f990337b8b4c5fdec47667f8b96089c503e
https://github.com/torvalds/linux/commit/2b828925652340277a889cbc11b2d0637f7cdaf7
https://api.github.com/repos/torvalds/linux/git/commits/b52723c5607f7684c2c0c075f86f86da0d7fb6d0

Rationale Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Table 2: An example commit with labelled sentences from our dataset

Sentence ‘ Labelling
mm, oom: introduce independent oom killer ratelimit state Decision
printk_ratelimit() uses the global ratelimit state for all printks Supporting Facts
The oom killer should not be subjected to this state just because another subsystem or driver may be flooding the kernel log Rationale
This patch introduces printk ratelimiting specifically for the oom killer. Decision

the moment before they propose a change. The Inapplicable label is
used by the annotators to identify noise in the data that was not
successfully filtered by the pre-processing step due to the lack of
uniform formatting and the presence of (pseudo-)code.

Table 2 reproduces a commit from the dataset, along with a
classification for each sentence. The first sentence (the summary
phrase of the commit) is labelled as a Decision as it states the patch’s
change. The second sentence is labelled as a Supporting Facts as it
presents the currently existing state of the system, and the third
sentence is labelled as Rationale as it motivates this commit.

The codebook we adopted is data-driven; we came to it after
several discussions and consolidation meetings. However, this cate-
gorization is preliminary and used as a first-order classification. For
example, although we labelled the sentence “A future optimization
could be to put sched_entity and sched_rt_entity into a union.”'? as
Decision, it could also fit under a Suggestion category. We plan to
extend this codebook in the future to include other components of
commit message rationale (e.g. Goal, Need, Benefit, etc. [1]).

3.2.3 Protocol. To systematically create the dataset, we developed
this protocol for annotating the commit message sentences:

(1) We do not separate a sentence from its context; when in
doubt, we look at the patch code to better understand it.

(2) Past changes count as Supporting Facts. Decision and Ratio-
nale, however, usually concern the present (current commit).
e.g., the sentence “The reason this check was added was the
thought that, since only the OOM disabling code would wait
on this queue, wakeup operations could be saved when that
specific consumer is known to be absent.”1! counts as Sup-
porting Facts. In contrary, the sentence “It’s better to extract
this to a helper function to remove all the confusion as to its
semantics.”? counts as Decision and Rationale.

(3) Future intent counts as rationale. e. g the sentence “Moreover,
this will make later patch in the series easier to review.”!
counts as Rationale.

(4) We consider terse value judgment language (e.g., “fix” or
“cleanup”) to imply the presence of rationale and descrip-
tions of decisions, even if it is low quality. e.g., the sen-
tences “mm/oom_kill.c: fix vm_oom_kill_table[] ifdeffery.”*
and “Unify it.”! count both as Decision and Rationale.

(5) It is possible that no label is applicable. e.g., the sentence
“mm/ mmu_notifier: contextual information for event trigger-
ing invalidation.”'® does not fit any of the three categories.

10 https://api.github.com/repos/torvalds/linux/git/commits/fa717060f1ab7eb6570f2fb49136f838fc9195a9
https://api.github.com/repos/torvalds/linux/git/commits/c38f1025f2010d6183e9923d4b4d5804474b50c5
12https://api.github.com/re[_voS/tmrvalds/linux/git/cammits/309ed?3232508c(:47 1320ff79265e7340774d6746¢
13https://api,github.com/repos/towalds/linux/git/commits/7ebffa4555 1fe7db86a2b32bf586f124ef484e6e
14https://a\pi,github.com/lrepos/torvallds/linux/git/cmmmits/alchadszQ 1597eb79c123b8a19a9faba5ab7d90e
15 https://api.github.com/repos/torvalds/linux/git/commits/ab290adbaf8f46770f014ea87968de5baca29¢30
O https://api.github.com/repos/torvalds/linux/git/commits/6f4f13e8d9e27cefd2cd88dd4fd80aacd68b9131

(6) Examples can also be labelled with one of the categories.
e.g., the sentence “In the following example, abuse_the_ram
is the name of a program that attempts to iteratively allocate
all available memory until it is stopped by force.”!” counts
as Supporting Facts. However, the sentence “The value is
added directly into the badness() score so a value of -500, for
example, means to discount 50% of its memory consumption
in comparison to other tasks either on the system, bound to
the mempolicy, in the cpuset, or sharing the same memory
controller.”'8 counts as Decision.

(7) If a sentence was mistakenly cut during pre-processing, we
label all the parts with the same labels. e.g., these two parts of
the same sentence: “oom_reaper used to rely on the oom_lock
since e2fe14564d33 ("oom_reaper” and “close race with exit-
ing task").”' should be labelled the same even though pre-
processing produced them as separate items.

(8) If pre-processing has produced an item that mixes code (e.g.,
log or trace or source code) with a valid English sentence (e.g.,
not heading, for example: "current message"), we ignore the
code and label the item based on the sentence. e.g., when la-
belling the item “oom-kill: constraint=CONSTRAINT _NONE,
nodemask=(null), cpuset=/, mems_allowed=0-1, task=panic,
pid=10737, uid=0 An admin can easily get the full oom context
at a single line which makes parsing much easier.”°, we dis-
regard the non-English part and apply a label based only on
the part starting with “An admin can easily...”.

3.24 Labelling. We conducted the labelling of the 366 remaining
commits (i.e, excluding those used for the piloting) in batches, over
a period of six months. In all, we annotated 2333 sentences, where
sentences could have multiple labels. While labelling independently,
we held regular meetings to discuss problematic sentences and
resolve discrepancies. The purpose of the meetings was to agree
on how to remove any potential misunderstanding or confusion
regarding the commit messages. For sentences where we could
not establish complete agreement or that contained ambiguous
language, we assigned labels by taking the union of all opinions.
To compute inter-rater agreement, we use Fleiss Kappa [12] since
we are in the presence of more than two annotators. Table 3 shows
the number of batches, their sizes (number of commits) and the
Fleiss Kappa per category. Fleiss Kappa was computed after the
consolidation meetings. As shown in Table 3, there is generally a
stronger consensus about the Decision and Supporting Facts cate-
gories than the Rationale category. Despite the low kappa values for
individual categories in some batches (e.g, batch 6, 9 or 10), overall

17 https://api.github.com/repos/torvalds/linux/git/commits/8ac3f8fe91a2119522a73fbc41d354057054e6ed
18 https://api.github.com/repos/torvalds/linux/git/commits/a63d83f427fbce97a6ceaddb2e64b0eb8435cd10
19https://api.github.com/repos/torvalds/linux/git/commits/afSG79fb0669f3 1f7ebd0d473bca76c24c07de30

