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We propose a computational graph representation of high-order Feynman diagrams in Quantum
Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency
domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes
these diagrams into a fractal structure of tensor operations, significantly reducing computational
redundancy. This approach not only streamlines the evaluation of complex diagrams but also facili-
tates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing
perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode auto-
matic differentiation, a key technique employed in machine learning packages to compute higher-
order derivatives efficiently on computational graphs. To operationalize these concepts, we develop
a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing
machine learning frameworks. Demonstrating this methodology’s effectiveness, we apply it to the
three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating
the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT
and machine learning, establishing a new avenue for applying AI techniques to complex quantum
many-body problems.
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I. INTRODUCTION

Quantum Field Theory (QFT), a foundational pillar
of modern physics, has revolutionized our understand-
ing of particle physics and condensed matter phenom-
ena. At the heart of QFT lies perturbation theory,
vividly representable using Feynman diagrams, which
plays a vital role in unraveling complex quantum inter-
actions. Despite their utility, perturbative expansions
in QFT present formidable computational challenges.
These challenges stem from high-dimensional spacetime
integrations and are compounded by the factorial in-
crease in the number of Feynman diagrams within the
integrand at higher orders. Sophisticated computational
techniques are thus required to manage these complexi-
ties.
A significant aspect of these challenges is associated

with the field-theoretic renormalization scheme in QFT.
Originally introduced to address ultraviolet divergences,
this scheme now plays a vital role in improving the con-
vergence properties of diagrammatic series by ensuring
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that the starting point of perturbation theory accurately
reflects the low-energy dynamics and emergent degrees of
freedom in various physical systems. Conventional renor-
malization schemes such as the BPHZ method [1–4] intro-
duce counterterms for every vertex sub-diagram, yielding
a significant number of extra renormalized Feynman dia-
grams and an exponential increase in computational load.

In light of these challenges, the application of Feynman
diagrams to areas such as condensed matter physics has
often been restricted to simplified tree-level or one-loop
ansatzes (e.g., the GW approximation [5], Eliashberg
equations [6, 7]). The pursuit of high-precision, first-
principles calculations has catalyzed the development of
advanced numerical methods to address the complexities
of higher-order diagrams. Techniques like Diagrammatic
Monte Carlo (DiagMC) [8–15] and Tensor Crossing In-
terpolation (TCI) [16–18] represent significant strides in
this direction. Both of these techniques critically depend
on the efficient summation of Feynman diagrams for a
given set of integration variables despite employing dif-
ferent sampling strategies, namely, stochastic methods in
the case of DiagMC and tensor network architectures in
the case of TCI.

Recent advancements in QFT have brought about a
transformative change in the computational treatment of
Feynman diagrams, especially in their space-time repre-
sentation, where the use of determinantal forms [11, 19,
20] has effectively reduced the computational complex-
ity from O(N !) to O(eN ), where N is the perturbation
order. This efficiency has been extended to Feynman
diagrams derived from general renormalization schemes,
offering broader applicability [21, 22]. In contrast, mo-
mentum and frequency representations of QFTs, which
align more naturally with the theoretical framework, still
face significant optimization challenges.

An early attempt in this direction involves grouping
Feynman diagrams into Hugenholz diagrams [13, 23],
which amounts to reorganizing the interactions into tree
structures, thereby reducing computational costs by a
factor of O(2N ). While this represents progress, it only
scratches the surface of potential optimization strategies.
A key future direction lies in extracting and factoring out
higher-order common sub-diagrams, which would unlock
substantial efficiency gains for these representations.

A computational graph is a way of structuring and
simplifying complex mathematical expressions and op-
erations. In the context of Feynman diagrams, compu-
tational graphs have been implicitly or explicitly used
in previous works [11, 13, 19–25] to organize and evalu-
ate the intricate networks of interactions and calculations
present in higher-order diagrams. These graphs allow
for a systematic approach to optimize the mathematical
complexities involved.

However, a critical and often overlooked parallel exists
between the optimization challenges in (renormalized)
Feynman diagram calculations in QFT and AI compiler
challenges in Machine Learning (ML). In both fields, op-
timizing large-scale computational graphs is crucial: in

QFT for the mathematical operations in Feynman dia-
grams, and in ML for deep neural network architectures.
While a recent study explored using PyTorch for cal-
culating Feynman diagrams in DiagMC [25], it focused
on interfacing with the ML framework as-is rather than
addressing the underlying optimization challenges asso-
ciated with this strategy. In contrast, the application
of ML-derived optimization techniques to computational
graphs in QFT represents a novel direction. This ap-
proach could significantly streamline Feynman diagram
calculations, merging theoretical physics insights with
cutting-edge computational strategies.

In this work, we introduce an efficient computational
graph representation of Feynman diagrams, applicable
to QFTs in any combination of spatial, temporal, mo-
mentum, and frequency domains. This representation
organizes high-order Feynman diagrams into a compact
hierarchical structure of sub-diagrams, which allows for a
single shared evaluation of repeated sub-diagrams. This
approach dramatically reduces the computational effort,
streamlining the process of calculating higher-order dia-
grams. We propose algorithms for constructing compact
computational graphs for two-, three-, and four-point
vertex functions by leveraging the perturbative represen-
tations of the Dyson-Schwinger and parquet equations,
thus covering a wide range of observables in quantum
many-body problems.

To efficiently handle the complexities of field-theoretic
renormalization, we incorporate Taylor-mode automatic
differentiation (AD) [26–28], a key technique employed
in ML packages to compute higher-order derivatives ef-
ficiently on computational graphs. Taylor-mode AD re-
duces the computational cost of renormalized Feynman
diagrams from exponential to sub-exponential with re-
spect to the differential order, further marking a signifi-
cant improvement in computational efficiency.

For practicality, we implement a Feynman diagram
compiler to convert generic diagrams into executable
code optimized for various computational platforms. The
compiler transforms diagrams into computational graphs,
applies Taylor-mode AD for renormalization, and gener-
ates efficient code for evaluation. While primarily fo-
cused on CPU platforms, we have explored extensions to
GPU computing using ML frameworks JAX [29], yielding
promising results for accelerated computations.

The effectiveness of our methodology is showcased
through its application to the uniform electron gas
(UEG) problem, a fundamental challenge in quantum
many-body theory. Our approach allows for precise high-
order perturbation calculations, resulting in unprece-
dented accuracy in determining the effective mass of the
UEG. Central to this success is the use of AD for renor-
malizing electron propagators/interactions and comput-
ing the derivative of the quasiparticle dispersion with re-
spect to the external momentum.

Our work bridges AI methodologies with QFT, demon-
strating the practicality of applying ML algorithms in
QFT computations. Figure 1 illustrates this integration,
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FIG. 1. Overview of the ‘AI Tech Stack for QFT’ applied to
many-electron field theory, illustrating its potential in advanc-
ing research across quasiparticle spectra, superconductivity,
and quantum magnetism.

highlighting how the ‘AI Tech Stack for QFT’ could fa-
cilitate advancements in many-electron field theory stud-
ies. The applications of our work extend to quasiparticle
spectra [30–32], superconductivity [33–37], and quantum
magnetism [38–44], opening new avenues for AI technolo-
gies in quantum physics research.

The paper is organized as follows: Section II details
the computational graph representation of Feynman dia-
grams and the corresponding algorithms for constructing
these graphs. Section III discusses the implementation
of field-theoretic renormalization using the Taylor-mode
AD algorithm. In Section IV, we introduce the Feyn-
man diagram compiler, designed to implement these algo-
rithms for quantum many-body field theory applications.
Section V applies our algorithms to DiagMC calculations
for the UEG. We conclude by summarizing our findings,
discussing future work to enhance the ‘AI Tech Stack for
QFT’ and exploring potential applications in Section VI.

