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A New Method for Sensorless Estimation of the
Speed and Position in Brushed DC Motors
Using Support Vector Machines

Ernesto Vizquez-Sdnchez. Jaime Gomez-Gil. José Carlos Gamazo-Real. and José Fernando Diez-Higuera

Abstract—Currently, for many applications, it is necessary to
know the speed and position of motors. This can be achieved
using mechanical sensors coupled to the motor shaft or using
sensorless techniques. The sensorless techniques in brushed dc
motors can be classified into two types: 1) techniques based on
the dynamic brushed dc motor model and 2) techniques based on
the ripple component of the current. This paper presents a new
method, based on the ripple component, for speed and position
estimation in brushed dc motors, using support vector machines.
The proposed method only measures the current and detects the
pulses in this signal. The motor speed is estimated by using the
inverse distance between the detected pulses, and the position is
estimated by counting all detected pulses. The ability to detect
ghost pulses and to discard false pulses is the main advantage of
this method over other sensorless methods. The performed tests
on two fractional horsepower brushed dc motors indicate that the
method works correctly in a wide range of speeds and situations,
in which the speed is constant or varies dynamically.

Index Terms—Brushed dc motor, current ripple, dc motor,
pattern recognition, position, sensorless, speed, support vector
machines (SVMs).

I. INTRODUCTION

ENS@RLESS techniques estimate the speed and position
S of motors without mechanical sensors coupled to the motor
shaft, measuring only the current and/or the voltage of the mo-
tors. Sensorless techniques are not a recent idea. as is evidenced
by the work of Allured and Strzelewigz | 1]. Nevertheless. due
to the complexity of these methods, they have not yet re-
placed conventional sensors such as encoders. potentiometers.
tachometers, Hall effect sensors. or other mechanical sensors
coupled to the motor shaft. The main advantages of these.
compared to conventional sensors. are as follows: 1) decreased
maintenance. number of connections. and cost of the final
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Fig. 1. Current of a brushed dc motor.

system and 2) an easier miniaturization process. In addition,
mechanical elements are not coupled to the motor shaft in
sensorless techniques. Sensorless techniques are particularly
useful in fractional horsepower applications because they usu-
ally require a low cost and a low hardware complexity. Sen-
sorless techniques function by monitoring the voltage and/or
current of the motor to estimate the speed and position. The
problem with the implementation of sensorless techniques is
software complexity, since the models used and the noise in the
current and voltage make it difficult to estimate the velocity and
position of the motor [2].

Sensorless technigues in brushed dc motors can be divided
into two groups: 1) those based on the dynamic dc motor model
and 2) those based on the ripple component of the motor current
|3]. The first group is mainly employed to estimate the speed
using the dynamic model of the brushed dc motor [4]-[9].
The dynamic model uses different parameters of the brushed
dc motor such as resistance, inductance. and constant electro-
motive force (EMF). The problem with using the parameters
of the brushed dc motor is that they depend on the operating
conditions. which are changing and introduce uncertainty into
the speed measurement. Although these parameters can be
estimated dynamically [10], [11], this solution usually leads to
a nonlinear model that increases the computational cost.

Sensorless techniques based on the ripple component only
monitor the brushed dc motor current and they estimate
speed and position with instantaneous variations of the current
[ 12]-[16]. The current of a brushed dc motor. shown in Fig. I,
is mainly composed of two components: the dc component and
the ripple component. The dc component is responsible for
providing power to the brushed de motor. The ripple component
is an alternating component and is the direct result of two
effects. The first effect is the nonideal rectification that occurs in
the complex brush-commutator system that connects the rotor
with the external circuit. The second eftect appears in the coil
of the motor and is an EMF induction. with an approximately
sinusoidal shape not rectified ideally by the mechanical switch-
ing system.
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Fig. 3. Enlargement of the real current of a brushed dc motor.

Fig. 2 shows the magnification of the current signal represen-
tation of the brushed dc motor current. As this figure illustrates,
the ripple component is not a sinusoidal signal but has a rise
RWi, a steep fall, and another slight fall F'Wi [17]. Usually,
those three sections of the current are not as clear, and sharp
drops may not be visible in these situations. Either way, the
shape of the ripple component shown in Fig. 2 is ideal, and
in this figure, it is assumed that the bandwidth used for the
display of the same is sufficiently high. This shape (Fig. 2) is
known as an undulation, a pulse, or a commutation. The pulses
that appear in the current graph are associated with the brush
connection change of the commutator bar in the commutator. In
this instant, the coil is short circuited. This action is also related
to the instant when the EMF induced in the coil, which is con-
nected to both commutator bars where they produce switching.
is zero [18]. Thus, it is possible to measure the movement of
a shaft by taking into account the number of pulses over the
current signal of the brushed dc motor. In addition, if the time
is monitored, the speed can be measured.