0 https://api.github.com/repos/torvalds/linux/git/commits/ef8444ea01d7442652f8e 1b8a8b94278cb57eafd

https://api.github.com/repos/torvalds/linux/git/commits/fa717060f1ab7eb6570f2fb49136f838fc9195a9
https://api.github.com/repos/torvalds/linux/git/commits/c38f1025f2910d6183e9923d4b4d5804474b50c5
https://api.github.com/repos/torvalds/linux/git/commits/309ed882508cc471320ff79265e7340774d6746c
https://api.github.com/repos/torvalds/linux/git/commits/7ebffa45551fe7db86a2b32bf586f124ef484e6e
https://api.github.com/repos/torvalds/linux/git/commits/a19cad0691597eb79c123b8a19a9faba5ab7d90e
https://api.github.com/repos/torvalds/linux/git/commits/ab290adbaf8f46770f014ea87968de5baca29c30
https://api.github.com/repos/torvalds/linux/git/commits/6f4f13e8d9e27cefd2cd88dd4fd80aa6d68b9131
https://api.github.com/repos/torvalds/linux/git/commits/8ac3f8fe91a2119522a73fbc41d354057054e6ed
https://api.github.com/repos/torvalds/linux/git/commits/a63d83f427fbce97a6cea0db2e64b0eb8435cd10
https://api.github.com/repos/torvalds/linux/git/commits/af5679fbc669f31f7ebd0d473bca76c24c07de30
https://api.github.com/repos/torvalds/linux/git/commits/ef8444ea01d7442652f8e1b8a8b94278cb57eafd

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Table 3: Inter-rater reliability table

. Fleiss Kappa
Batch | Size Decision | Rationale | Supporting Facts
1 20 0.596 0.514 0.489
2 20 0.733 0.487 0.596
3 20 1.0 0.933 1.0
4 40 0.899 0.929 1.0
5 20 0.928 0.796 0.738
6 20 0.861 0.80 0.40
7 20 1.0 0.853 0.863
8 20 0.865 0.498 0.666
9 20 0.644 0.261 0.799
10 20 0.286 0.20 0.280
11 20 0.796 0.865 0.598
12 20 0.777 0.707 0.665
13 20 0.925 0.498 0.850
14 20 0.569 0.343 0.603
15 20 1.0 0.932 0.731
16 20 0.918 0.555 0.859
17 20 0.822 0.775 0.733
18 6 0.593 0.326 0.175
All 366 0.748 0.603 0.648

the kappas are considered good (> 0.6) for the three categories.
This indicates strong agreement considering the subjective nature
of rationale [7], and demonstrates the high quality of the dataset.

The main challenge we faced during the labelling was under-
standing the commit messages, such as due to implicit or ambiguous
language. As some commit messages are written by (presumed)
non-native authors, it was hard to read the tense of the sentences,
especially past/future tenses. For example, it is hard to distinguish
whether “The oom_reaper end then simply retries if there is at least
one notifier which couldn’t make any progress in !blockable mode’!
is a statement before or after the patch. Most commits also needed
technical understanding. Although we tried our best to interpret
what the sentence contains, it is still possible that we misunderstood
some of the commit messages. To mitigate any potential bias, we
took an inclusive labelling approach. We consider as future work
involving Linux developers to obtain a more reliable labelling and
a finer-grained analysis.

3.3 Dataset Structure

After removing 99 sentences that were flagged as Inapplicable by at
least two annotators, we end up with 2234 sentences. We consider
the final classification of these sentences as the union of the labels
of the three annotators. We use a comma separated values (.CSV)
tabular format where each entry (line) refers to a sentence for easy
analysis. An example of the dataset structure is shown in Table 4.

4 DATASET DESCRIPTION AND ANALYSIS
4.1 Dataset Description

Here, we describe the distribution of sentences over the agreed-
upon labels. We also overview the most used words in each category.

4.1.1 Sentences distribution. Among the 2234 sentences in the
dataset, 18 did not fit in any category. Figure 1 shows the distribu-
tion of the remaining 2216 labelled sentences over the identified
categories The distribution in Figure 1 shows that the three cat-
egories are not clear-cut and that there is a substantial overlap
between them. In fact, among the 366 commits in question, only

z https://api.github.com/repos/torvalds/linux/git/commits/93065ac753e4443840a057bfef4be71ec766fde9

Dhaouadi, et al.

Rationale

Decision

Figure 1: Distribution of the sentences in our OOM dataset

two commits had all their sentences classified with only one la-
bel (one of them is the commit presented in Table 2). This could
be explained by our inclusive labelling for disagreement. We also
expected sentence-level labelling to lead to multi-category classi-
fication. In the future, we will investigate further categories, and
whether phrase-level labelling can reduce overlap.

Furthermore, we observe a large intersection between Rationale
and the other categories. One interpretation of this is that it indi-
cates the subjective nature of rationale. Another is that rationale
is often present in the same sentence to motivate decisions and to
employ supporting facts. We show examples of such multi-labelled
sentences in Table 5. In it, we show a commit from our dataset,
along with a colour-coded multi-label classification for each sen-
tence, using the same colour scheme as in Figure 1. As an example
of the labelling, the second sentence contains a supporting fact
(“... now that there is a separate function for ’fullmm’ flushing”)
that reinforce the rationale behind this patch (“The ’start’ and ‘end’
arguments to tlb_gather_mmu() are no longer needed”). The third
sentence is labelled as both Decision and Rationale as it states not
only the patch’s change (“Remove the .. and update all callers”)
but also the motivation behind this change, expressed as a value
judgment (“unused arguments”).

4.1.2 Frequent words. To better understand how developers ex-
press themselves in a large-scale open source project, we extract the
most prominent words in each of the categories. We augmented the
built-in list of stop words of the wordcloud python library?? to be
removed with the following list of words: OOM, mm, memory, killer,
kernel, victim, task, linux, thread, process, system, patch, oom_kill,
memcg, as they have no added value for our interpretation. We do
not consider multi-labelled sentences as we are most interested in
discovering the distinct characteristics of each category.