II. FEYNMAN DIAGRAMS AS
COMPUTATIONAL GRAPHS

A. Feynman Diagrams

Feynman diagrams play an indispensable role in quan-
tum many-body physics, serving as a graphical and com-
putational method for understanding QFTs. These dia-
grams are particularly vital in scenarios where exact so-
lutions are elusive and where interaction terms are small
relative to kinetic terms. They provide a visual repre-
sentation of the perturbative expansion of the action in
powers of the interaction, linking fundamental interac-
tions with physical observables in a clear and insightful
manner.

In QFT, the action S encapsulates the dynamics and
interactions of particle fields. It can be formulated in var-
ious domains, such as momentum and imaginary time,
or in alternative combinations like space-time, space-
frequency, momentum-time, and momentum-frequency.

This is represented as:

S =

∫

kτ

ψ̄kτ ĝ
−1
kτ ψkτ +

∫

kk′qτ

Vqψ̄k+qτ ψ̄k′−qτψk′τψkτ .

(1)
Here, the integration measures imply integration over in-
ternal momenta k, k′, and q and imaginary time τ , while
ψ̄ and ψ are either bosonic or fermionic Grassmann fields.
The bare propagator of the particle is given by

ĝ−1
kτ =

∂

∂τ
+ ϵk ↔ ĝ−1

kωn
= −iωn + ϵk, (2)

where ϵk is the energy dispersion. We will assume that
the interaction potential Vq only depends on the momen-
tum transfer q, as for the Coulomb interaction between
electrons. The discussions and methodologies in this pa-
per can be generalized to encompass more complex, non-
local, and dynamical interactions.
The perturbative treatment in QFT allows Feynman

diagrams to depict correlation and vertex functions as
power series expansions of the interaction. Each term
in this series represents different particle interactions,
graphically illustrated in the diagrams. In Feynman dia-
grams, the propagator gkτ and the interaction potential
Vq are represented as edges, intersecting at vertices. A
notable application is in computing the self-energy (see
Fig. 2), a key concept in many-body physics that de-
scribes changes in a particle’s energy and lifetime due to
particle interactions. Self-energy Feynman diagrams ef-
fectively bridge the gap between basic particle properties
and their modified states in a many-body environment,
showcasing the diagrams’ extensive utility in QFT sce-
narios.
In QFT, Feynman diagrams provide a versatile frame-

work, adaptable across various domain combinations. By
assigning momentum and frequency variables to edges
and spatial and temporal variables to vertices, they offer
effective tools in different analytical contexts. While the
focus here is on momentum and imaginary-time domains,
the methodologies are broadly applicable.
Traditionally, applications of Feynman diagrams

within condensed matter physics and material science
have focused on one-loop approximations. Two promi-
nent examples of this methodology are the GW approx-
imation [5, 45, 46] for electronic band structure calcula-
tions and the Eliashberg equations [6, 7] for the study of
superconductivity. However, the feasibility of calculating
high-order diagrammatic contributions has significantly
increased with the advancement of numerical techniques.
This progress has since allowed for more thorough inves-
tigations of interacting quantum systems [47–51]. Two
notable methods in this direction are:

1. Diagrammatic Monte Carlo (DiagMC) [8–15, 52] :
This stochastic method is utilized for the numer-
ical evaluation of high-order Feynman diagrams.
It has successfully studied correlated fermions in
systems like the UEG [13, 23, 31, 32], the uni-
tary Fermi gas [14, 15, 53, 54], and the Hubbard
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FIG. 2. Feynman diagrams in the bare expansion of the self-
energy. The bare propagator g and interaction V are rep-
resented by directed and dashed lines, respectively. We use
an abbreviated notation 1 ≡ τ1 to denote the indices of the
imaginary time variables. We omit the momentum variables
for simplicity.

model [10, 33, 41–44, 55–57]. The method, while
effective, faces challenges such as the sign problem
in highly oscillatory integrals.

2. Tensor Crossing Interpolation (TCI) [16–18] : Of-
fering an alternative to stochastic sampling, TCI
uses tensor network techniques and has been ap-
plied with notable success to the quantum impurity
model. This method employs tensor trains to repre-
sent the sum of all Feynman diagrams, thus simpli-
fying the computation of high-dimensional integrals
into a series of more manageable one-dimensional
integrals and enhancing both the numerical preci-
sion and speed.

In d spatial dimensions, the nth-order perturbation of
the self-energy Σ(n) consists of Feynman diagrams with n
instantaneous interaction lines (2n vertices), representing
an n(d+ 1)-dimensional integration

Σ(n) =

∫
dV
∑

t∈Tn

W
(n)
t (V) (3)

with measure dV =
∏n

i=1 d
dkidτi and internal variables

V = (k1, · · · ,kn; τ1, · · · , τn). Here the summation is over

the set of all nth-order diagram topologies Tn (see Fig. 2)
which, without the use of resummation techniques, grows
as O(n!) [11]. Thus, the effectiveness of both DiagMC
and TCI hinges on their efficiency in evaluating high-
order Feynman diagrams, i.e., in computing the total

weight function
∑

t∈Tn
W

(n)
t (V) over many different in-

ternal variable configurations V throughout the simula-
tion. This critical challenge leads into the next section,
where we will explore a compact computational graph
representation of Feynman diagrams.

B. Computational Graph Representation

Building on our review of Feynman diagrams in QFT,
we now turn to their intriguing connection with computa-
tional graphs. This concept, more familiar in the realms
of computer science and ML, provides a fresh perspective
for managing the complexities involved in the numerical
evaluation of high-order Feynman diagrams.
Computational graphs are structures composed of

nodes and directed edges denoting mathematical oper-
ations and the flow of data or variables between these
operations, respectively. This framework is adept at de-
composing intricate calculations into a series of simpler,
interconnected steps.

Applying this to Feynman diagrammatic integra-
tion (referenced in Eq.(3)), the weight function∑

t∈Tn
W

(n)
t (V) is interpretable as a computational

graph. This graph’s structure includes propagators g
and interactions V as initial nodes (‘leaves’), followed
by a layer of multiplication nodes representing distinct
Feynman diagrams, each combining a specific subset of
leaves. The final layer is a summation operation that ag-
gregates all multiplication nodes, culminating in the final
integrand.

k

k′

gk+q(1, 2)

Vq

k

Vq

k′
gk′+q(2, 1)

1 2

1 2

+

k

k′

gk+q(1, 2)

Vq

k

Vq

k′
gk′−q(1, 2)

1 2

2 1

⇐⇒

⊗

( · )2

Vq

⊕

⊗

gk′+q(2, 1) gk+q(1, 2)

⊗

gk′−q(1, 2)

FIG. 3. Illustration of the computational graph of two 4-point vertex function Feynman diagrams. These diagrams are
distinguished by the exchange of interaction lines. The graph integrates both momentum (edge-dependent) and imaginary-time
(vertex-dependent) variables. Factorization of shared propagators and interactions results in a compact computational graph,
characterized by elementary operations such as addition, multiplication, and power operations.

