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Abstract. In the field of soft robotics, flexibility, adaptability, and functionality define a new era
of robotic systems that can safely deform, reach, and grasp. To optimize the design of soft robotic
systems, it is critical to understand their configuration space and full range of motion across a wide
variety of design parameters. Here we integrate extreme mechanics and soft robotics to provide
quantitative insights into the design of bio-inspired soft slender manipulators using the concept of
reachability clouds. For a minimal three-actuator design inspired by the elephant trunk, we establish
an efficient and robust reduced-order method to generate reachability clouds of almost half a million
points each to visualize the accessible workspace of a wide variety of manipulator designs. We gener-
ate an atlas of 256 reachability clouds by systematically varying the key design parameters including
the fiber count, revolution, tapering angle, and activation magnitude. Our results demonstrate that
reachability clouds not only offer an immediately clear perspective into the inverse problem of con-
trol, but also introduce powerful metrics to characterize reachable volumes, unreachable regions,
and actuator redundancy to quantify the performance of soft slender robots. Our study provides
new insights into the design of soft robotic systems with minimal activation and maximal reach with
potential applications in medical robotics, flexible manufacturing, and the autonomous exploration
of space.

Keywords. soft robotics; soft matter; computational modeling; bio-inspired design; slender manipu-
lators; design optimization
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1 Motivation

Throughout the past decade, the field of soft robotics has revolutionized the landscape of robotic sys-
tems with unprecedented levels of flexibility, adaptability, and functionality [1–4]. Soft robotic systems
deform and adjust flexibly: they can safely grasp objects of different size and shape, operate func-
tionally, mimic natural organisms or biological processes, and respond adaptively to environmental
changes [5–7]. With broad applications in medical robotics, flexible manufacturing, and autonomous
exploration, a critical element to optimize their design is the comprehensive visualization of the full
range of possible movements and configurations. This is exactly the purpose of reachability clouds.
Reachability clouds are discrete point clouds that graphically illustrate the reachable workspace of
a robotic system; they provide valuable insights into the capabilities and limitations of a robot in-
cluding workspace analysis, motion planning, and, most importantly, design optimization [8–12].
However, creating meaningful reachability clouds of millions of points can be computationally ex-
pensive, especially when the actuation is continuous and deformations are finite.

We have previously proposed a computationally inexpensive method to efficiently and robustly cal-
culate the actuated configurations of soft slender manipulators [13]. Inspired by the intricate mus-
culature of the elephant trunk [14], we inform our theory of active soft slender structures by the ex-
treme mechanics of thin elastic rods [15–20], which are enjoying increasing popularity in soft-robotic
research [21–25]. Here we adapt our method to create multiple reachability clouds throughout the de-
sign space of a soft slender manipulator to maximize its reachable workspace and enhance its overall
performance. Specifically, we focus on the four critical design parameters: the number of fibers, fiber
revolution, tapering angle, and activation magnitude. Using a three-fiber minimal design archetype
with one longitudinal and two helical fibers of opposite handedness [26], we compute a total of
16× 16 reachability clouds of 400 thousand points each for the 256 design variations. We quantify
the performance of each design in terms of its concave and convex cloud volumes and its unreachable vol-
ume fraction. We compare the minimal three-actuator design against a redundant four-actuator design
with two longitudinal and two helical fibers in terms of their reachability clouds and mean activation-
space distances. Critical to our study is the computational efficiency of our model [13, 27, 28] that
allows us to generate reachability clouds of millions of points at a computational cost of only a few
minutes on a standard desktop computer.

Throughout this manuscript, we systematically explore and compare reachability clouds for varying
combinations of design parameters to derive several exciting trends and general design guidelines
for soft robotic systems. We interpret the intricate atlas of reachability clouds in the context of design
efficacy, quantify the reachable volumes, and establish trade-offs between reachability and config-
uration versatility. Through the juxtaposition with a redundant four-fiber design, we highlight the
inherent benefits of the three-fiber actuation minimality.