In Figure 2a, we visualize the most frequent words in the 431
sentences labelled as Decision only. Action verbs are very com-
mon in how developers phrase their decisions (e.g, “add”, “remove”,
“use”, “introduce”, “change”). In Figure 2b, we visualize the most
used words in the 49 sentences labelled as Rationale only. We notice
that the (“make”, “might”) are the most important. Also, verbs that
imply value judgment (e.g, “fixes”, “cleanup”) and positive connota-
tions adjectives (e.g, “useful”, “easier”) are frequent. Finally, we can
notice the reference to the future (e.g, “will”, “later”). This indicates
that developers tend to express the future positive impact of their
patches. In Figure 2c, we visualize the most used words in the 397
sentences labelled as Supporting Facts only. We note the presence
of context-specific words (e.g, “kill”, “killed”, “tasks”, “node”). One

Zhttps://amueller.github.io/word_cloud/

https://api.github.com/repos/torvalds/linux/git/commits/93065ac753e4443840a057bfef4be71ec766fde9
https://amueller.github.io/word_cloud/

Rationale Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Table 4: Example of the dataset structure with one entry

Column Value
commit number 4
commit ID C_kwDOACN7MtoAKGExOWNhZDA20TE10TdlYjc5YzEyM2I4YTE5Y TImY WJhNWFiIN2Q5MGU

author name Andrew Morton

committer name akpm

message mm/oom_Kkill.c: fix vm_oom_kill_table[] ifdeffery arm allnoconfig: mm/oom_kill.c:60:25: warning: 'vm_oom_kill_table’ defined but not used
[-Wunused-variable] 60 | static struct ctl_table vm_oom_Kkill table[] = Cc: Luis Chamberlain <mcgrof@kernel.org> Signed-off-by: Andrew
Morton <akpm@linux-foundation.org>

URL https://api.github.com/repos/torvalds/linux/git/commits/a19cad0691597eb79c123b8a19a9fabasab7d90e

message_preprocessed mm/oom_Kill.c: fix vm_oom_kill_table[] ifdeffery

Decision yes

Rationale yes

Supporting Facts no

Table 5: An example commit with multi-labelled sentences from our dataset, using the same colour scheme as in Figure 1.

Sentence

‘ Labelling

tlb: mmu_gather: Remove start/end arguments from tlb_gather_mmu()

Decision

The ’start’ and end’ arguments to tlb_gather_mmu() are no longer needed now that there is a separate function for | Rationale, Supporting Facts

“fullmm’ flushing
Remove the unused arguments and update all callers.

interpretation of this is that supporting facts are descriptions of
the existing state of the system. The verb “will” is also frequent
in this category. This indicates that when developers describe the
current state of the system, they tend to mention the inevitable
events, probably to motivate their changes that would avoid them.
These observations could be used in the future as a basis to propose
heuristics for automatic rationale extraction in the Linux Kernel.

4.2 Dataset Analysis

We present seven research questions (RQs) on four themes: (a) the
presence of rationale (RQ1, RQ2), (b) the factors that impact it (RQ3,
RQ4), (c) its temporal evolution (RQ5, RQ6), and (d) the structure
of commit messages from the point of view of rationale (RQ7).

4.2.1 Presence of Rationale. Here, we discuss rationale information
abundance (RQ1) and amount (RQ2) in the commit messages.

RQ1. How many commits contain rationale? To answer this
question, we compute the rationale % as follows:

number of commits that contain rationale

rationale denszty% = total number of commits

We consider that a commit contains rationale if at least one of
its sentences is labelled as Rationale. In our dataset, 98.9% of the
commits contain at least one sentence with rationale information.
This suggests that rationale is almost always described.

RQ2. How much of the commit contains rationale? To an-
swer RQ2, we define the commit-level rationale density metric:

number of sentences labelled as Rationale
total number of sentences in a commit

rationale density =

Rationale density is thus the percentage of sentences that contain
rationale in a commit. We compute this metric for all the commits.
Then, we compute the average rationale density as follows:

Decision, Rationale

> commits Tationale ~ density
number of commits that contain rationale

average rationale density =

Our data set has an average rationale density of 61.43%, in other
words rationale information is present in about 60% of a commit
message. These results suggest that Linux developers support their
decisions with a lot of rationale information, expressing it in a
rather detailed way. This finding might serve as a rule of thumb
guideline for writing commit messages.

Result 1 — Presence of rationale: Commit messages
almost always contain rationale information. On average,
around 60% of the message contains rationale information.

4.2.2 Factors impacting rationale. Here, we present analyses about
the possible dependencies between the size of the commit (RQ3)
and the developers experience (RQ4), and the rationale density.

RQ3. Does the quantity of rationale reported depend on
the commit message size? The commit message size refers to the
number of sentence entries obtained after preprocessing the com-
mit message. To answer RQ3, first, we do a normality test [8] on the
distribution of the rationale density of the commits of our dataset.
Results indicate a non-normal distribution (p_value = 0.02 < 0.05).
The normality test also indicates a non-normal distribution for
the commit messages sizes (p_value = 1.73e™>> < 0.05). Since
both distributions are not normal, we use Spearman’s rank cor-
relation coefficient [22] to discover whether or not there is a cor-
relation between the commit message size and its rationale den-
sity. Results indicate that there is no correlation between them
(p_value = 2.45¢710 < 0.05,R = —0.32).

In Figure 3, we show the rationale density values versus the
commit message size (i.e, number of sentences in a commit). The
figure shows that the majority of the commits have fewer than
15 sentences, and that a lot of the short commits (fewer than 6
sentences) have a high rationale density (> 0.6). The figure also

https://api.github.com/repos/torvalds/linux/git/commits/a19cad0691597eb79c123b8a19a9faba5ab7d90e

ICPC *24, April 15-16, 2024, Lisbon, Portugal

exiting

makeflag§
i =)

i, T (TR ISl

W. sharing
oom_reaper oomi.scm"eiadj' t a S kS

(a) Decision word cloud. Most frequent words:
‘add’ 28, ‘use’ 28, ‘remove’ 28, ‘kill’ 27, ‘tasks’ 22,
‘set’ 20, ‘cpuset’ 20, ‘instead’ 19, ‘introduce’ 18,
‘check’ 16

processes

wallocation

nt

qu1te

1

perfor mance

nogenask

misceonfiguration,

: ;}l - docume vvduce
= £ =lock . release
Sefula”" her ea51er neeql

serles@mm§£ﬁﬂ

possible

problem

inféfmation

debugging = il X e S

(b) Rationale word cloud. Most frequent words:
‘might’: 5, ‘make’ 5, ‘will’ 4, ‘fixes’ 4, ‘help’ 4,
‘debugging’ 4, ‘later’ 4, ‘use’ 3, ‘reduce’ 3, ‘useful’ 3

Elcontiguration ends

badness

nodesgige

oom_kill process;

allocation:

context threads
- u\?ri . . p a g e
i - - urrent

(c) Supporting Facts word cloud. Most frequent
words: ‘kill’ 46, ‘will’ 29, ‘tasks’ 28, ‘node’ 27,
‘killed’ 26, ‘current’ 26, ‘allocation’ 24, ‘set’ 23,
‘check’ 21, ‘reaper’ 20

Figure 2: Most frequent words per category, without overlap

shows that as a commit becomes longer, it tends to have between
40% to 60% of its sentences containing rationale information.
RQ4. Does the quantity of rationale reported depend on
the developer experience? We consider the number of commits
authored an indication of the developer’s experience. We count
the number of commits per author, as well as the average rationale
density per author (i.e, we compute the mean of the rationale density
of the commits of each author). The normality test result indicates
that the number of commits per author is not a normal distribution
(p_value = 4.45e733 < 0.05). Spearman’s rank correlation coeffi-
cient between the number of commits per author and the average

Dhaouadi, et al.