Optimizing the computational graph for Feynman dia-
grams is essential for their integration in Quantum Field
Theory (QFT). While recent advances have enhanced the

efficiency of diagrams in the space-time representation,
the momentum and frequency representations—which
align more intrinsically with the fundamental principles
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of QFT—present a unique set of optimization challenges
that are not yet fully explored. An initial attempt to
address these challenges involved grouping Feynman di-
agrams into Hugenholz diagrams [13], leading to com-
putational graphs with interaction lines organized into
tree structures, thereby cutting the number of multipli-
cation nodes from O(2N ) to O(N logN). However, this
advancement represents just the tip of the iceberg. While
it significantly optimizes the interaction lines or ’leaves’
of these graphs, common higher-order sub-diagrams are
left unfactored and are thus ripe for optimization.

The path to developing a highly compressed compu-
tational graph for Feynman diagrams is marked by two
major challenges. The first is the selection of internal
variable configurations that maximize the overlap of com-
mon sub-diagrams between different Feynman diagrams.
Given the vast number of internal variable configurations,
only a carefully selected few result in the significant over-
lap essential for optimization. The second challenge in-
volves efficiently identifying and extracting these over-
lapping sub-diagrams. Current methods like global com-
mon subexpression elimination (CSE) algorithms [58, 59],
while promising in theory, face scalability issues, limiting
their practicality as the graph’s complexity and size in-
crease with higher perturbation orders. Therefore, the
development of scalable, universal algorithms for opti-
mizing computational graph representations in QFT, es-
pecially for momentum or frequency representations, be-
comes a critical need.

In the following section, we will introduce a bottom-up
approach that addresses these pressing challenges. Un-
like traditional methods that build Feynman diagrams
piece by piece, this approach directly constructs a com-
pact computational graph. Its key advantage lies in its
ability to automatically prevent the duplication of com-
mon sub-diagrams, thereby optimizing the graph’s struc-
ture from the start. This methodology streamlines the
optimization process and significantly reduces the com-
putational complexity associated with large-scale Feyn-
man diagrams.

C. Graph Construction Algorithms

1. Perturbative Dyson-Schwinger Equations

The Dyson-Schwinger equation (DSE), a bedrock
within QFT, typically offers a non-perturbative lens to
understand the interactions and propagations of parti-
cles by relating Green’s functions and vertex functions
of varying particle numbers. However, in the context of
our current exploration, we instead harness the power of
the DSE to perturbatively generate compact computa-
tional graph representations for high-order Green’s func-
tion and vertex function Feynman diagrams.

We will illustrate the idea by showing how to generate a
computational graph for the Nth-order Green’s function
from a given set of Nth-order self-energy diagrams using

G
(N)
k

=




G
(0)
k


 δN,0 −

N∑

i=1




G
(0)
k G

(N−i)
k

Σ
(i)
k




⊕

⊗

⊕

⊗

Σ
(1)
k G

(N−1)
k

· · ·
⊗

Σ
(N)
k G

(0)
k

−1

δN,0

FIG. 4. The Nth-order Green’s function G
(N)
k .

Σ
(N)
k =

N−1∑

i=0


 G

(N−i−1)
k−q

Vq

kk
Γ3,(i)




⊗

Vq ⊕

⊗

G
(N−1)
k−q Γ

3,(0)
k,k−q;q

· · ·
⊗

G
(0)
k−q Γ

3,(N−1)
k,k−q;q

FIG. 5. The Nth-order self-energy Σ
(N)
k .

the Dyson equation,

G
(N)
k = G

(0)
k δN,0 −G

(0)
k

N∑

i=1

Σ
(i)
k G

(N−i)
k . (4)

To ensure clarity in our presentation, we have simpli-
fied the equations and figures to display only momen-
tum labels. However, it is essential to understand that
N -point vertex functions and Green’s functions can be
represented as multi-dimensional tensors when we con-
sider vertex-defined indices like imaginary-time and spin.
For example, the Green’s function shown in Fig. 4, when
including imaginary-time indices, transforms into a ma-
trix form, expressed as Gq → [Gq]τi,τj . In this tensorial

representation, each node in the computational graph
is a tensor, and operations such as multiplication are
conducted through tensor contractions rather than sim-
ple scalar multiplication. This representation effectively
turns Feynman diagrams into a tensor network, which
opens up significant possibilities for computational opti-
mization and efficiency.
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k1

k2

q
Γ3,(N) =




k1

q

k2


 δN,0 +

∑

i+j+k=N−1




k1

k2

q

G
(k)
p

G
(j)
p+q

Γ4,(i)




⊕

Γ
3,(0)
k1,k2;q

⊗

Γ
4,(0)
k1,k2;p,p+q [Gp+qGp]

(N−1)

· · ·
⊗

Γ
4,(N−1)
k1,k2;p,p+q [Gp+qGp]

(0)

δN,0

FIG. 6. The Nth-order three-point vertex Γ
3,(N)
k1,k2;q

.

⊕

⊗

G
(0)
p+q G

(N)
p

· · ·
⊗

G
(N)
p+q G

(0)
p

FIG. 7. The Nth-order product of two Green’s functions

[Gp+qGp]
(N).

The self-energy is related to the full (improper) 3-point
vertex function by

Σ
(N)
k = Vq

N−1∑

i=0

G
(N−i−1)
k−q Γ

3,(i)
k,k−q;q, (5)

where the integration over internal momenta is implied.
Similarly, the 3-point vertex function is related to the
4-point vertex function,

Γ
3,(N)
k1,k2;q

= Γ
3,(0)
k1,k2;q

δN,0+

N−1∑

i=0

Γ
4,(i)
k1,k2;p,p+q [Gp+qGp]

(N−i−1)
,

(6)

where we define q ≡ k1 − k2 for brevity, and

[Gp+qGp]
(N)

=

N∑

j=0

G
(j)
p+qG

(N−j)
p (7)

is the product of two Green’s functions truncated to total
order N .

2. Perturbative Parquet Equations

The parquet equations [60, 61], integral to the study
of quantum many-body physics, play a crucial role in de-
tailing the interactions within complex systems, partic-
ularly in the analysis and construction of 4-point vertex
functions. These equations intricately connect the full
vertex functions to both their reducible and irreducible
components across different interaction channels, thereby
providing a detailed and comprehensive framework for
understanding particle interactions.

The parquet equations are inherently iterative, de-
signed to self-consistently solve for vertex functions [62,
63]. As in II C 2, we will instead expand these equations
perturbatively, so that each term in the parquet equa-
tions effectively corresponds to an equivalent diagram-
matic structure. More specifically, the 4-point vertex
function is built from a bottom-up approach using the
parquet equations

Γ
4,(N)
k1,k2;k3,k4

= I
(N)
k1,k2;k3,k4

+
∑

c∈{ph,ph,pp}

Φ
c,(N)
k1,k2;k3,k4

, (8)

where k4 ≡ k1 + k2 − k3, I
(N) is the fully-irreducible 4-

point vertex, and Φc,(N) and Γ
4,(N)
c = Γ4,(N)−Φc,(N) are

the 4-point reducible and irreducible vertices in channel
c ∈ {ph, ph, pp} evaluated to order N , respectively. The
reducible vertices are defined by

Φ
ph,(N)
k1,k2;k3,k4

=
∑

i+j+k+l=N−1

Γ
4,(i)
k1,p+k3−k1;k3,p

Γ
4,ph,(j)
p,k2;p+k3−k1,k4

G(k)
p G

(l)
p+k3−k1

, (9)

Φ
ph,(N)
k1,k2;k3,k4

= ζ
∑

i+j+k+l=N−1

Γ
4,(i)
k1,p+k2−k3;k3,p

Γ
4,ph,(j)
p,k2;p+k2−k3,k4

G(k)
p G

(l)
p+k2−k3

, (10)

Φ
pp,(N)
k1,k2;k3,k4

=
1

2

∑

i+j+k+l=N−1

Γ
4,(i)
k1,k2;p,k1+k2−pΓ

4,pp,(j)
p,k1+k2−p;k3,k4

G(k)
p G

(l)
k1+k2−p, (11)

where ζ = −1 for fermions, and +1 for bosons, and are
shown diagrammatically in Fig. 9.