Fig. 2 shows an ideal situation without noise, but in practice.
the current signal over a brushed dc motor is similar to that
in Fig. 3. There are multiple noise types such as that added
by the dc motor itself, that associated to the power supply. or
those induced by other nearby elements. The noise sources or
disturbances sometimes cause the following: 1) false pulses
or double pulses in the current and 2) ghost pulses or merging
pulses in the current. The false pulses are pulses that appear in
the current resulting from noise and do not belong to the ripple
component. The ghost pulses are pulses that belong to the ripple
component, but the noise masks them in the current [19]. At
a low speed, the noise becomes ever more important because
the amplitude of the ripple component is smaller, and can be
comparable to the noise present in the current. Consequently.
to implement an effective system, it is necessary to detect false
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and ghost pulses. Next, the false pulses must be discarded, and
the ghost pulses must be taken into account as a regular pulse
ripple. This is necessary in applications where there is great
amount of noise, such as noisy industrial applications, or where
precision is important, such as robotic applications.

This paper proposes a method based on pattern recognition
techniques to detect the pulses of the current of a brushed dc
motor and, with this information. to estimate the speed and
position of the brushed dc motor. Brushed dc motors are dc
motors that have a mechanical commutator. Also, the proposed
method is able to detect ghost pulses and to discard false pulses.
The classifier support vector machine (SVM) is used for two
reasons: First, it has the ability to generalize, and second. it is
free of the overfitting problem [20].

In pulse detection systems for estimating speed and position,
it is necessary to establish the pulse start time. Some works
establish this pulse start time as the instant that the current
crosses the mean current value [21]. In the proposed method.
the researchers consider the pulse start time to be when the
current reaches its maximum value.

Finally, this paper will evaluate the accuracy of the proposed
method. Accuracy is measured by comparing the speed and the
position estimated by the method with the real speed and real
position collected using a high-resolution encoder.

The procedure and tests are described in more details in the
following sections. Section II presents the basic theory of SVM
for classification. Section III presents the proposed method and
algorithm for the training method. Section IV presents a com-
parison of the proposed method with others used in scientific
literature. Section V presents different tests to measure the
accuracy and the results obtained. Finally, Section VI presents
the conclusions derived from this research.

I1. SVMs FOR CLASSIFICATION

SVM theory was initially developed by Vapnik [22]. It is
a learning machine based on statistical theory and is used
for classification and regression. Unlike traditional learning
approaches, which are based on empirical risk minimization,
SVM is based on structural risk minimization (SRM). The SRM
principle improves the generalization ability and avoids the
problem of overfitting [20].

Taylor and Cristianini [23] and Abe [24] reviewed the SVM
theory. SVM is a linear classifier that establishes a hyperplane
to separate two classes. This hyperplane maximizes the margin.

Given a training set or training samples {x;,vy; } with i =
1,2,..., M. where =; denotes the d-dimensional column vec-
tors that are the classifier inputs. y; denotes the class labels that
are the classifier outputs and can be +1 or —1 to Class + 1 and
Class — 1, respectively, and M is the size of the training set,
the linear function that separates both classes is

D(x) =sign (f(x)) (D
fle) =wTz +b 2

where w is a d-dimensional column vector which has the same
dimension as the = column vector, b is a scalar, sign(-) is the
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Fig. 4. Separation of two classes by an SVM.
sign function, the operator (-)T is the transpose operator, and
D(x) returns the label of the class that is classified @. The
hyperplane that separates both classes is given by f(z) = 0. So,
vector w and scalar b determine the position of the separating
hyperplane, w determines the orientation, and b determines the
hyperplane separation to the origin reference. When the training
set is linearly separable, (3) must be met, and samples of the
training set will be correctly classified
vif(e) =1 ¥i=12... M. 3)
The hyperplane that has the maximum distance between
itself and the closest samples is the maximum margin hyper-
plane, called the optimal separating hyperplane. The classifier
with the optimal hyperplane is the classifier with the greatest
generalization ability. To find the optimal hyperplane, it is
convenient to use three parallel hyperplanes H. H;. and Hs
(see Fig. 4). such that

H:flz)=w'z+b=0 4)
Hy: flz)=wTz+b=41 (5)
Hy: flz) =wle +b=—1. (6)

The hyperplanes H; and Hs must contain some training
samples. These training samples are known as support vectors
and contain all the necessary information to build the classifier
hyperplane. The distance between H; and H is called the
margin and is 2/||w||. Thus, finding the hyperplane with the
maximal margin is equivalent to minimizing the following
function:

L(w) = [Jw|*/2 %))

also taking into account the constraint (3). This function can be
minimized using the Lagrange multipliers. Then, the problem
becomes to minimize (8) with respect to w and b and to
maximize (8) with respect to o, where v denotes the Lagrange
multipliers

M
L(w,b‘a):\w\2/272ai (yi(wT$i+b}fl). (8)

=1
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Fig. 5. Nonlinear transformation from input space to high-dimensional fea-
ture space.