1.0 e o o Number of commits
e 3 21
o ° ® 6 24
P e 9 27
0.8 12 30
15 ® 33
. 18 @ 36
= L]
2 06 °
[
[a) ° *
i) L]
©
C °
2 04
T
o °
o
0.2
L]
00| @ee

0 5 10 15 20 25 30 35 40
Commit message size (Number of sentences)

Figure 3: Commit message size versus rationale density

1.0 . Number of authors
e 1 5
o0 e 2 6
P \ ® 3 o 14
Rk
>
= 1
2 | ==—=- o
S ol
a) :‘. o | L)
0.6 H ° °
e o |
S !
S|
(2]
g -
°
Z [}
02 | =====
° === Number of commits = 16
—-=-- Rationale density = 0.2
00| ® ——=- Rationale density = 0.7
0 20 40 60 80

Number of commits per author

Figure 4: Commits per author vs average rationale density

rationale density per author indicates that the test is not significant
(p_value = 0.635 > 0.05,R = —0.05).

We visualize the average rationale density per author along with
the number of commits per author in Figure 4. We identify four
regions in the Figure: three for authors with few commits (< 16)
and one for authors with many commits (> 16), separated by the
vertical dashed line. In fact, only five developers have written more
than 16 commits. All the other developers have written fewer than
16 commits, and most of them fewer than 10 commits. More ex-
perienced developers’ commits have a consistent rationale density
near 60%. This may indicate a guideline for the other developers
to target. We further investigate these top contributors and their
rationale densities in Section 4.2.3.

In this analysis, we refer to the authors by their initials for ethical
reasons [13]. The three regions for the authors with few commits are
separated by the two dashed horizontal lines pointing the densities
of 0.2 and 0.7. Among these authors, three authors had a very low

Rationale Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

ICPC *24, April 15-16, 2024, Lisbon, Portugal

e o o e =
N ES o © o

Average Rationale Density

o
o

Pl

w

%
@

<= Average rationale density

SL oY Ol oY o) ok ol o) oL ok Sl ok ol oX oL 0% ol o ol 0% oL ot Sl o% oY ok L 0% gL o St o ol ok o oy o, ot

D02 0600405060504
R RS A

A

320

RPN AR

e SRR

Time (months)

Figure 5: Monthly evolution of the average rationale density

. 0.70 1 —e— Number of commits
& L8 + 40
a .qﬁ) 2
5 @ =
0 0.65) €
o r7g F30 §
© o o
c 0 v
2 & 5
2000 e 20 @
9] € £
g N | < E 5
8 055 S L10%
< Average rationale density
—8— Average commit message size & -4
2006 2008 2010 2012 2014 2016 2018 2020 2022

Time (years)

Figure 6: Yearly evolution of the average rationale density, the average commit message size and the number of commits

rationale density (< 0.2). Specifically, authors M.K. and P.E. had
a rationale density of 0 as each wrote only one commit that did
not contain any rationale?>-24, Author B.S. wrote two commits?>-26
but their rationale density was low (0.125) as one of them did not
contain any rationale, and the other had only one sentence that
contained rationale information. We note that all these commits
are comparatively old (2009 or before) and that during the labelling
process, we noticed that the quality of the messages improved
over time. Finally, we note that these commits were approved for
merging though they were lacking rationale, meaning that the
message combined with the code change may have had implicit
rationale that was deemed sufficient.

The top region shows that many authors with few commits have
high rationale density. Specifically, 14 authors had a density of 1, e.g.,
author L.Z. wrote two commits?’-28 with all sentences containing
rationale.

Result 2 — Factors impacting rationale: The quantity
of rationale information reported depends neither on the
commit message size nor the developers’ experience. Ex-
perienced developers have a rationale density around 60%.

3 https://api.github.com/repos/torvalds/linux/git/commits/7b1915a989ea4d426d0fd98974ab80f30ef1d779
24https://api.github.com/repOS/torvaldS/linux/git/commits/c7baSc9eB 176704bfac0729875fa62798037584d
= https://api.github.com/repos/torvalds/linux/git/commits/e222432bfa7dcf6ec008622a978c9f284ed5e3a9
2 https://api.github.com/repos/torvalds/linux/git/commits/00f0b8259e48979¢37212995d798f3fbd0374690
2z https://api.github.com/repos/torvalds/linux/git/commits/97d87¢9710bc6c52585fb9dc58f5bedbe996f10
2B https://api.github.com/repos/torvalds/linux/git/commits/e115f2d89253490fb2dbf304b627£8d908df26f1

4.2.3 Evolution of rationale over time. We first present the evolu-
tion of the rationale overall (RQ5) and then focus on the evolution
of the rationale for the five main contributors (RQ6). We consider
the authoring date of commits, not when it has been accepted.

RQ5. How does rationale evolve over time? To address
this question, we visualize the evolution of the rationale density
over time. First, we visualize the monthly evolution of the average
rationale density in Figure 5. The figure shows a consistency around
0.6. To better contextualize this evolution, we show the yearly
evolution of the average rationale density, the average commit
message size and the total number of commits in Figure 6. The figure
shows great variations in the average commit message size and in
the number of commits over the years. The figure does not suggest
any relationship between these three variables. The correlation test
between the average rationale density and the number of commits
confirmed this (p_value = 0.63 > 0.05, R = —0.05).

Figure 7 shows the evolution of the average rationale density, the
average decision density and the average supporting fact density per
year. The decision density and supporting facts density are computed
similarly to the rationale density. We note that the decision density
is always high (> 0.5). However, the supporting facts density is
usually low (< 0.6). We also note that in early and late years (2005-
2010 and 2019-2022), the decision density is slightly higher than the
rationale density, which is significantly higher than the supporting
facts density. Between 2010 and 2019, the three densities seem to be
close (around 0.55), although the decision density and the rationale
density are almost always higher than the supporting facts density.