2 Analytical model

We apply the active filament theory to model the mechanics of soft slender manipulators with con-
tractile fibers of arbitrary architecture [13]. Following a general continuum mechanics formulation of
the deformation χ of a tubular structure, we perform a dimensional reduction to express the defor-
mation as

χ = r +
3

∑
i=1

ε ei di, (1)

where ε is the ratio of the characteristic cross-sectional radius to the length L of the manipulator, ε ei
are the cross-sectional reactive strains, r is the centerline curve of the slender structure, and di with
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Figure 1: Analytical model and minimal design of bio-inspired slender manipulator. (a) Summary of continuum me-
chanics quantities pertinent to the reduced-order active filament theory [13]. A one-dimensional initial configuration deforms
through a map χ to an activated configuration with a centerline r and directors di. (b) Helical fiber revolution around a ta-
pered structure (left), with two cross sections (right) extracted at two different Z values. (c) An example of three fiber
architectures with n1 = n2 = n3 = 1 activatable bundles in each architecture (top), and an example cross-sectional place-
ment of the bundles (bottom). (d) Front and back view of the manipulator design resulting from fiber architectures and
bundle placements in (c), which constructs a tapered minimal design [26] with activations γ1, γ2, γ3 in the three actuators.

i ∈ {1, 2, 3}, defines the orthonormal director basis that describes the orientation of the cross section
along the centerline, see Fig. 1A [19, 29]. We write the kinematics of the resulting one-dimensional
representation of the structure as

r′ = ζ d3 d′i = ζ u× di , (2)

where (◦)′ denotes the derivative with respect to the longitudinal coordinate Z of the initial configu-
ration, ζ is the axial extension, and u = ∑3

i=1 ui di is the Darboux vector of curvatures [30]. For given
boundary conditions for r and di, the functions ui fully define the deformed configuration of the ma-
nipulator in this reduced-order setting. To express the curvatures ui for arbitrary fiber architectures
and inhomogeneous contractile activations, we multiplicatively decompose the deformation gradi-
ent, F = Grad χ = A ·G, into an elastic part A and an activation part G [13]. Critically, the specific
form of the deformation χ in eq. (1) enables an analytical energy minimization that results in explicit
expressions for the curvatures u. We assume a tapered truncated cone geometry of the manipulator
with a varying cross-sectional radius R2(Z), a homogeneous Young’s modulus, and M helical fiber
architectures embedded in a single tubular ring with inner radius R1(Z) and outer radius R2(Z) [13],
and express the post-activation axial extension as

ζ̂ = 1 +
1

4 R2
2

M

∑
i=1

δ0,i a0,i, (3)
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and the related curvatures as

û1 = − 2
3R4

2

M

∑
i=1

δ1,i Ai sin
(

φi − Θ̃2,i
)

û2 = − 2
3R4

2

M

∑
i=1

δ2,i Ai cos
(

φi − Θ̃2,i
)

û3 =
2(1 + ν)

3R4
2

M

∑
i=1

δ3,i a0,i ,

(4)

where δj,i(Z) are functions that depend on the helical angle αi of the i-th architecture, the domain
geometry, and the Poisson’s ratio ν; see Supplementary Material. Fig. 1C, top, shows an example
of three fiber architectures with α1 < 0, α2 > 0, and α3 = 0. The quantities Ai = (a2

1,i + b2
1,i)

1/2,
φi = − arctan(b1,i, a1,i), and a0,i describe the fibrillar activation,

a0,i =
σi

π

ni

∑
j=1

γj,i

a1,i =
2 sin(σi/2)

π

ni−1

∑
j=0

γj+1,i cos
(

θ0,i +
2π j
ni

)

b1,i =
2 sin(σi/2)