TABLE 1
STANDARD KERNEL FUNCTIONS

Kernel function K(xi,xj)

Linear xf - x
Polynomial (xFx + l}d,d >0
Gaussian RBF exp (*"Ij - x; |1/202)
Sigmoid tanh(yx! - x; +7)

This problem must satisfy the Karush—-Kuhn-Tuker (KKT)
conditions, which are

M
OL(w, b, ) /Ow =w — Z(zz—yiml =0 9)
=1
M
OL(w, b, x)/Ob = 72(11-;,{ =0 (10
=1
o [yi(wTa; +0) -1 =0 vi=1,2,...,M (1D
a; >0 Yi=1,2,...,M. (12)

Substitution of the KKT conditions into (8) gives the dual
problem

M LMo
Laual(a) = Zm — §ZZa1cxjy1yjcc;F;cj (13)
=1 i=1 j=1
with the following restrictions:
M
Z ay; =0 (14)
i=1
a; >0 Vi=1,2,...,M. (15)

Substituting (9) into (2) gives the dual form of the decision
function of the following classifier:

M
flzx) =Zmy;m?$+b. (16)
=1

When classes are not linearly separable, the samples are
transformed into a high-dimensional space, where the linear
class separation is possible. The data transformation is ac-
complished via function ¢(-). which takes the data from the

input space to a feature space where classes are linearly sep-
arable. An example is shown in Fig. 5. The inner product of
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Fig. 6. Block diagram of the proposed method.

two transformed samples is replaced by the kernel function
K (x;,x;) = ¢"(x;)¢(x;). Then, the problem given by (13)
and (16) becomes

M MM
Layai(a) = Zaz — 5ZZaiajylyjK(xi,a:j) (17)
i=1

=1 =1

M
f@) = oK (@i, @) +b (18)
i=1

respectively.

In general, the function () is not necessary and may not be
known because the kernel function is used instead. The kernel
functions represent a valid inner product when they meet the
Mercer conditions. The standard kernel functions are shown in
Table L.

In previous ideal conditions, it was assumed that classes were
separable, and therefore, (3) was always satisfied in the feature
space. In real problems, however, it is not always true. and it
is necessary to introduce some loss variables &;. In this case.
(3) becomes

vifle) 21— & Vi=12,..

M. (19)

The function to optimize in this case 1s

M

Liw) = |w|?/2+CY &

=1

(20)

where €' is a penalty factor. When solving this optimization
problem, the same dual problem appears as did in (13). but now
subject to the following restrictions:

2n

M
>y =0
i=1

0<ay <C Vi=12...,M. (22)

The resolution of (13) subject to restrictions (21) and (22)
15 known as SVM classifier training. The training is carried
out using samples of the training set in order for a; and b
to solve the dual problem. There are different training algo-
rithms, but the most popular is sequential minimal optimization
(SMO) [25].

[1I. PROPOSED METHOD

The main objective of this paper is to propose a new method
for sensorless estimation of speed and position based on the
ripple component in brushed de motors. This method should
obtain the pulse of the current, discard false pulses, and detect
ghost pulses. It is based on pattern recognition techniques used
to detect the pulse of the current with an SVM classifier.

This section explains the proposed method and the procedure
to train the method. The method uses an SVM classifier, which
needs to be trained.

A. Method

Fig. 6 shows the block diagram of the proposed method.
The vertical arrows in this figure are the parameters. and the
horizontal arrows are the processed data. The method processes
the digitized samples of the current of a brushed dc motor and
consists of the next eight blocks.

1) Bandpass Filter Block: This block filters the noise of
the brushed dc motor outside the range of possible ripple fre-
quencies. It is composed of a passband filter. The lower cutoff
frequency f. o is lower than the lowest ripple frequency. The
upper cutoff frequency f. vp is greater than the highest ripple
frequency. The parameters of this block are f. jou. fo up. and
F,. The parameter I is the sampling frequency of the system.,
and it is necessary because the filter is digital (see Fig. 6).

In practice, the filter of this block is usually complemented
with an antialiasing filter that operates before the A/D converter
stage. In this situation, this block can sometimes be eliminated
and substituted by this antialiasing filter.

The pulse width modulation (PWM) signal sometimes used
to supply brushed dc motors can be considered noise. This noise
can be filtered by the Bandpass Filter Block if the frequency of
the PWM signal does not match the possible frequency ripple.
Thus, the frequency of the PWM signal should be set higher
than the maximum ripple frequency so that it can be filtered
correctly.

2) Filter Bank Block: The Filter Bank block removes the
noise of the current of the brushed dc motor which is within
the range of possible ripple frequencies. The noise outside this
range is removed by the previous block. This Filter Bank block
is optional, and it will only be present if the range of possible
ripple frequencies has significant noise. The noise in this range
can be internal or external, i.e., the noise source may or may not
be produced by the brushed dc motor.

The Filter Bank block is composed of a filter bank. Only
one filter of this filter bank filters the incoming signal, and
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the filter selection is done according to the ripple frequency
detected in the previous iteration. This block has as its input
the discrete period of ripple component N that is related to the
ripple frequency f,. according to
fr=Fs/N. (23)

The block parameters are filters and filter FreqRange.
The filter parameter is a list that indicates the number of filters
in the filter bank and their lower and upper cutoff frequencies.
The filter FreqRange parameter indicates the range in which
each filter is used according to the ripple frequency detected
in the previous iteration. The configuration of this Filter Bank
block is given by the brushed dc motor characteristics and the
operating environment, i.e., it depends on how much noise the
brushed dc motor current has.

3) Normalization Block: The dc component and the alter-
nate component of the brushed dc motor current are variable
signals. The variations depend on factors such as the load
and speed of the brushed dc motor. The Normalization block
removes this effect and makes the current vary between two
fixed values. It also removes the dc component that the current
may have after filtration.