RQ6. How does rationale evolve over time for the five
core contributors? The five main contributors in the OOM-Killer

https://api.github.com/repos/torvalds/linux/git/commits/7b1915a989ea4d426d0fd98974ab80f30ef1d779
https://api.github.com/repos/torvalds/linux/git/commits/c7ba5c9e8176704bfac0729875fa62798037584d
https://api.github.com/repos/torvalds/linux/git/commits/e222432bfa7dcf6ec008622a978c9f284ed5e3a9
https://api.github.com/repos/torvalds/linux/git/commits/00f0b8259e48979c37212995d798f3fbd0374690
https://api.github.com/repos/torvalds/linux/git/commits/97d87c9710bc6c5f2585fb9dc58f5bedbe996f10
https://api.github.com/repos/torvalds/linux/git/commits/e115f2d89253490fb2dbf304b627f8d908df26f1

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Dhaouadi, et al.

0.8 o
o0 o
507 o e} P ¥
S o6l g OB e e o
g i £ (;' o > % 9 S o .
0.5 - =
Y o o o o
©o0.4 o °
% © O= Average decision density
03 <= Average rationale density o o
0.2 o— Average supporting facts density
0.1
2006 2008 2010 2012 2014 2016 2018 2020 2022
Time (years)

Figure 7: Yearly evolution of the average rationale density, the average decision density and the average supporting facts

0.8 1 —e— Number of commits

0.7

0.6

0.5 1

Average Rationale Density

0.4 2

Average rationale density

2006 2008 2010 2012

Time (years)

F16
r35
(4R 30 o
& =
€
(12 & 25 €
o o
t10 ¢ 20 o
o
£ 15
lg = +
E £
L6 g r1lo S
o] =2
L4 rs
—8— Average commit message size Lo
2014 2016 2018 2020 2022

Figure 8: Evolution of average rationale density, average commit message size, and number of commits for top 5 contributors

component are D.R. (82 commits), M.H. (48 commits), TH. (21 com-
mits), K.M. (20 commits), and O.N. (18 commits). Together, these
five contributors wrote 189 commits, i.e., around half of the 366
studied commits. This is consistent with past observations about
open source projects, suggesting that a relatively small number
of core developers are responsible for most contributions [21]. As
discussed in Section 4.2.2, these developers all had a consistent
average overall rationale density around 0.6. Figure 8 shows the
rationale density evolution, the average commit message size, and
the number of commits per year for these contributors. Although
rationale density was consistently around 0.6 for all the years before
2020, it dropped to around 0.4 in 2020 and 2021 and went up to 0.8
in 2022. The figure also shows that the number of commits varies
considerably each year, and that usually, the top contributors write
short commits (fewer than 8 sentences), the year 2021 being the
exception. The average commit message size (in terms of number
of sentences) also seems to be trending up slightly over time.

Result 3 — Evolution of rationale over time: The level
of Rationale density remains consistent (around 0.6). Deci-
sion density is always high (> 0.5). Supporting facts density
is low(< 0.6). More experienced developers write short
commit messages (fewer than eight sentences).

Understanding the reasons behind this evolution would involve
interviewing the developers and creating a deep understanding of
the historical events of Linux Kernel development and culture as a
whole (in case there are dependencies between the modules that
impacted the OOM-Killer component). We consider performing
this more in-depth analysis as future work.

Investigating these impact factors is relevant for practitioners.
For instance, if rationale trended down with experience or project

age, a best practice might be to periodically train developers to
provide more rationale. Instead, these results could suggest that
the culture in the Linux kernel is sufficient to maintain the level of
rationale, and should be encouraged in other software projects.

4.24 Structure of commit messages. Here, we discuss the average
structure of a commit message. That is, what sentence category
order developers prefer when elaborating their commit messages.

RQ7. In what order do the categories mostly appear? We
visualize the distribution of the identified categories over the nor-
malized positions of the sentences of the commit messages in Fig-
ure 9. The figure shows that, in the first 10% of the commit message
(the summary sentence), the Decision category is present in over
350 commit messages. The Rationale also appears frequently in this
summary sentence. This could be explained by the overlap between
the categories and especially by the value judgment words (e.g, “fix”,
“simplify”, “unused”, ...). e.g., the sentence “include cleanup: Update
gfp.h and slab.h includes to prepare for breaking implicit slab.h
inclusion from percpu.h”?’ is labelled both Decision and Rationale.

In the first half of the commit (10% to 50%), the Supporting Facts
category is the most frequent, with the Rationale category behind
it. In the second half of the commit, the Rationale category exceeds
the Supporting Facts category. That is, the Supporting Facts are
often found in the commit beginning, and before the sentences
containing rationale. This can be explained by their reference to
the past or current state of the system. The Supporting Facts and
the Rationale categories seem to have a similar presence, especially
in the middle of the commit (30%-70%). This can be explained by
the substantial overlap between them (Figure 1). By the end of the
commit message (70%-100%), the Decision category appears again,
with the Rationale category behind it. Thus, the most common

2 https://api.github.com/repos/torvalds/linux/git/commits/5a0e3ad6af8660be21ca98a971cd00f331318c05

https://api.github.com/repos/torvalds/linux/git/commits/5a0e3ad6af8660be21ca98a971cd00f331318c05

Rationale Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

[Decision
[Rationale
[Supporting Facts

bl

0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0
Normalized position of the sentence in the commit message

Number of commits

H R N N W W
w o w o w o w
o o o o o o o

Figure 9: Category distribution over the normalized positions
of commit message sentences (considering overlap).

order seems to be : Decision then Supporting Facts then Rationale
then Decision. An example of this order is presented in Table 2.
The identified patterns may be used in the future as guidelines, or
enforced via automated tools, to ensure well-structured commit
messages, or suggest improvements before merging commits.

Result 4 - Structure of commit messages: Developers
tend to start and end their commit messages with Deci-
sions. Rationale and Supporting Facts appear in the middle
of the commit, with Supporting Facts usually preceding
Rationale sentences.

We summarize the results of our analysis of the dataset in Table 6.