π

ni−1

∑
j=0

γj+1,i sin
(

θ0,i +
2π j
ni

)
,

(5)

where, in the i-th architecture, ni is the number of independent fiber bundles that are equidistant in
the cross-sectional polar angle θ, γj,i denotes the fibrillar activation value in the j-th bundle, σi is the
angular extent of all fiber bundles, and θ0,i is the cross-sectional angular offset of all bundles, see Fig.
1C, bottom. Finally, for a helical angle αi, the function Θ̃2,i(Z) gives the total fiber rotation in the
interval [0, Z] on the outer boundary R = R2 of the manipulator,

Θ̃2,i(Z) = −
(

tan αi

sin ϕ

)
log
(

R2(Z)
R2(0)

)
, (6)

where ϕ is the tapering angle of the truncated cone geometry, see Supplementary Material for treating
the singularity at ϕ = 0. Fig. 1B provides a visual description of Θ̃2.
In a minimal design inspired by the elephant trunk’s muscle anatomy [14, 26], three distinct architec-
tures are present: (1) left-handed helical with α1 < 0, (2) right-handed helical with α2 > 0, and (3)
longitudinal with α3 = 0. For minimality, the three corresponding angular extents σi = 48° are all
equal, and each architecture contains one controllable fiber bundle such that ni = 1, and the activa-
tion simplifies to γ1,i = γi, i ∈ {1, 2, 3}. Inspired by the elephant trunk, the two helical architectures
are symmetric, i.e., α1 = −α2, and the angular offsets are θ0,1 = 66°, θ0,2 = 114°, and θ0,3 = 270°, re-
sulting in a symmetric design, see Fig. 1D. Finally, we set R2(0) = L/16, R1(0) = L/12, and ν = 1/2
for incompressibility.

3 Reachability cloud atlas

We use the analytical model to compute the deformed configurations of a family of fiber-based ma-
nipulator designs. By randomly sampling N activations γi in each fiber bundle over some feasible
set γi ∈ [γmin, γmax], we can rapidly sample the configuration space of a manipulator as N → ∞.
In fact, the low computational cost of the model allows N to be as large as 2 · 106, at a computa-
tional cost of only several minutes on a standard desktop computer. Due to high sampling density,
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Figure 2: Reachability cloud atlas for varying fiber revolutions and tapering angles. (a) Atlas of 7× 7 reachability
clouds with 400,000 activation samples each, generated using ranges of Ω ∈ [0°, 108°] for the helical fiber revolution
and ϕ ∈ [0°, 3°] for the tapering angle. We use an RGB color scale to color-code the cloud points, where the activation
magnitudes |γ1,i| ∈ [0, 1.67] in the red, green, and blue fiber bundles contribute to the R, G, and B components of the RGB
point color. (b) Opposing views of the four designs of the four corner cases in the atlas: (1) no fiber helicity and no tapering,
(2) no fiber helicity and maximal tapering, (3) maximal fiber helicity and no tapering, (4) maximal fiber helicity and tapering.

N ∼ 106 generates a sufficiently exhaustive mapping from the activation space to the configuration
space. To visualize and analyze this mapping, we use the concept of reachability clouds, a set of all N
end-effector positions of the manipulator resulting from all the N computed configurations.

While computing a reachability cloud for a given design provides information about its control ca-
pabilities, it is even more insightful to investigate how the reachability cloud changes in response to
adjustments of the design. Our previous studies revealed that fiber helicity has a significant effect on
reachability and that introducing tapering can yield more intricate configurations [26]. Therefore, we
created a reachability cloud atlas, a set of 256 reachability clouds that explores the effects and interplay
of fiber helicity Ω = Θ̃2(L) and tapering angles ϕ through a 16× 16 sweep of these two parameters
with fiber activations sampled from γi ∈ [−5/3, 0]. Fig. 2A shows a 7× 7 reduced visualization of
this reachability cloud atlas. Fig. 2B shows the corner-case fiber designs corresponding to the clouds
at Ω = 0°, 108° and ϕ = 0°, 3°.