The Normalization block normalizes the variance of current
to +1 interval. This block normalizes the variance instead of the
amplitude to become more robust in the presence of spurious
and impulsive signals. The diagram of this block is shown in
Fig. 7. The Mean Value block computes the mean value of the
last L samples of the current according to

1 L[n]-1
e i kZ:; ig[n— k. 24)

The Subtracr block removes the dc component of the current
according to

(25)

is[n] = if[n] — im[n].

The RMS Value block calculates the variance of the last L
samples of the current without the dc component according to

1 L[n]-1 s
iy[n] = i) g (i,[n — K])%. (26)

Finally. the Divide block normalizes the variance dividing the
current without the dc component by its variance according to

27

in[n] = im[n|/is[n].

The Calculate Average Number Elements block calculates

the value of L according to

L[n] = numPeriodeN ormalization - Nn — 1].  (28)
The parameters of the last block are N[n—1] and
numPeriode N ormalization. The first parameter is the dis-
crete period of the ripple component detected in the previous
iteration. The second parameter is the number of periods used
to calculate the mean and variance values and variance or rms
value of the current. Larger values of this parameter will make
the system more robust against motor noise. However, larger
values make a poorer response (o the speed variation of the
brushed dc¢ motor. In contrast, small values of this parameter
will make the system estimate the mean and variance of the
current incorrectly. An adequate value for this parameter is
between five and ten.

4) Get Features Block: The Get Features block obtains the
most important features of the current that have been filtered
and normalized. Later, these features will be used by the Pulse
Detection block.

Initially, the Get Features block delays the current signal
according to

z[n] = in[n — delay) (29)
where the delay parameter is the delayed sample number. This
is done because it is necessary to have the present and future
samples of the signal current in order to obtain some specific
features. The features that this block extracts are as follows.

1) Slope change (sC'): This feature measures the variation

of the slope’s current by means of

M
5 (afn] zfn &)
sC' = 7;1 . (30)
S [xfn] — afn— K]
k=—M

In this, M 1s one-half of the window’s size in which
the feature is measured. The denominator is used to
normalize the feature value, and it varies between +1.

2) Maximum local (m): This feature determines if the
actual current sample is a maximum or not. The value
of this feature is obtained from

M
> higher (z[n],z[n — k)
k=—M

- 3
m i (31
. 1 ify>z
higher(y, z) = { 0, otherwise. (32)
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The denominator of (31) is used to normalize the feature
value to the =1 range.

3) Compare with zero (cZ): This feature determines if the
normalized current sample, from which the dc component
is subtracted. is positive or negative. In order for the noise
to not affect the feature measurement, the comparator is
implemented with the next hysteresis function

1, if cZln—1] =1yxn] > —hyUmb
Zinl 1, if eZ[n — 1] = 0y z[n] > hyUmb
Zl=yo, if cZ[n — 1] =1y x[n] < —hyUmb
0, if eZ[n — 1] = 0y z[n] < hyUmb.

(33)

In this equation. the hyUmb parameter is the hysteresis
threshold, and adequate values for this parameter are
between 0.3 and 0.5.

Shape similarity (s): This feature determines if the actual
current sample is a maximum or not, by means of a cor-
relation between the ideal and real shapes of the brushed
dc motor current. The feature value is obtained from

4

—

N-1
> (z[n — klzy [k, N[n — 1]])
k=0 (34)

s[n] =
N-1

1:;: 22[n) Eo :.:12] [k, N[n —1]]

where ,, is the ideal shape of a maximum obtained from

xp [k, N[n — 1]] = cos (%) : (35)

In both equations, N[n — 1] is the discrete period of the
ripple component detected in the previous iteration.
Rising edge (rE): This feature determines if the current
has changed from a negative to a positive value since the
last detected pulse. The value of this feature is obtained
from

N
—

rEfn] = pulln — 1] - (£8[n — 1]+ cZ[n] - Z[n—1]) (6)

where pul[n — 1] is a logical value that indicates if a pulse
was detected in the previous iteration. The operator - 13
the negation operator; the result is zero if the input 1s
different from zero, and it is one if the input is zero.

6) Falling edge ( fE): This feature determines if the current
has changed from a positive to a negative value since the
last detected pulse. The value of this feature is obtained
from

fEn|=pulln—1]- (fEn -1+ cZ[n]-cZn—1]). (37)

7) Zero crossing distance (zC'D): This feature measures
the number of normalized samples since the last rising
edge. If a rising edge has not yet been detected, then its
value is zero. The value of this feature is obtained from

zCD(n] =pulln —1] - (rE[n|/N[n — 1]+ 2CD[n —1]).
(38)
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8) Length wave time (Lwt): This feature measures the
number of normalized samples since the last detected
pulse. The value of this feature is obtained from

Lwtn] = pulln — 1] - (1/N[n — 1]+ Lwt[n —1]).  (39)

9) Length wave amplitude (Lwa): This feature measures
the distance accumulated by the current amplitude since
the last detected pulse. The value of this feature is ob-
tained from

Lwa[n] = pulln — 1] - (|z[n] — z[n — 1]| + Lwa[n — 1]).
(40)

In this case, the feature is not explicitly normalized
because the current was normalized by the Normalization
block.

Many of these features give redundant information, but be-
cause they are obtained in different ways, noise will affect
them differently. Therefore, all these features are used, and the
Pulse Detection block will fuse all information contained in the
features to determine if the actual sample corresponds to a pulse
of the current.