5 THREATS TO VALIDITY

Construct validity. The measures we use to identify the pres-
ence of the different categories in the commits (i.e, the densities),
are quantitative measures. We do not measure this presence qual-
itatively. In fact, we are not aware of any qualitative measures
of rationale or decisions. Furthermore, we consider the number
of commits written as an indicator of author experience. This is
not necessarily true. The number of commits is also computed as
an overall classification for the author and not at the time of the
commit. This introduces a threat as authors might have gained ex-
perience during the studied period. However, our findings mitigate
this threat as we can see a clear difference between the authors with
several commits and the authors with few commits (Figure 4). Thus,

ICPC *24, April 15-16, 2024, Lisbon, Portugal

the data leads us to believe that the number of commits authored is
a reasonable measure of experience.

Internal validity. It is possible that our manual labelling process
could have introduced unintentional bias, as only one annotator is
a native English speaker. To mitigate this, we had a total of three
individuals involved in labelling the commits, developing a shared
codebook to use as guide. We also had several piloting rounds and
discussions throughout the labelling process. An average Fleiss
kappa of 0.65 indicates a good reliability for our labelling. To miti-
gate cases of potential bias due to annotator background, we took
an inclusive labelling approach during consolidation meetings. This
approach assigned a final set of labels to a sentence based on the
union of labels from all annotators.

Our decision to filter the 99 Inapplicable sentences might intro-
duce bias, as the removed sentences might contain relevant infor-
mation. To mitigate this threat, we only removed the sentences
where two or more annotators agreed that it was Inapplicable.

We only studied commits that were approved by the Linux main-
tainers, which could introduce survivor bias. This is acceptable as
we are interested in the rationale of the software as it is, not as it
could have been. Comparing our findings with the characteristics
of rationale in rejected commits is however an interesting research
question for the future. Additionally, some metrics are calculated
based on a low number of commits (e.g. some monthly and yearly
averages when studying rationale evolution). This represents a
threat as it may mean that the results are more metrics of a few
particular commits rather than true evolutionary trends.

External validity. We only studied the commit history that is
available on Git, from 2005 onwards. Our observations might not
be applicable to contributions in the earlier years of Linux.

Additionally, there is no reason to assume that our findings can be
extrapolated to a) other Linux components, or b) other OSS projects.
Regarding a), we note that, to the best of our understanding, there is
nothing radically different about the development of the OOM Killer
module compared to the rest of the kernel. Regarding b), we note
that while there are real differences between the way contributions
are managed in Linux compared to other large OSS projects, there
are also lessons to be learned across projects [4]. We view this
paper as a step towards creating a better understanding of rationale
in OSS generally, which can lead to improvements in automatic
rationale extraction across projects.

Table 6: Research questions and their answers.

Topic Research question

Answer

RQ1. How many commits contain rationale?

Presence of rationale RQ2. How much of the commit contains rationale?

98.9% of the commits contain rationale.
Around 60% of the commit message contains rationale information.

Factors impacting commit message size?
rationale

developer experience?

RQ3. Does the quantity of rationale reported depend on the

RQ4. Does the quantity of rationale reported depend on the

The quantity of rationale reported does not depend on the commit message size
(in terms of number of sentences).
The quantity of rationale reported does not depend on the developer experience.

RQ5. How does rationale evolve over time?

Evolution of rationale

over time b
contributors?

RQ6. How does rationale evolve over time for the five core

The yearly evolution of rationale density is rather consistent around 0.5 and 0.7.
The monthly evolution of rationale density however shows great fluctuation.
The yearly evolution of rationale density is rather consistent around 0.6 for the
five core contributors. This changes in the recent years 2020, 2021 and 2022 (with
1 commit per year).

Structure of commit
messages

RQ7. In what order do the categories mostly appear?

Decision then Supporting Facts then Rationale then Decision.

ICPC *24, April 15-16, 2024, Lisbon, Portugal

6 RELATED WORK

About the Linux Kernel. Spinellis et al. studied the evolution of
Unix from an architectural perspective [29]. Patel et al. studied
the logging practices in the Linux Kernel [23]. Trinkenreich et
al. [34] surveyed Linux Kernel contributors to develop a theoretical
model for the sense of virtual community in open source software.
However, none of this prior research focused on the rationale in
the kernel commit messages.

About Commit Messages. Al Omar et al. [3] explored how developers
document their activities in refactoring commits. They manually
extracted the patterns used when refactoring (i.e, the keywords or
phrases that frequently occur in refactoring-related commits). Other
researchers tried to detect developer rationale from the refactoring
commit message to recommend the refactoring that would meet the
developer’s intentions [25]. Our work is different as we do not focus
on one specific category of commits (i.e, refactoring commits). They
also consider the rationale as the difference of the quality attribute
values before and after the commit, while we study the rationale
information present in free text.

Approaches have been proposed to automatically generate com-

mit messages [32].However, these are based on datasets that include
poorly phrased commit messages. In fact, it is only recently that
researchers have studied commit message quality [18, 33]. Tian et al.
has tried to define what constitutes a “good” commit message [33],
and has found that it should summarize what was changed, and
describe why those changes are needed. They also developed a
taxonomy based on recurring patterns in commit message expres-
sions and proposed a good-message identification tool. Li et al. [18]
consider link contents in addition to the commit message to train
classifiers for the automatic identification of good commit messages.
They also studied the commit quality evolution (i.e, whether a com-
mit contains why and what information). Similar to our study, these
works (i.e, [18, 33]) involved manually creating a commit dataset
from open source projects and investigating the temporal evolu-
tion aspect. They also distinguished the evolution for the core and
non-core developers. However, they only considered the evolution
of the existence of what (decision) and why (rationale) information
over time, while we study the evolution of their quantities. Inter-
estingly, our results indicate stable amounts, while they found that
the overall quality degrades over time. In addition, they study the
correlation between defect proneness and the quality of the commit
message as well as the quality of prior commits, while we focus
on different correlations. They have performed their studies at the
commit-level, while we label and analyze at the sentence-level. Fi-
nally, our study focuses on a component from the Linux kernel,
while they report results across 32 Apache projects.
About Design Decisions and Rationale. Li et al. created a ground
truth dataset from the Hibernate developer mailing list by labelling
sentences as decision or non-decision [19]. Bhat et al. manually
analyzed and labelled more than 1,500 issues from two large open
source repositories [5]. They classified the issues into different
decision categories. Unlike our work, they only considered decisions
and discarded rationale expressions.

Sharma et al. studied Python email archives and produced a la-
belled dataset of rationale sentences behind acceptance of Python

Dhaouadi, et al.