The perturbative expansion of Eq.(8) leads to the for-
mation of a computational graph as shown in Fig. 8.

The intermediate nodes in this graph represent specific
groups of 4-point vertex function sub-diagrams that share
the same order and set of internal variables but differ in
topology. The computational graph leverages these nodes
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∑

i+j+k+l=N−1




⊗

G
(k)
p ⊕

⊗

Γ
4,(i)
k1,p+k3−k1;k3,p

⊗

Γ
4,ph,(j)
p,k2;p+k3−k1,k4

G
(l)
p+k3−k1

⊗

Γ
(i)
k1,p+k2−k3;k3,p

⊗

Γ
4,ph,(j)
p,k2;p+k2−k3,k4

G
(l)
p+k2−k3

⊗

Γ
4,(i)
k1,k2;p,k1+k2−p ⊗

Γ
4,pp,(j)
p,k1+k2−p;k3,k4

G
(l)
k1+k2−p

ζ

1
2




FIG. 8. The Nth-order four-point vertex minus fully-irreducible four-point vertex Γ
4,(N)
k1,k2;k3,k4

− I
(N)
k1,k2;k3,k4

.

k1 k2

k3 k1 + k2 − k3

Φ
(N)
ph =

∑

i+j+k+l=N−1


 k1 k2

k3 k1 + k2 − k3

G
(k)
p

G
(l)
p+k3−k1

Γ4,(i) Γ
4,(j)
ph




k1 k2

k3 k1 + k2 − k3
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FIG. 9. Diagrammatic construction of the Nth-order re-

ducible 4-point vertices Φ
(N)
c in each channel c ∈ {ph, ph, pp}

following Equations (9)–(11). Here ζ = −1 for fermions, and
+1 for bosons.

to construct higher-order vertex function diagrams in a
self-similar and hierarchical structure. This methodology
allows for the reuse of intermediate nodes in constructing
higher-order elements, thus eliminating redundant calcu-
lations and enhancing computational efficiency.

Coupling the parquet equations with the DSE fur-
ther extends the capability to generate compact com-
putational graphs for not only 4-point vertex functions
but also for 2- and 3-point vertex functions. This com-
prehensive approach significantly enriches the computa-
tional toolkit available in QFT, offering a practical and
unified method for representing various vertex functions.

Implementing the above algorithms significantly com-

I = + 4




Γ4 Γ4

Γ4Γ4




+ · · ·

FIG. 10. The fully-irreducible 4-point vertex I. The Nth-
order contribution is built bottom-up from the bare interac-
tion V , Green’s function G and reducible 4-point vertex Γ4

in an analogous manner to Equations (9)–(11). This figure
illustrates one specific permutation of external legs; however,
the complete representation of I includes all possible permu-
tations, not depicted here for clarity.

presses computational graphs. Figure 11 contrasts the
third-order Feynman diagrams of the dynamic self-energy
computational graph for spinless fermions before and af-
ter optimization using the parquet DSE (Eqs. (5)-(11)).
The optimized graph exhibits marked compactness, en-
hancing computational efficiency. Further, quantitative
benchmarking, detailed in Fig. 12, reveals that this op-
timized approach reduces the computational complexity
of the 6th-order self-energy integrand by nearly three or-
ders of magnitude compared to a conventional Feynman
diagram computation.

III. RENORMALIZATION AS AUTOMATIC
DIFFERENTIATION

A. Field-theoretic Renormalization

Renormalization, a cornerstone in quantum field the-
ory, plays a crucial role in unraveling the emergent prop-
erties of quantum many-body systems. Our primary ob-
jective in this section is to develop a compact computa-
tional representation of renormalized Feynman diagrams.
To lay the foundation for this development, we first re-
visit the concept of renormalization, with an emphasis
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(a) (b)

FIG. 11. Computational graphs representing third-order Feynman diagrams for the dynamic self-energy of spinless fermions. (a)
The naive approach graph aggregates Feynman diagrams, with each diagram being a product of propagators ‘G’ and interactions
‘V’. (b) The optimized graph, derived from parquet and Dyson-Schwinger equations, implements an efficient factorization of
common sub-diagrams to reduce redundant calculations.

2 3 4 5 6
n

102

104
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N
op

Conventional

Compressed

FIG. 12. The total number of operations Nop required for
calculating the nth-order self-energy, which is a measure of
graph compactness. We compare Nop for a traditional sum-
mation of Feynman diagrams with the graph generated by
Eqs.(5)–(11). The compressed graph is about three orders of
magnitude more efficient than the conventional graph at the
6th order in perturbation theory.

on its application in quantum many-body field theory.

Originally developed to address ultraviolet (UV) diver-
gences in quantum electrodynamics (QED) [64], renor-
malization has evolved beyond its initial role as a math-
ematical regularization method. The introduction of
the renormalization group approach by Wilson [65, 66]
marked a paradigm shift, revealing how the character-
istics of physical systems can vary across different en-
ergy scales. This perspective offered profound insights
into scale-dependent behaviors in physics. Despite the
conceptual advancements brought by Wilson’s approach,
practical challenges persist in its computational appli-
cation, especially for high-order calculations. This un-
derlines the enduring importance of traditional field-
theoretic renormalization methods [64], initially formu-
lated for relativistic quantum field theories. Adapting
these methods to non-relativistic quantum many-body
field theories is a burgeoning area of research [13, 21, 52,
67–69], promising enhanced precision in calculations of

complex many-body quantum phenomena.
Field-theoretical renormalization in perturbation the-

ory involves redefining the starting point from bare pa-
rameters (defined at high-energy scales) to renormalized
parameters that reflect low-energy dynamics. This shift
aims to enhance the effectiveness of perturbation theory
by aligning it more closely with the actual physical prop-
erties observed at lower energies. Consider, for example,
renormalizing a bare propagator ĝ into a quasiparticle
propagator Ĝ. This redefinition transforms the bare ac-
tion into a renormalized action:

S ≡ SR + SCT (12)

where

SR =

∫

kτ

ψ̄kτ Ĝ
−1
kτ ψkτ +

∫

kk′qτ

Vqψ̄k+qτ ψ̄k′−qτψk′τψkτ .

(13)
The new diagrammatic series starts with zeroth-order

terms generated from SR that already capture the cor-
rect low-energy physics. The higher-order terms involve
counterterms generated from SCT that ensure the renor-
malized series reproduces the same physical result as the
original series. The freedom of choosing G and rearrang-
ing high-order terms provides numerous possible renor-
malization schemes, but most lead to badly diverging se-
ries. The field-theoretic renormalization addresses this
challenge by offering a systematic way to generate dia-
grammatic series that are substantially more convergent,
assuming that the renormalized action effectively cap-
tures the fundamental low-energy physics.

B. Constructive Renormalization Scheme

A field-theoretic renormalization scheme can be imple-
mented in two ways: top-down or bottom-up. The top-
down approach, commonly known as the BPHZ renor-
malization scheme, is a traditional method detailed in
quantum field theory textbooks [1–4]. It involves an-
alyzing each Feynman diagram of the bare theory to
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identify and counteract the sub-diagrams that necessi-
tate renormalization. Although effective, especially for
UV divergent theories like QED [70–74], this approach
can be computationally intensive. A recent development
proposed in Ref. [21] takes the top-down renormalization
scheme a step further by reorganizing the renormalized
Feynman diagrams into determinants, which significantly
reduces the associated computational complexity. How-
ever, it primarily operates in real space and time, limiting
its adaptability for quantum field theories that are more
conveniently expressed in the momentum representation.