All designs of this atlas are members of our minimal bio-inspired design family with two symmetrically
arranged helical fibers of opposite handedness and a longitudinal fiber at the opposite side of the
Z = 0 cross section [26]. At the maximal revolution of Ω = 108°, the helical fibers meet the longi-
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tudinal fiber at the distal end of the manipulator, and the maximal tapering angle of ϕ = 3° yields
approximately a 6.2-fold decrease in the outer radius of the structure at the distal end. All designs
are symmetric about the plane passing through the center of the cross section and the midpoint axis
of the longitudinal fiber.

We make several interesting observations about the morphology of the reachability clouds as a func-
tion of the two design parameters: First, increasing either the fiber helicity or the tapering angle
expands the reachable space of the manipulator in the directions normal to the plane of symmetry.
That is, the clouds of designs with low Ω and ϕ are significantly more localized around the plane of
symmetry. This observation is consistent with the intuition that the torsion generated by fiber helicity
facilitates motion out of the symmetry plane. Second, larger fiber revolutions promote an increase in
the overall thickness of the cloud. In particular, while the clouds for Ω = 0° are closely representable
by two-dimensional surfaces, the Ω = 108° clouds have a more volumetric appearance, as evidenced
by their more distant cloud boundaries. Third, the morphologies of clouds generated with higher
tapering angles are generally more intricate, with an extended region of reachability behind, i.e., on
the helical-fiber side, and above the manipulator. This phenomenon likely occurs due to the inherent
ability of tapered designs to generate variable curvature and torsion, even with only a single fiber.
Further, tapered designs produce significant curling in their deformed configurations which is, in
part, responsible for the morphological intricacies of the tapered-design clouds.

4 Concave and convex cloud volumes

From the perspective of control, the volume of a reachability cloud is a powerful scalar metric to char-
acterize the versatility of a manipulator design. To quantify design versatility across our design
space, we compute the cloud volumes across our reachability atlas. Specifically, we use the α-shapes
method [31] to create a tight three-dimensional concave hull mesh, which accounts for the geomet-
ric complexity of the cloud boundary. Figure 3A visualizes the concave hulls for all 7× 7 clouds in
Fig. 2A. Based on visual inspection, all concave hulls accurately represent the overall geometry of the
clouds, with only minor mesh construction artifacts in highly tapered designs with high fiber helicity.
We conclude that the volume inside the concave mesh is a good approximation of the cloud volume.

We report the normalized volumes of the clouds as a function of the design parameters in the con-
tour plot in Fig. 3B, top. Notably, the reachability cloud volume generally increases with increasing
fiber helicity. This result is consistent with our observation from Fig. 2A that the reachability clouds
become thicker and span a larger space away from the symmetry plane for larger fiber revolutions.
We also observe that there exists an optimal tapering angle ϕ∗ = 2° for which the normalized volume
is maximal with the value of V/L3 ≈ 0.67. The precise location of this maximum generally depends
on the design parameters. Larger tapering angles reduce the cloud volume: Overly curled configura-
tions sacrifice the ability of the end-effector to reach distant points, as the curling mechanism brings
the distal tip closer to the main body of the manipulator.