Some features use the M parameter. This parameter is de-
termined as one-half of the size of the window that is used
to extract the feature. In order to eliminate noise as much as
possible, this parameter should be as large as possible. This
parameter has two restrictions: 1) It must be lower than one-
half of the discrete period of the ripple component detected in
the previous iteration. because the filter must not eliminate the
current pulses, and 2) it must be lower than the delay parameter,
because only delay samples will be available as samples in the
future. This parameter is given according to

M = min (0.4 N[n — 1], delay) . (41)

The Get Features block also obtains N . This parameter is the
number of samples in a period of the ripple component. The N
value is calculated as the number of discrete samples between
the last two pulses. The equations for calculating N are

N[n] =pulln —1] - N[n — 1] + pul[n — 1] - N,[n] (42)

Ny[n] =pulln —1] - (Ny[n — 1]+ 1). (43)

5) Pulse Detection Block: The Pulse Detection block deter-
mines with each new sample whether a current pulse appears
or not. This block also discards false pulses and detects ghost
pulses. The inputs of this block are the features obtained in
the Get Features block, and the output pul[n] is a Boolean
value that indicates if a pulse is detected or not. This block is
a classifier based on an SVM. The equations to implement the
classifier are (1) and (18). In these equations, the parameters are
as follows: 1) e;, y; from support vector set; 2) the b parameter:
3) the kernel function K'; and 4) the kernel parameters. All these
parameters are obtained in the training method stage, and they
are passed to the Pulse Detector block using the featConf
parameter.

6) Speed Estimation Block: The Speed Estimation block
calculates the speed of the brushed dc motor, with information
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obtained from the Pulse Detection block. This speed n is
calculated only when a new pulse has been detected. The steps
of the algorithm (o calculate it are as follows.
1) Update the distance or sample number to the last detected
pulse d according to
d:=d+1 (44)
where the operator := indicates that d is a variable of the
algorithm, which is updated in each iteration.
If a pulse is detected, add the pulse distance to a list
of distances between pulses 7. and reset to zero the
actual distance since the last pulse. The equations that do

2

—

this are
ki=k+1 (45)
T i=d (46)
d:=0. 47

Equation (45) updates the number of pulses detected k.
Equation (46) adds the distance between the last two
pulses to the list of distances. Equation (47) resets the
distance to the last pulse.

Update and output the speed. The present speed is given
according to

3

=

" Fs-numPulseMean ) 60 48)
"~ numPulseMean—1 pulseRevlolution
Thi
i=0

where numPulseMean is the number of the last dis-
tance between pulses used (o calculate the speed and
pulseRevolution is the number of pulses produced in the
current per revolution of the brushed dc motor shaft.

7) Position Estimation Block: The Position Estimation
block calculates the position # of the brushed dc motor. The
steps of the algorithm to calculate the position are as follows.

1) Increment the number of pulses 72pu1se if a new pulse has

been detected. This is
Npulse *= TMpulse + 1. (49)
2) Calculate the position of the brushed dc motor in radians
according to
6 = 27 - npyse /pulse Revolution. (50)

8) Pulses per Revolution Computation Block: The Pulses
per Revolution Computation block determines the number of
pulses of the current per revolution of the brushed dc motor
shaft. This value is obtained according to

pulseRevolution = 2p - k/n (51)

where 2p is the number of poles. k is the number of commuta-
tion bars. and 7 is assumed according to

1= ged{2p, k} (52)
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where ged is the greatest common divisor. These parameters
depend only on the motor construction, and they do not vary
with time [18].

If the number of commutation bars and the number of
poles are not known, the parameter pulsRevolution can be
determined experimentally. To get this parameter, the following
steps should be followed. First. the brushed dc¢ motor has to
rotate at a constant speed. Second, the speed is measured by an
encoder. Third, when the brushed dc motor is rotating, the 75
that is used in (48) is measured. Finally, (48) is solved for the
parameter pulseRevolution, where n is the speed measured
with an encoder.

B. Training Method

The training method makes the SVM classifier of the pro-
posed method learn from a training set. The classifier is im-
plemented inside the Pulse Detector block (Fig. 6). This block
decides for each instant of discrete time whether a current pulse
has or has not happened. The inputs of the Pulse Detector block
are the features got from the current signal by the Get Features
block, and the output is a Boolean value that indicates if a
pulse current has happened. The training sets are feature sets
extracted by the Get Features block when a pulse happens and
feature sets extracted when a pulse does not happen.

The objective of the training method is double. First, it gets
training sets, and second, it trains the SVM classifier with
the above training samples. Thus, the training method gets
parameters of the Pulse Detector block. The steps to train the
method are as follows.

1) To measure signals of current related to the motor
comportment: Together with the current. the real speed
and the position of the brushed dc motor are measured
using a conventional sensor such as a high-resolution op-
tical encoder. This is done on different motor conditions,
as many constant speeds, many linear variations of the
speed. and many speed steps.

2) To establish a criterion to end the training process:
This criterion indicates when the training method must
finish. The criterion should be established on the speed
and/or position estimated by the proposed method, never
if a pulse is detected or not for determinate features. For
example, a criterion can be that the speed or the position
does not exceed a maximum error.