In contrast, the bottom-up approach, which we will
dub the “constructive renormalization scheme”, provides
an alternative particularly well suited for quantum many-
body problems where UV divergence is not a concern.
While this approach has been utilized before, e.g., in solv-
ing the uniform electron gas problem in Ref. [13, 31], a
systematic and explicit explanation of this technique re-
mains limited. Here we provide a detailed explanation
of this approach, focusing on its application in develop-
ing compact computational representations of renormal-
ized Feynman diagrams. The algorithm entails three key
steps:

1. Re-expansion of the Bare Propagator: The
bare propagator is re-expanded into a power se-
ries of the renormalized propagator. This is driven
by shifting one or more bare parameters to renor-
malized parameters defined at the low-energy limit.
For instance, in the context of a Fermi liquid at
zero temperature, the bare chemical potential µ is
renormalized to the physically observed chemical
potential µR = EF, i.e., the Fermi energy. The
bare propagator is then re-expanded as

g(µ) = G(µR) + δµ
∂G(µR)

∂µR
+
δµ2

2!

∂2G(µR)

∂µ2
R

+ ... (14)

2. Construction of Renormalized Feynman Di-
agrams: The renormalized Feynman diagrams,
as well as their counter-diagrams, are constructed
from conventional Feynman rules using the re-
expanded propagators. The diagrammatic series
results in a double expansion in terms of both
the interaction strength and the chemical potential
shift. For instance, the shifted self-energy of the
system can be organized in a double Taylor series,

Σ(ξ, δµ) =
∑

n,m

ξn

n!

δµm

m!
Σ(n,m), (15)

where Σ(n,m) ≡ ∂mΣ(n)

∂µm
R

is the self-energy contri-

bution from diagrams with n interaction lines and
m chemical potential counterterms. The variable
ξ = 1 is used to track the interaction order. Al-
though each coefficient Σ(n,m) can be computed,
the series still contains the unknown parameter δµ,
and thus cannot provide first-principles predictions.

3. Imposing Renormalization Conditions: The
final step is to determine δµ by matching the theory
with a measured quantity, known as the renormal-
ization condition. Since the renormalized chemical
potential µR is set as the physical Fermi energy, the
chemical potential renormalization from the shifted
self-energy should vanish at the Fermi surface (FS).
This is implemented by expanding δµ as a power
series of the interaction,

δµ =
∑

i

ξi

i!
δ(i)µ , (16)

where δ
(0)
µ = 0 since the shift is interaction-driven.

The values of δ
(i)
µ are derived by imposing the

renormalization condition order-by-order:

n∑

i=0

δ
(i)
µ

i!
Σ(n,n−i)

∣∣∣∣∣
FS

≡ 0. (17)

The success of this renormalization scheme hinges
on the efficient computation of the Taylor coefficients
Σ(n,m), which are essentially (functional) derivatives of
the original self-energy Feynman diagrams. Note that
in typical diagrammatic Monte Carlo calculations, the
counterterm order m can be as high as n ∼ 6. As dis-
cussed previously, constructing a compact computational
graph for the coefficients Σ(n,0) is straightforward. How-
ever, taking high-order derivatives for m > 0 can lead to
complexities. In the next subsection, we will discuss how
to derive a compact representation that includes these
high-order derivatives.

There exist alternative approaches to improving
the convergence of perturbative series as proposed in
Refs.[52, 69], which diverge slightly from the traditional
field-theoretical renormalization scheme. While these
methods share the common goal of enhancing series’ con-
vergence, they differentiate themselves through the spe-
cial renormalization conditions they employ. This vari-
ation in approach can result in power series exhibiting
unique mathematical characteristics, a topic explored in
depth in Ref.[52]. It is worth noting that the numerical
techniques we develop in the subsequent subsection are
also adaptable to these approaches.

C. Taylor-Mode Automatic Differentiation

In this work, we introduce an approach for computing
renormalized Feynman diagrams in quantum many-body
field theory, leveraging a compact computational graph
representation. This methodology advances beyond the
simpler computational graphs employed in previous stud-
ies for the uniform electron gas problem [13, 31]. It sup-
ports a more complex graph structure comprised of com-
posite functions and a wide array of operators, which be-
comes particularly relevant in dealing with sophisticated
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m

n 0 1 2

1

δ
(1)
g δ

(2)
g

2

δ
(1)
g

δ
(1)
g

δ
(1)
g

3

δ
(1)
g

δ
(1)
g

δ
(1)
g

TABLE I. Examples of diagrams entering Eq.(15) grouped by
number of interaction lines n and chemical potential countert-
erm order m. The renormalized propagator G(µR) and bare
interaction V are represented by directed and dashed lines,

respectively, and the Green’s function counterterms δ
(n)
g are

defined in Eq.(23).

operators emerging from the renormalization of nonlocal
interactions [75].

A cornerstone of our approach is the use of Taylor-
mode automatic differentiation (AD) [76, 77]. Unlike
symbolic or numerical differentiation, which respectively
rely on manipulating mathematical expressions or ap-
proximating derivatives at discrete points, AD computes
derivatives precisely and efficiently [27]. It achieves this
by breaking down functions into elementary operations
and applying the chain rule in a systematic manner. This
process results in exact derivative values, avoiding the
drawbacks of symbolic manipulation’s complexity and
the potential inaccuracies of numerical approximation.
Taylor-mode AD, integral to our study, employs the clas-
sical Faà di Bruno’s formula and truncated Taylor series
for calculating high-order derivatives. Originally devel-
oped in the ML community, this variant of AD is particu-
larly well-suited to the rigorous demands of renormalized
Feynman diagrams, enabling systematic computation of
high-order Taylor coefficients Σ(n,m), as elaborated in
Equation (17).

Our adaptation of the Taylor-mode AD algorithm to
the realm of renormalized Feynman diagrams is grounded
in two main principles:

1. Truncated Taylor Series of Nodes: Each node in the
computational graph, after renormalization, be-
comes a truncated Taylor series in the renormaliza-
tion parameter µR. For a given node f(µR), this is
represented as:

f(µR) =

N−1∑

m=0

δµm
R

m!
f (m)(µR) +O(δµN

R ), (18)

where f (m) denotes a compact computational
graph for the sub-diagrams with m counterterms,
and N is bounded by the truncated diagrammatic
order.

2. Composite Function Derivatives: When a node
f(µR) feeds into a higher-level node, say g(f(µR)),
forming a composite function, the mth-order
derivative of g(µR) is dictated by Faà di Bruno’s
formula:

g(m)(µR) =
∑ m!

b1!b2! · · · bm!
g(k)(f)

m∏

l=1

(
f (l)(µR)

l!

)bl

,

(19)
where the sum spans all solutions in nonnegative
integers bi satisfying b1 +2b2 + · · ·+mbm = m and
k := b1 + · · ·+ bm.

Applying these equations to different operators defines
universal chain rules that can be recursively applied to
construct a compact computational graph for high-order
derivatives. For simple arithmetic operators like addition
and multiplication, the chain rules are straightforward.
For more complex operators, the chain rules can be auto-
matically generated by a systematic algorithm provided
in Ref. [28].
Taylor-mode AD significantly outperforms the naive

recursion of first-order AD by merging duplicated terms
that differ only by their prefactors. Compared to the
naive approach, the computational complexity of an lth-

order differentiation is reduced from O
(
el
)
to O

(
e
√
l
)
.