Enhancement Proposals (PEP)s [27]. They also defined 11 cate-
gories of rationale and used them to classify the rationale sentences.
This work differs because a) they consider emails while we con-
sider code commits and b) their work is specific to the PEPs, as the
decisions they consider refer to the possible transitions between
the PEP states (e.g, draft, accepted, refused). Kleebaum et al. pro-
pose Condec tools to support documenting and managing decision
knowledge for change impact analysis [17]. These tools include
an automatic text classification feature for rationale. To provide
ground truth for the classifier, the authors manually labelled the
textual artifacts they produced when developing the Condec tools
(Jira issue text, commits and code comments) to whether or not it
contains rationale and they identified rationale categories (decision,
issue, alternative, pro-argument, con-argument). Different from our
work, they consider all textual artifacts and not only code commits
and do not analyze the resulting dataset.

Vanderven et al. created a commit dataset from 710 Git projects,
by asking six experts to label 100 commits if they involved a decision,
rationale for a decision, and decision alternative information [35].
However, their dataset is not publicly available, and they work at
the commit-level. Furthermore, their analysis only investigated the
presence of rationale, decisions and alternatives in the commit mes-
sages. They neither studied the evolution of their quantities over
time, nor the order in which they appeared. Alkadhi et al. inves-
tigated the presence of rationale in the Internet Relay Chat (IRC)
chat messages of three OSS projects: Apache Lucene, Mozilla Thun-
derbird and Ubuntu [2]. They manually indicated if each message
contains rationale, and identified the type of rationale elements
(decision, issue, alternative, pro-argument, con-argument) included
in the message. They also provided evidence of rationale existence
in the chat messages, and the frequency of different rationale ele-
ments. Furthermore, they explored which developers contribute to
rationale in the messages. This work differs from ours because 1)
they consider chat messages instead of code commits, 2) they work
at the message-level while we work at the sentence level, and 3)
they did not consider the Linux kernel project.

Recently, several researchers proposed rationale representations.
Hesse et al. proposed a documentation model for decision knowl-
edge built upon the results investigating the comments to 260 issue
reports from the Firefox project [14]. Soliman et al. worked on an
empirically-grounded ontology for architecture knowledge from
StackOverflow posts [28]. Neither one of these works considered ra-
tionale representation for code commits. Alsafwan et al. performed
interviews and surveys with developers to study their perspective
of rationale for code commits, and found that they decompose the
rationale of code commits into 15 separate components [1].

7 CONCLUSION AND FUTURE WORK

We explored the presence of rationale in the commit message his-
tory of the Linux OMM-Killer. We created a dataset by extracting
and manually labelling the commits. We analyzed it over seven
research questions about the presence of rationale, its evolution,
the factors impacting it and the structure of rationale information.
The results are summarized in Table 6.

This lead us to insights about the nature of rationale. First, it
is prevalent in the commit messages with a stable amount over

Rationale Dataset and Analysis for the Commit Messages of the Linux Kernel Out-of-Memory Killer

the studied period. Second, there is a substantial overlap between
the three defined categories, as expressions of rationale are very
often interwoven with decisions and supporting facts. This may
suggest the need to consider a finer-grained analysis in the future
(e.g, clause-level analysis). Third, experienced developers are re-
sponsible for writing almost half of the commits, have a consistent
rationale density, and usually write short messages. Finally, a com-
mon commit structure seems to emerge: decision then supporting
facts then rationale then decision.

In the future, first we aim to increase the dataset quality and
richness. We plan to classify the commits (e.g, trivial fix, refactor-
ing, new feature) to investigate how rationale varies according to
context. We are also investigating adding a large language model
as another annotator. Syriani et al. show that ChatGPT can of-
fer human-level performance for a similar labelling task, but this
requires systematic prompting and performance assessment [31].
Second, we will investigate rationale management, e.g., training
an automatic rationale extraction model, using our dataset as the
ground truth. Along with our rationale structure insights, we could
automatically detect commit messages that lack rationale or lack the
correct structure when commit messages are written or requested
to be merged.

ACKNOWLEDGMENTS

This work is partially funded by a Fonds de Recherche du Québec
— Nature et Technologies (FRQNT) Doctoral Research Scholarship
(B2X).

REFERENCES

[1] Khadijah Al Safwan, Mohammed Elarnaoty, and Francisco Servant. 2022. De-
velopers’ Need for the Rationale of Code Commits: An in-Breadth and in-
Depth Study. Journal of Systems and Software 189 (July 2022), 111320. https:
//doi.org/10.1016/j.jss.2022.111320
Rana Alkadhi, Manuel Nonnenmacher, Emitza Guzman, and Bernd Bruegge.
2018. How Do Developers Discuss Rationale?. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
Campobasso, 357-369. https://doi.org/10.1109/SANER.2018.8330223
Eman AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Can Refactoring
Be Self-Affirmed? An Exploratory Study on How Developers Document Their
Refactoring Activities in Commit Messages. In 2019 IEEE/ACM 3rd International
Workshop on Refactoring (IWoR). IEEE, Montreal, QC, Canada, 51-58. https:
//doi.org/10.1109/TWoR.2019.00017
[4] Nicolas Bettenburg, Ahmed E Hassan, Bram Adams, and Daniel M German. 2015.
Management of community contributions: A case study on the Android and
Linux software ecosystems. Empirical Software Engineering 20 (2015), 252-289.
[5] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, and Florian
Matthes. 2017. Automatic Extraction of Design Decisions from Issue Management
Systems: A Machine Learning Based Approach. In Software Architecture, Antonia
Lopes and Rogério de Lemos (Eds.). Vol. 10475. Springer International Publishing,
Cham, 138-154. https://doi.org/10.1007/978-3-319-65831-5_10
[6] Daniel P Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: from I/O
ports to process management. " O’Reilly Media, Inc.".
[7] Janet E Burge, John M Carroll, Raymond McCall, and Ivan Mistrik. 2008. What is
Rationale and Why Does It Matter? Rationale-Based Software Engineering (2008),
3-23.
Ralph D’agostino and Egon S Pearson. 1973. Tests for departure from normality.
Biometrika 60, 3 (1973), 613-622.
Mouna Dhaouadi. 2023. Extraction and Management of Rationale. In Proceedings
of the 37th IEEE/ACM International Conference on Automated Software Engineering
(Rochester, MI, USA) (ASE 22). Association for Computing Machinery, New York,
NY, USA, Article 122, 3 pages. https://doi.org/10.1145/3551349.3559568
[10] Mouna Dhaouadi, Bentley James Oakes, and Michalis Famelis. 2023. End-to-
End Rationale Reconstruction. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering (Rochester, MI, USA) (ASE 22).
Association for Computing Machinery, New York, NY, USA, Article 176, 5 pages.
Mouna Dhaouadi, Bentley James Oakes, and Michalis Famelis. 2023. Towards
Understanding and Analyzing Rationale in Commit Messages using a Knowledge

[2

[

=

=

[9

=

[11

[12

(13

[14]

[15]

[16

[17

[18

[19

[21

[22

[23

[24

[25

[26

[27

[28

[29

(30]

[31

(32

[35

ICPC *24, April 15-16, 2024, Lisbon, Portugal

Graph Approach. In 2023 International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C).