3) To set the parameters of the method: The method has
some specific parameters, and it is necessary to set the
values of these parameters by the system designer. How-
ever, the values of the Pulse Detector block parameters
are not established during this step. They are obtained at
the end of the training method. and they are established
in Step 7).

4) To empty the list of training samples S: The list of
training samples 1s emptied. This 1s done in the first
iteration and when a parameter of the method is modified.

5) To get training samples: The training samples are taken
from the measured signals in Step 1). Each training sam-
ple is composed by the features taken by the Get Features
block and by a Boolean value that indicates whether
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the training samples correspond to a pulse. The designer
decides if the features correspond or not to a pulse and
facilitates the Boolean value in this stage. A small interval
of the measured signals in Step 1) is randomly selected to
get the samples when the S list is empty. However, when
the S list is not empty. an interval that does not satisfy the
end criterion is taken instead of a random interval.

To add samples to the lists of training samples S: The
samples obtained in the previous step are added to the list
of training samples S.

To train the classifier: The SVM classifier is trained with
the list of training samples S. The algorithm used in this
paper is the SMO, but another algorithm can be used. In
this step, the parameter of the Pulse Detector block is
obtained.

8) To get the errors of the method: The proposed method,
with parameters obtained in the previous step, is tested
with the measured signals in Step 1). The method returns
an estimation of the speed and position of the brushed dc
motor. The estimation is compared to the real speed and
the real position to estimate the error of the method.

To evaluate the error of the method: The training end
criterion is checked. Step 10) is next when the criterion
is achieved. If the criterion is not yet achieved, then it
is checked 1f it 1s convenient to change any parameter. If
any parameter must be changed. Step 3) 1s the next: if not,
Step 5) is the next.

To return the parameters of the SVM classifier: The
parameters of the SVM classifier or Pulse Detector block
are returned. The parameters are «;, y;, b, the kernel
function, and the kernel parameters.

This algorithm is iterative. Each iteration adds new training
samples to train the SVM classifier. The training samples
added 1n each iteration are the samples obtained from Step 1)
that measured the signal where the method did not correctly
estimate the speed and position.

The kernel function with better practical results in this paper
1s the polynomial function. The kernel parameter is the degree,
which must be below five for optimal results.

6

=

7

—

9

—

10

=

IV. COMPARISON WITH OTHER METHODS

The more popular methods to detect the pulses of current
in brushed dc motors are those that use a comparator. These
methods compare the current in a brushed dc motor with the dc
component of the same current signal. Implementations of these
methods are as follows: 1) the one proposed by Ma and Weiss
[12] that estimates the dc component as the mean value between
the maximum and the minimum of the current; 2) that proposed
by Iott and Burke [13] that eliminates the dc component with
a high-pass filter and compares the result with zero; and 3) the
proposal by Micke er al. [16] that obtains the dc component
with a low-pass filter whose cutoff frequency is sufficiently low.

The disadvantage of these methods is that they cannot detect
ghost pulses and cannot discard false pulses, as Fig. 8 shows. In
this figure, (a) represents schematically the pulses of the current
and its de component, and (b) represents the output signal of a
comparator that has a pulse by each detected pulse.
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(a) Ghost Pulse

(b)
l I 1l

Fig. 8. False and ghost pulses. (a) Pulses of the brushed dc motor current.
(b) Pulses detected by a comparator.

False Pulse  DC Component

A solution to this problem is to combine the pulse detection
with a comparator with the distance estimation between pulses
through a dynamic model of the brushed dc motor. The dynamic
model estimates the speed of a brushed dc motor. which is
related to the frequency ripple component [ 18]. This means that
the frequency ripple component is obtained from the estimated
speed. The inverse of the frequency is the period, and the period
is the temporal distance between two consecutive pulses. A
temporal window that must contain the next pulse is estimated
using the last temporal position of the pulse and the distance
between pulses. The pulses detected before this window starts
are discarded because they are estimated as false pulses. A pulse
detected during the window is considered valid. and after this,
the system starts from the beginning to detect the next pulse. If
no pulse is detected during the window, the system determines
that a ghost pulse has occurred and a pulse 1s added. This
solution was applied. for example, by Kessler and Schulter [ 19]
and Lutter and Fiedrich [26].

However, the aforementioned solution has the same problems
as the sensorless techniques based on the dynamic model
of the brushed dc¢ motor. The dynamic model of a brushed
dc motor uses some parameters whose values depend on the
operating conditions of the brushed de motor. If these operating
conditions vary, these parameters vary in value. If the estimated
parameter values are very different from the real parameter
values, the method is not able to correctly estimate the distance
between pulses or the temporal window. This causes the method
to 1) discard some true pulses detected by the comparator and
2) erroneously indicate that a ghost pulse has occurred.

According to the proposed method by Ohishi er al. [11]. a
second solution to the aforementioned problem is the dynamic
estimation of dc parameters in the brushed dc motor. However.
it leads to a difficult-to-solve nonlinear model that also has a
high computational cost. Also, in this solution, the dynamic
model of the brushed dc motor needs to monitor the current and
the voltage of the brushed dc motor simultaneously. This causes
the system to require an additional A/D converter, therefore
increasing the system cost.