This efficiency gain is demonstrated in Fig. 13, where we
compare the total number of operations in the computa-
tional graphs for the lth-order interaction counterterms
of all 4th-order parquet diagrams generated using Taylor-
mode and nested first-order AD.

IV. AI TECH STACK FOR QFT

We introduce a methodology leveraging a compact
computational graph representation for Feynman dia-
grams, combined with Taylor-mode AD for field-theoretic
renormalization. A key insight from our research is the
parallel between QFT constructs and AI techniques, fa-
cilitating the application of the AI tech stack to QFT
numerical challenges.
Central to our approach is the use of computational

graphs for evaluating Feynman diagrams, paralleling the
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FIG. 13. The total number of operations Nop in the lth-order
interaction counterterms of all 4th-order (n = 4) parquet di-
agrams. The computational graphs for all counterterms are
generated by differentiating V (λR) up to 6th order in l (see
Eq.(24)). Using nested first-order AD, Nop scales as O(el)

with l. For Taylor-mode AD, the scaling is reduced to O
(
e
√
l
)
.
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FIG. 14. Architecture of the Feynman diagram compiler,
delineating the transformation from diagrams to executable
code. The compiler first translates Feynman diagrams into a
unified computational graph, facilitating consistent treatment
across various observables. Within this intermediate repre-
sentation, local optimizations are applied to improve compu-
tational efficiency. Concurrently, automatic differentiation is
employed to perform the renormalization scheme. The com-
piler back-end then generates optimized source code suitable
for execution on diverse computational platforms, including
CPUs and GPUs.

structures used in ML architectures. Nodes in these
graphs denote mathematical operations, while edges rep-
resent the flow of tensors. This structural similarity fa-
cilitates the incorporation of ML algorithms into QFT
calculations, enhancing computational efficiency. Path-
ways of this interdisciplinary approach include adapting
ML algorithms for QFT calculations, such as Taylor-
mode AD for renormalization, and leveraging ML frame-
works like JAX [29], TensorFlow [78], PyTorch [79], and
Mindspore [80]. These frameworks provide optimized
environments for processing computational graphs, effi-

ciently utilizing diverse computing devices from CPUs
and GPUs to emerging processor architectures.

To implement this concept, as illustrated in Fig. 14, we
have developed a compiler architecture processing Feyn-
man diagrams through a structured three-stage proce-
dure, analogous to modern programming language com-
pilers. This design significantly enhances the adaptabil-
ity and computational efficiency of QFT calculations.

The ‘Front End’ of the compiler maps Feynman di-
agrams into a unified intermediate representation as a
computational graph, ensuring consistent processing of
various diagram types. The ‘Intermediate Representa-
tion’ stage optimizes and transforms a static computa-
tional graph. In contrast to the dynamic graphs used
by some ML frameworks [79], a static graph represen-
tation enables deeper optimization and advanced rewrit-
ing protocol implementation. Notably, our application of
Taylor-mode AD differs from existing methods that dy-
namically evaluate derivatives without constructing an
explicit graph [26–28]. By utilizing a static graph, we
facilitate more efficient AD processes, which is particu-
larly advantageous for complex QFT calculations. In the
‘Back End’ phase, the compiler translates the optimized
graph into executable code suitable for a range of com-
puting platforms.

While the compiler itself is programmed in Julia, the
‘Back End’ architecture enables it to output source code
in a range of other programming languages and machine
learning frameworks, demonstrating its unique capabil-
ity to bridge different computational ecosystems. De-
tailed implementation and user interface documentation
are available in the open-source Julia package on GitHub:
FeynmanDiagram.jl [81].

Although our computational graph primarily involves
tensor operations, the current implementation translates
these into scalar computations for CPU optimization.
Nevertheless, we have observed significant performance
gains with GPU parallelization. This improvement is
clearly illustrated in Fig. 15, where we conduct a compar-
ative analysis of evaluation times using the JAX frame-
work on both CPU and GPU platforms. In the figure,
Neval denotes the number of batched evaluations of the
computational graph. JAX’s vmap function plays a cru-
cial role in this context, efficiently vectorizing operations
across a batch of inputs for both hardware types. Our
findings indicate that the vectorized JAX implementa-
tion consistently outperforms the serialized C language
version. This advantage is likely attributable to JAX’s
utilization of vector support features present in modern
CPU architectures.

Future developments, such as incorporating tensor
network optimizations [82–85] for specialized hardware,
could further enhance computational capabilities in
QFT.

In discussing the application of machine learning to
Feynman diagram computations, we note the recent work
using PyTorch in Ref. [25]. While addressing a simi-
lar goal, our method differs by employing compression of
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FIG. 15. Comparison of computational graph evaluation
times for the 4th-order self-energy using JAX on CPU (i7-
11700, single-thread execution) and GPU (A100) platforms.
The plot displays evaluation time (t) against the number of
evaluations (Neval) on a logarithmic scale. While the compu-
tational graph is primarily optimized for CPU, running JAX
on the GPU accelerates computations by roughly two orders
of magnitude over the CPU’s single-threaded implementation.

computational graphs and Taylor-mode automatic differ-
entiation, showcasing the diverse approaches and poten-
tial within this field.

V. APPLICATION TO THE EFFECTIVE MASS
OF THE UNIFORM ELECTRON GAS

In this section, we deploy our algorithms and renor-
malization techniques, as elaborated in Sections II–III,
to the calculation of the effective mass ratio m∗/m in
the uniform electron gas (UEG).

In the context of Landau Fermi liquid theory, the
quasiparticle effective mass, denoted as m∗/m, is a key
parameter that reflects the impact of electron-electron
interactions on electron mobility [86–90]. The accurate
determination of this ratio is crucial for a nuanced un-
derstanding of electron behavior in various materials.

Despite its importance, precisely calculating m∗/m
in the UEG presents substantial challenges due to con-
straints inherent in current computational techniques.
Traditional diagrammatic perturbation theory, while
widely used, faces two main limitations: (1) the re-
sults significantly vary depending on the renormalization
scheme employed, and (2) it is often limited to low or-
ders, thereby hindering a reliable estimation of system-
atic errors and validation of the outcomes [91]. More-
over, quantum Monte Carlo methods such as diffusion
Monte Carlo (DMC) [92] and variational Monte Carlo
(VMC) [93], though powerful, face their own challenges:
they depend heavily on the choice of trial wave functions
and are susceptible to finite-size effects, potentially dis-
torting the results. These differing approaches yield not
just varying but often contradictory results for the effec-

tive mass [32, 94, 95].
The resulting lack of methodological consensus for the

effective mass behavior of the UEG underscores a criti-
cal gap in our ability to address nonlocal electron inter-
actions in this model and highlights the need for more
advanced and accurate computational techniques to re-
solve these issues.