Joseph L Fleiss. 1971. Measuring nominal scale agreement among many raters.
Psychological bulletin 76, 5 (1971), 378.

Nicolas E Gold and Jens Krinke. 2020. Ethical mining: A case study on MSR
mining challenges. In Proceedings of the 17th International Conference on Mining
Software Repositories. 265-276.

Tom-Michael Hesse. 2020. Supporting software development by an integrated
documentation model for decisions. Ph.D. Dissertation.

Jian Huang, Moinuddin K Qureshi, and Karsten Schwan. 2016. An evolutionary
study of Linux memory management for fun and profit. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16). 465-478.

Anja Kleebaum, Barbara Paech, Jan Ole Johanssen, and Bernd Bruegge. 2021.
Continuous Rationale Identification in Issue Tracking and Version Control Sys-
tems. Joint Proceedings of REFSQ-2021 Workshops, OpenRE, Posters and Tools Track,
and Doctoral Symposium (2021).

Anja Kleebaum, Barbara Paech, Jan Ole Johanssen, and Bernd Bruegge. 2021. Con-
tinuous Rationale Visualization. In Working Conference on Software Visualization
(VISSOFT). 33-43. https://doi.org/10.1109/VISSOFT52517.2021.00013

Jiawei Li and Iftekhar Ahmed. 2023. Commit message matters: Investigating
impact and evolution of commit message quality. In 2023 [EEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 806-817.

Xueying Li, Peng Liang, and Zengyang Li. 2020. Automatic identification of
decisions from the hibernate developer mailing list. In Proceedings of the 24th
International Conference on Evaluation and Assessment in Software Engineering.
Yan Liang, Ying Liu, Chun Kit Kwong, and Wing Bun Lee. 2012. Learning
the “Whys”: Discovering Design Rationale Using Text Mining — An Algorithm
Perspective. Computer-Aided Design 44, 10 (Oct. 2012), 916-930.

Umme Ayda Mannan, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma. 2020.
On the relationship between design discussions and design quality: a case study
of Apache projects. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 543-555.

Leann Myers and Maria J Sirois. 2004. Spearman correlation coefficients, differ-
ences between. Encyclopedia of statistical sciences 12 (2004).

Keyur Patel, Jodo Faccin, Abdelwahab Hamou-Lhadj, and Ingrid Nunes. 2022.
The Sense of Logging in the Linux Kernel. Empirical Software Engineering 27, 6
(Nov. 2022), 153. https://doi.org/10.1007/s10664-022-10136-3

Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri, et al.
2020. Empirical standards for software engineering research. arXiv preprint
arXiv:2010.03525 (2020).

Soumaya Rebai, Marouane Kessentini, Vahid Alizadeh, Oussama Ben Sghaier, and
Rick Kazman. 2020. Recommending refactorings via commit message analysis.
Information and Software Technology 126 (2020), 106332.

Benjamin Rogers, James Gung, Yechen Qiao, and Janet E. Burge. 2012. Explor-
ing techniques for rationale extraction from existing documents. In 2012 34th
International Conference on Software Engineering (ICSE). 1313-1316.
Pankajeshwara Nand Sharma, Bastin Tony Roy Savarimuthu, and Nigel Stanger.
2021. Extracting Rationale for Open Source Software Development Decisions — A
Study of Python Email Archives. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, Madrid, ES, 1008-1019.

Mohamed Soliman, Matthias Galster, and Matthias Riebisch. 2017. Developing
an ontology for architecture knowledge from developer communities. In IEEE
International Conference on Software Architecture (ICSA). IEEE, 89-92.

Diomidis Spinellis and Paris Avgeriou. 2021. Evolution of the Unix System Archi-
tecture: An Exploratory Case Study. IEEE Transactions on Software Engineering
47, 6 (June 2021), 1134-1163. https://doi.org/10.1109/TSE.2019.2892149

Harsh Suri. 2011. Purposeful sampling in qualitative research synthesis. Qualita-
tive research journal 11, 2 (2011), 63-75.

Eugene Syriani, Istvan David, and Gauransh Kumar. 2023. Assessing the Abil-
ity of ChatGPT to Screen Articles for Systematic Reviews. arXiv preprint
arXiv:2307.06464 (2023).

Wei Tao, Yanlin Wang, Ensheng Shi, Lun Du, Shi Han, Hongyu Zhang, Dongmei
Zhang, and Wenqiang Zhang. 2022. A large-scale empirical study of commit mes-
sage generation: models, datasets and evaluation. Empirical Software Engineering
27,7 (2022), 198.

Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang, and Hui Liu. 2022. What
makes a good commit message?. In Proceedings of the 44th International Conference
on Software Engineering. 2389-2401.

Bianca Trinkenreich, Klaas-Jan Stol, Anita Sarma, Daniel M German, Marco A
Gerosa, and Igor Steinmacher. 2023. Do I belong? modeling sense of virtual
community among Linux kernel contributors. arXiv:2301.06437 (2023).

Jan Salvador van der Ven and Jan Bosch. 2013. Making the Right Decision:
Supporting Architects with Design Decision Data. In Software Architecture, David
Hutchison et al. (Eds.). Vol. 7957. Springer Berlin Heidelberg, Berlin, Heidelberg,
176-183.

https://doi.org/10.1016/j.jss.2022.111320
https://doi.org/10.1016/j.jss.2022.111320
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1109/IWoR.2019.00017
https://doi.org/10.1007/978-3-319-65831-5_10
https://doi.org/10.1145/3551349.3559568
https://doi.org/10.1109/VISSOFT52517.2021.00013
https://doi.org/10.1007/s10664-022-10136-3
https://doi.org/10.1109/TSE.2019.2892149

	Abstract
	1 Introduction
	2 Linux Out-Of-Memory Killer Subsystem
	3 Dataset Creation
	3.1 Commit Pre-processing
	3.2 Sentence Labelling Procedure
	3.3 Dataset Structure

	4 Dataset Description and Analysis
	4.1 Dataset Description
	4.2 Dataset Analysis

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