The proposed method in this paper solves the previous prob-
lems with the monitoring of only the current of the brushed dc
motor. In this case, the SVM classifier detects current pulses,
detects ghost pulses, and discards false pulses. A correct SVM
training 1s essential to allow the system to detect ghost pulses
and to discard false pulses. To achieve the objective, the elapsed
time since the last detected pulse is introduced in the obtained
features. Real examples of the detection of a ghost pulse and
the discarding of a false pulse are shown in Figs. 9 and 10,
respectively. These figures also show the brushed dc motor
current whose variance is normalized to 1, the pulses detected
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Fig. 9. Real example of the detection of a ghost pulse using the proposed
method. The method that uses a comparator does not detect the ghost pulse.
In this example, the speed of the brushed dc motor is high.
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Fig. 11.  Architecture hardware.
TABLE 1I
MOTOR SPECIFICATIONS
Parameter / Motor EMG30 T19RE385
Manufacturer Devantech Ltd. Como Drills
Nominal Voltage 12v 12V
No Load Current 530 mA 250 mA
Nominal Speed 6000 r.p.m. 5000 r.p.m.
Poles (2p) 2 2
Commutator Bars (k) 3 5
Resistance (Ry) 1802 15Q

EMF Constant (c¢) 0.0178 V/r.p.m. 0.00101 Vir.p.m.

prosjonmenscdifossss s prresssas fursarannasocachloodj o]
3822 38.23 3824 38.25 3826 38.27
t(s)

seenfasasmsens frasseanndpeean pandprnes
38.18 3819 382 3821

Fig. 10. Real example of the detection of a false pulse using the proposed
method. The method that uses a comparator does not discard the false pulse.
In this example, the speed of the brushed dc motor is low.

by the proposed method. and the pulses detected by a method
that uses a comparator.

Modern microcontrollers or DSP devices can support the
computational cost of the proposed method if the method is
parallelized. In addition, there are some techniques that de-
crease the number of operations that need to be realized by the
SVM [23]. |24]. Also, in order to decrease the hardware cost,
the sensorless processing hardware can be shared by several
brushed dc motors or by other devices.

V. EXPERIMENTAL RESULTS

This section presents the procedure for measuring the accu-
racy of the proposed method and presents the results obtained
from the two brushed dc motors that were tested.

A. Experiment

The accuracy of the proposed methods is measured by com-
paring the estimated speed and position with the real speed and
position of a brushed dc motor in different situations of work:
1) a constant speed: 2) a linear variation of the speed or a
constant acceleration: and 3) a speed step.

Fig. 1l shows the architecture hardware. The architecture
consists of a brushed dc motor, a current sensor, a data acquisi-
tion card, and a PC.

Tests were done with two brushed dc motors, the EMG30
and the 719RE385, whose characteristics are shown in Table II.
The sensor of the current was a small resister with only
20 mf2, usually called a shunt resistor. A low-cost data acqui-
sition card (National Instruments USB-6008) was used to mea-
sure and digitalize the signal of the current by means of one of

its four differential analog inputs. The sampling frequency was
5 kHz. The data acquisition card was connected to a PC. This
processed the signal of the current in order to estimate the
speed and the position of the brushed dc motor according to
the proposed method. The PC was a laptop with a T8300
microprocessor. 3 GB of RAM. and 320 GB of hard disk space.
The operating system was Windows 7. and the development en-
vironment was Matlab R2009a. The PC was configured to work
in soft real time. and the data acquisition card was configured to
acquire the current in a continuous mode. In order to estimate
the real speed and position of the brushed dc motor and to com-
pare it with the proposed method. a high-resolution incremental
encoder attached to the motor shaft was used. The encoder
was connected to the 32-bits counter of the data acquisition
card. Fig. 11 does not show the encoder and its connections.

B. Results

The results obtained in the tests are shown separately for the
three different behaviors of the brushed dc motors.

1) Constant Speed: In this situation, the two brushed de
motors are turned at different constant speeds. In this test, the
average error and deviation error of speed. with respect to real
speed and position, were obtained. The deviation error is shown
in absolute value (in revolutions per minute) and in relative
value (in percent). Also, shown are the estimated positions and
real positions for several constant speeds.