A. Model and Methods

The UEG model represents interacting electrons in
a uniform, inert, neutralizing background—it is the
quintessential model of an electron liquid. Its simplicity
and fundamental relevance make it a cornerstone in the
study of electronic structures in materials science. The
UEG provides a foundational framework for understand-
ing electronic behavior in a broad spectrum of materials.
The bare action of the UEG is described by the follow-

ing equation:

S0 =

∫ β

0

dτ

(∑

kσ

ψ̄kσ(∂τ + ϵk − µ)ψkσ

+
1

2V

∑

q̸=0
kk′σσ′

Vqψ̄k+qσψ̄k′−qσψk′σ′ψkσ

)
, (20)

where ψ and ψ̄ are Grassmann fields, ϵk = ℏ2k2

2m is the ki-
netic energy term representing the UEG dispersion, and

Vq = 4πe2

q2 is the Coulomb interaction. Notably, the in-

teraction strength inversely correlates with the electron
density in the UEG model, so that an increase in density
leads to weaker interactions. The density ρ of the UEG
is parameterized by the (dimensionless) Wigner-Seitz ra-
dius rs ≡ r̄/a0, where r̄ = (4πρ/3)−1/3 is the average
interparticle distance, and a0 is the Bohr radius.
We now demonstrate how our method enables precise

high-order perturbative calculations of the effective mass
of the UEG. The central quantity in this problem is the
momentum-frequency resolved self-energy Σ(k, iω), and
a number of quasiparticle properties can be readily ex-
tracted from it. The effective mass ratio m∗/m is given
by

m∗

m
= Z−1 ·

(
1 +

m

kF

∂ReΣ(k, 0)

∂k

∣∣∣∣
k=kF

)−1

, (21)

where the renormalization constant

Z =

(
1− ∂ImΣ(kF, iω)

∂(iω)

∣∣∣∣
ω=0

)−1

(22)

gives the strength of the quasiparticle pole.
Our approach employs a diagrammatic method to cal-

culate the self-energy. It should be noted that perform-
ing a bare expansion in terms of the Coulomb interaction
leads to an unphysical divergence of the effective mass at
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the one-loop order, even in the weakly interacting limit.
The introduction of a suitable renormalization scheme for
a sound perturbative treatment of the UEG self-energy
is thus essential. An effective and easily implementable
scheme is proposed in Ref. [13]: conduct the perturbative
expansion using a renormalized field theory describing
electron interactions with an effective Yukawa potential.
This theory involves two essential renormalizations: (1)
adjusting the chemical potential to align with the phys-
ical Fermi energy, and (2) modifying the Coulomb in-
teraction into a statically screened Yukawa interaction.
This renormalization scheme has been successfully used
to calculate various quasiparticle properties of the UEG,
demonstrating its efficacy and reliability[23, 30–32].

Here, we provide a reformulation of this approach com-
patible with the Taylor-mode AD algorithm. Following
the renormalization procedure outlined in Sec.III, we re-
expand Eq.(20) in terms of a renormalized propagator
G(µR) and interaction V (λR), which are characterized by
a renormalized chemical potential µR and static screening
parameter λR, respectively, yielding the counterterms

g(µ)−G(µR) =

∞∑

n=1

ξn
δµn

n!

∂nG(µR)

∂µn
R

=

∞∑

n=1

ξnδ(n)g ,

(23)

V − V (λR) =

∞∑

n=1

ξn
δλn

n!

∂nV (λR)

∂λnR
=

∞∑

n=1

ξnδ
(n)
V .

(24)

As discussed in Sec.III B, the renormalized chemical po-
tential is set to the physical Fermi energy µR = EF. Here

Vq(λ) =
4πe2

q2+λ is a Yukawa interaction with screening pa-

rameter λ—the bare interaction is recovered when λ = 0.
In contrast with the post-processing approach to δµ, the
free parameter δλ = −λR is treated as a variational con-
stant to optimize the convergence of the perturbative ex-
pansion.

In the present case, the self-energy is thus expanded as
a Taylor series in three variables ξ, µ, and λ,

Σ(ξ, δµ, δλ) =
∑

n,m,l

ξn

n!

δµm

m!

δλl

l!
Σ(n,m,l), (25)

where Σ(n,m,l) is the self-energy contribution from di-
agrams with n interaction lines, m chemical-potential
counterterms, and l interaction counterterms, and the
variable ξ = 1 is used to track the interaction order.
The diagrams corresponding to Σ(n,m,l) are analogous to
those listed in Tab. I, but with the addition of l interac-
tion counterterms.

To evaluate the effective mass ratio, we first use
Eq.(25) to express the frequency and momentum deriva-
tives of the self-energy as power series in ξ,

δm(ξ, δµ, δλ) =

∞∑

n=0

ξnδmn(δµ, δλ), (26)
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FIG. 16. Effective mass ratio m∗/m against perturbation or-
der N for 3D uniform electron gas at rs = 5 and λR = 1.125.
The tuning of λR ensures optimal numerical convergence
without altering the physical outcomes. The graph illustrates
DiagMC results using Taylor-mode Automatic Differentiation
(red circles) and finite differences (blue squares) for comput-

ing δm(n,m,l) coefficients (Eq.(28)), with both methods pro-
ducing consistent data. Notably, our results are consistent
with those from the recent Variational Quantum Monte Carlo
(VMC) studies[95], but offer markedly smaller error bars, sig-
nifying a substantial improvement in precision. In contrast,
there is a significant divergence from other Quantum Monte
Carlo (QMC) results [94].

where

δmn(δµ, δλ) =
∑

m,l

δµm

m!

δλl

l!

δm(n,m,l)

n!
(27)

with analogous definitions for δs(ξ, δµ, δλ) and
δsn(δµ, δλ), and

δm(n,m,l) =
m

kF

∂ReΣ(n,m,l)(k, 0)

∂k

∣∣∣∣
k=kF

, (28)

δs(n,m,l) =
∂ImΣ(n,m,l)(kF, iω)

∂(iω)

∣∣∣∣
ω=0

. (29)

Taylor-mode AD enables us to compute the momentum
derivative in Eq.(28) on-the-fly such that the contribu-
tions δm(n,m,l) are simulated directly without introduc-
ing a discretization error. On the other hand, the fre-
quency derivative in Eq.(29) must be estimated by finite
difference methods due to the discrete nature of the Mat-
subara frequency axis at finite temperature T , so that
∂ImΣ(kF , iω)/∂(iω) = limT→0 ImΣ(kF , iω0)/πT [96].
The computational graph methodology thus yields a

simple and efficient procedure to compute the effective
mass ratio of the UEG to order N = n + m + l in the
renormalized perturbation theory, which may be summa-
rized as follows:
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1. Construct computational graphs for the self-energy
(see Fig. 11) and its high-order derivatives
δm(n,m,l) and δs(n,m,l).

2. Perform a DiagMC integration using the con-
structed computational graphs. Here, we employ
Markov-chain Monte Carlo (MCMC) to stochas-
tically sample the integration variables, which in-
clude momenta and imaginary-time variables. To
enhance the efficiency of the sampling process, we
adopt an importance sampling technique. The vari-
ables are sampled following an adaptively learned
distribution, known as the VEGAS map [97, 98],
which optimizes the sampling process based on the
distribution characteristics.

3. Carry out the renormalization post-processing pro-
cedure to compute the chemical potential shift δµ
and the power series coefficients δsn(δµ, δλ) and
δmn(δµ, δλ).

4. Compute the effective mass ratio m∗

m = (1 − δs) ·
(1 + δm)−1 from its power series expansion in ξ.

A notable advantage of this approach is that the com-
putational graphs for the self-energy derivative contribu-
tions δm(n,m,l) and δs(n,m,l) may be pre-compiled once-
and-for-all up to a given order N and then reused for
Monte Carlo simulations at, e.g., different values of the
screening parameter λR or temperature T .
In our method for calculating the self-energy and ef-

fective mass of the UEG, we introduce a comprehensive
approach that includes a significantly greater number of
Feynman diagrams compared to the approach used in
Ref. [32]. This results in a more computationally de-
manding process, but it brings several distinct advan-
tages. Unlike the previous method, which relies on dy-
namically screened Coulomb interactions parameterized
in prior studies [32], our approach is not constrained
by this parameterization. Consequently, we can extend
our analysis to much lower temperatures, effectively ap-
proaching the zero-temperature limit, and probe beyond
the previously established boundary of rs = 4. This
broader and deeper exploration allows for a more accu-
rate and thorough investigation of the UEG, free from
the limitations and potential biases introduced by the
reliance on pre-determined parameters.