Tables III and IV show the results obtained in the estimation
of the brushed dc motor speed for the EMG30 and 719RE385
dc motors. The average error of the estimate speed is low
and constant. However, the absolute error variance increases
as the speed increases. However, the relative error variance 1s
always constant. This indicates that absolute error variance is
proportional to the speed. Figs. 12 and 13 show the estimated
and real positions for the EMG30 and 719RE385 dc motors.
For the EMG30 dc motor. the position is shown at the constant
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TABLE 1II
SPEED MEASUREMENT ERRORS WITH THE EMG30 DC MOTOR
Avcerage crror Deviation
R::lpirflc)cd Absolute Relative Absolute Relative
(r.p.m.) (%) (r.p.m.) (%)
501 1.03 0.21 3.51 0.70
807 1.09 0.14 5.86 0.73
1044 0.88 0.08 6.72 0.64
1526 1.79 0.12 8.62 0.56
2028 0.28 0.01 12.22 0.60
3082 5.72 0.19 7.22 0.23
4051 1.01 0.02 20.45 0.50
5085 3.26 0.06 21.51 0.43
6088 2.39 0.04 19.11 031
8041 4.01 0.05 32.14 0.40
9017 3.96 0.04 34.62 0.38
10117 1.96 0.02 36.13 0.36
11097 5.79 0.05 29.74 0.27
TABLE IV
SPEED MEASUREMENT ERRORS WITH THE 719RE385 DC MOTOR
Average error Deviation
R:flpstff;d Absolute Relative Absolute Relative
{r.p.m.) (%) (r.p.m.) (%)
592 0.18 0.03 241 0.41
858 0.36 0.04 252 0.29
1029 043 0.04 245 0.24
1499 0.40 0.03 3.36 0.22
1971 0.74 0.04 4.73 0.24
3010 0.07 0.002 7.50 0.25
3949 2.86 0.07 10.82 0.27
5012 7.51 0.15 21.25 0.42
6084 5.64 0.09 28.82 0.47
7062 12.18 0.17 36.96 0.52
8017 1149 0.14 49.48 0.62
8964 11.12 0.12 49.71 0.55
9994 17.54 0.18 76.67 0.77
=)
=
_5 14051 r.p.mhey
= 2000 o — s bl
(3 TN =2028 1Py
1000 g ‘ ey
o - - 3 <—n;=1044 rp.m
0 1 2 3 4 5 6

t(s)

Fig. 12. Position at different constant speeds in the EMG30 dc motor.

speeds 1044, 2028, 4051. and 8037 r/min, and the average
errors of position were 1.81.7.49. 3.35. and 2.52 rad, respec-
tively. For the 719RE385 dc motor. the positions at the constant
speeds 934, 1970, 3482, and 5012 r/min are shown. The average
position errors were 3.19, 1.44, 0.47. and 6.50 rad. respectively.
These data indicate that the proposed method works correctly
in a wide range of speeds.

2) Constant Acceleration: In this situation, the speed of the
brushed dc motor varies linearly or with a constant acceleration.
The results shown are the estimated speeds and positions with
respect to the real speeds and positions.

For the EMG3@ dc motor. the speed varies linearly from 4100
to 5100 r/min, and for the 719RE385 dc motor. it varies linearly
from 3100 to 5100 r/min. Figs. 14 and 15 show the speed results
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Fig. 13. Position at different constant speeds in the 719RE385 dc motor.
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Fig. 14. Speed with linear variation of speed in the EMG30 dc motor.
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Fig. 15. Speed with linear variation of speed in the 719RE385 dc motor.
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Fig. 16. Position with linear variation of speed in the EMG30 dc motor.

for each dc motor. For the EMG3® dc motor. the average error
of the speed was 0.49 r/min. and the variance was 20.03 r/min.
For the 719RE385 dc motor. the average error of the speed was
0.16 r/min. and the error variance was 10.57 r/min. Figs. 16 and
17 show the position results for the two dc motors. The average
error of position was 2.09 rad for the EMG30 dc motor. and it
was 18.98 for the 719RE385 dc motor. All these data indicate
that the error is low and that the proposed method correctly
estimates the speed and position of a brushed dc motor when
the speed varies slowly.

3) Speed Step: In the third work situation, a speed step is
produced in the speed of the brushed dc motor. The results
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Fig. 17. Position with linear variation of speed in the 719RE385 dc motor.

0 0.5 1 138 2 25 3
t(s)

Fig. 18. Speed with speed step in the EMG30 dc motor.
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Fig. 19. Speed with speed step in the 719RE385 dc motor.
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Fig. 20. Position with speed step in the EMG30 dc motor.

shown are the estimated speed and position with respect to the
real speed and position.

For the EMG30 dc motor, the step speed was from 2000 to
4000 r/min. and for the 719RE385 dc motor. it was from 3100 to
5100 r/min. Figs. 18 and 19 show the estimated and real speeds
for the two brushed dc motors. The proposed method took
0.1 s to reach the final value of the speed for the EMG30 dc
motor and 0.2 s for the 719RE385 dc motor. Figs. 20 and 21
show the position results for the two dc motors. The average
error of position was 15.90 fer the EMG30 dc motor, and it was
1.02 for the 719RE385 dc motor. These results indicate that the
error is low and that the proposed method is able to estimate
correctly the speed and position.
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Fig. 21. Position with speed step in the 719RE385 dc motor.

VI. CONCLUSION

This paper has presented a new sensorless method for es-
timating the speed and position of brushed dc motors using
SVMs. The method uses sensorless techniques based on the
ripple component. The method employs pattern recognition
techniques to detect the pulse in brushed dc motor current
signals. and it uses SVMs to classify the pulse. To identify
the pulses, the method filters, normalizes. and obtains the more
important features of the current in a brushed dc motor. Then,
the SVM decides in each instance if a pulse has been produced.
Finally. the method counts the detected pulses in order to
estimate the position and takes the inverse temporal distance
between pulses in order to estimate the speed.

This method has an advantage over other existing methods:
the ability to detect ghost pulses and to discard false pulses.
This is achieved by introducing the time that has elapsed since
the last detected pulse into the feature set and by using an SVM
as a classifier to detect the pulses.

The experimental results, obtained to validate the proposed
method, show that the method works in a wide range of speeds
and in different operating conditions, such as linear speed
variation and abrupt jumps of speed in a brushed dc motor.
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