B. Results

To demonstrate a concrete example of our computa-
tional graph methodology, we calculate the effective mass
ratio m∗/m for the 3D UEG with rs = 5 at effectively
zero temperature.

Our computations yield a high-precision estimate of
m∗/m = 0.977(1), as shown in Fig. 16. Near the optimal
screening parameter, we find that the maximum pertur-
bation orderN = 6 is already sufficient to estimatem∗/m

0.00 0.02 0.04 0.06 0.08 0.10
∆k/kF

0.022

0.024

0.026

0.028

0.030
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δm
5

FIG. 17. Demonstration of the advantages of AD over nu-
merical finite differentiation in the 3D UEG with rs = 5 and
λR = 1.125. The red circle indicates the AD result for the mo-
mentum derivative of the 5th-order self-energy δm5. The blue

squares are the corresponding finite differences m
kF

∆ReΣ(5)(k,0)
∆k

with ∆k/kF = k/kF − 1 = 0.02, 0.04, 0.06, 0.08 and 0.1. Each
data point is sampled for 1010 Monte Carlo steps.

in the infinite-order limit. Our result demonstrates nu-
merical convergence and a high degree of precision. Our
finding is consistent with Holzmann’s quantum Monte
Carlo (QMC) research [95], improving accuracy by two
orders of magnitude, but differs from Azadi’s QMC stud-
ies [94]. This study notably demonstrates that the quasi-
particle effective mass closely approximates the bare mass
even in the correlated regime rs = 5, which is a remark-
able result given the bare Coulomb repulsion is five times
the strength of the bare kinetic energy and the quasipar-
ticle weight is reduced to less than one half [99].

The AD technique plays a key role in enhancing the
accuracy of our calculations, as shown in the inset of
Fig. 16. Figure 17 shows that AD significantly improves
the computational efficiency for the momentum deriva-
tive of the self-energy δm. Unlike the finite difference
method, which suffers from large systematic (statistical)
errors at wide (narrow) spacing ∆k, AD provides a more
robust and error-resistant approach. This improvement
is crucial for our study, as the numerical precision of the
self-energy derivatives δm and δs directly influences the
reliability of the effective mass estimation.

For completeness, we mention that the DiagMC sim-
ulation with AD up to the maximum perturbation or-
der N = 6 shown in Fig. 16 requires roughly 104 CPU
(single-threaded process) hours. This computational de-
mand, when compared to the resource-intensive nature
of traditional methods, underscores the efficiency of our
approach, especially considering the level of precision and
reliability achieved in our results.
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VI. CONCLUSION AND PERSPECTIVE

In this paper, we have advanced techniques to address
two fundamental challenges in QFT: the computation of
Feynman diagrams and the implementation of renormal-
ization. We introduced a compact computational graph
representation for Feynman diagrams, developing generic
algorithms to construct these representations for a wide
range of physical observables. Furthermore, we imple-
mented Taylor-mode AD atop this computational graph
framework, efficiently realizing the field-theoretic renor-
malization scheme. Our algorithms significantly expedite
the computation of renormalized Feynman diagrams, en-
hancing our capability to solve complex, nonlocal quan-
tum many-body field theory problems.

A key insight from our work is the recognition of a
parallel between fundamental elements in QFT and core
AI technologies. The compact computational graphs and
tensor operations central to Feynman diagram computa-
tions in QFT bear striking resemblances to architectures
underpinning AI technologies. This parallelism opens an
avenue for applying ML algorithms and techniques to
QFT computations. Our utilization of Taylor-mode AD
demonstrates the value of this interdisciplinary approach.
Moreover, ML frameworks [29, 78–80, 100] provide opti-
mized environments for managing computational graphs
by making efficient use of specialized computing devices
including CPUs, GPUs, and emerging processor archi-
tectures.

Implementing this concept, we developed a generic
Feynman diagram compiler capable of translating dia-
grams of physical observables into efficient source code
across various computing platforms. We combined this
technique with a DiagMC algorithm to compute the ef-
fective mass of the three-dimensional UEG in the corre-
lated regime. The resulting precision surpassed state-of-
the-art quantum Monte Carlo simulations [95] by almost
two orders of magnitude, underscoring the effectiveness
of our computational graph representation and Taylor-
mode AD.

We anticipate that similar techniques can be applied to
first-principles calculations of other low-energy properties
of the electron liquid, bridging fundamental QFT studies
to ab initio calculations in material science. This in-
cludes computing various energy functionals required by
Density Functional Theory (DFT) calculations [101–105]
and determining the Coulomb pseudopotential urgently
needed for ab initio predictions of the transition temper-
ature in electron-phonon superconductors [36, 106, 107].
Additionally, our numerical framework has potential ap-
plications in studying fundamental quantum many-body
models defined on lattices, such as the Hubbard model
and frustrated spin systems.

Beyond physical problem-solving, our approach shows
promise for calculating various forms of diagrammatic
expansions, which is vital in addressing diverse many-
body challenges. Recent advancements suggest the pos-
sibility of analytically integrating internal Matsubara fre-

quency degrees of freedom to derive real-frequency linear
response functions, thereby sidestepping the formidable
numerical analytical continuation issues inherent in
imaginary-time diagrammatic expansions [25]. Employ-
ing our compressed computational graph approach in this
context may offer a more efficient means of computing
dynamic response diagrams. Furthermore, the technique
has potential applications in strong coupling expansions
of theories with strong local interactions [43]. Here,
the diagrammatic expansion involves many-body inter-
actions that create complex Feynman diagram topologies
and present significant computational challenges. Struc-
turing these diagrams in a compressed computational
graph format could be a fruitful direction for future ex-
ploration.
Looking forward, the ‘AI Tech Stack for QFT’ concept

envisions a comprehensive framework that not only in-
corporates our efficient integrand computation strategy
but also extends to emerging integration methods such as
the normalizing flow techniques for high-dimensional in-
tegration [108–111]. This combined approach has the po-
tential to substantially improve the precision and speed
of QFT calculations.
In the present implementation, we have optimized the

computational graph primarily for CPU-based compu-
tations, where tensor operations are explicitly expanded
into scalar operations. In future work, we plan to explore
the integration of tensor network optimizations [82–85].
This advancement could further enhance the efficiency of
QFT computations, particularly when applied to special-
ized hardware.
In conclusion, this study takes a decisive step in harmo-

nizing AI technology with QFT. The proposed ‘AI Tech
Stack for QFT’ framework emerges as a tool with sub-
stantial potential in quantum physics research. It aims
to not only streamline complex computational tasks, but
also to offer fresh perspectives on correlated quantum
systems. As this interdisciplinary field progresses, it is
set to pave the way for novel discoveries and a deeper
grasp of quantum interactions.
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[42] A. J. Kim, F. Šimkovic, and E. Kozik, Spin and charge
correlations across the metal-to-insulator crossover in
the half-filled 2d hubbard model, Phys. Rev. Lett. 124,
117602 (2020).

[43] J. Carlström, Strong-coupling diagrammatic monte
carlo technique for correlated fermions and frustrated
spins, Phys. Rev. B 103, 195147 (2021).
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