In addition to the cloud volume itself, it is insightful to quantify the manipulator’s effectiveness to
explore its surrounding space. Figure 3B, bottom, illustrates the relative proportion of the cloud’s
convex hull volume occupied by unreachable space. We define the unreachability metric as the un-
reachable volume fraction within the convex hull, UNR = 1 − Vconc/Vconv, where Vconc and Vconv
denote the volumes of the concave and convex hulls. The smaller the value of UNR, the closer the
concave and convex hull volumes, and the more effective the corresponding design at navigating
the surrounding space without encountering unreachable regions. Fig. 3B, bottom, shows that UNR
decreases when either the fiber helicity or the tapering angle increases, which suggests an inherent
advantage of incorporating these two design elements for more effective manipulator control. The
monotonous relationship between the UNR metric and Ω and ϕ suggests that there might be benefits
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Figure 3: Reachability cloud volumes for varying fiber revolutions and tapering angles. (a) Tight concave hull mesh
boundaries for all 7× 7 reachability clouds in the atlas. (b) Concave hull volume normalized by L3 and plotted as a function
of the fiber revolution and tapering angles (top). Volume fraction of the unreachable region inside the convex hull plotted as
a function of the fiber revolution and tapering angles (bottom). We generated both contour plots for the full atlas of 16× 16
clouds. (c) Comparison of configuration versatility between a non-tapered design, marked blue in (a), and a tapered design,
marked orange in (a). We plot the distribution of curvatures κL at 6 uniformly-spaced points in the distal half of the structure,
and show that the configuration space of the tapered design is richer than that of the non-tapered design.

to creating highly tapered designs, even at the expense of a decrease in the cloud volume indicated
by Fig. 3B, top.

While the analyzed clouds are a useful tool to quantify the reachability properties for a given design’s
end-effector, they do not describe the manipulator configurations that give rise to each end-effector po-
sition that makes up a point in the cloud. In practical terms, understanding the configurations that
effectively produce a given reachability cloud is critical for a variety of control tasks such as ob-
stacle avoidance and navigating restricting environments. To better understand and compare the
configuration spaces of the designs in the atlas, we use statistical analysis. In Fig. 3C, we show the
distributions of curvatures corresponding to the 400,000 configurations for a non-tapered design with
ϕ = 0° in blue and for a tapered design with ϕ = 3° in yellow, at 6 uniformly-spaced points in the
distal half of each design. Evidently, the tapered design produces increasingly higher curvatures
closer to its tip, which is consistent with the bending stiffness decreasing due to tapering. Strikingly,
not only is the peak of each curvature distribution shifted, but the range of curvatures is also signif-
icantly widened. The tapered design can generate most of the curvatures in the non-tapered design
by choosing appropriate activation triplets, while the non-tapered design cannot reproduce the large
range of curvatures accessible to the tapered design. This effect is more pronounced in points closer
to the tip of the manipulator and explains the significance of tapering in nature, such as an elephant
trunk wrapping around a distant branch of a tree.
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Figure 4: Reachability clouds of the minimal and redundant designs. (a) Arrangement of three and four independently
actuated fibers in the minimal design, top, and redundant design, bottom. Both designs contain two helical fibers, red and
green; the minimal design includes one longitudinal fiber, blue, the redundant design includes two longitudinal fibers, blue
and yellow. (b) Reachability clouds of the two designs color-coded by the activation magnitude |γ3| in the blue fiber for
the minimal design, and |γ4| in the yellow fiber in the redundant design. Each cloud consists of 2 million points. (c) Slices
of the corresponding reachability clouds in (b). All slices pass through the origin and, for each cloud, the top slice is in
the frontal plane, while the bottom slice is in the right-facing plane. (d) Mean activation-space distance visualized over
a 10,000-point subset of each design’s reachability cloud for rS = L/60. Regions with large mean activation distances
indicate a significant effect of redundancy caused by large activation changes within small sub-volumes of the cloud. Light
gray points depict spheres that only bound the center point and no other cloud points.

5 Redundancy

Throughout our analysis of the atlas, we explored the reachability properties under the assumption
of design minimality where a unique activation triplet generates each configuration in the workspace.
For three independently actuated fibers, the reachability cloud is a three-dimensional volume. In-
stead, for two fibers only, the reachable geometry reduces to a two-dimensional surface, and for
one fiber, it becomes a one-dimensional curve. Since the positions of the end-effector are inherently
three-dimensional, adding a fourth independently contractible fiber introduces a redundant degree of
freedom. As a result, several activation quadruplets can achieve the same end-effector position. Our
reachability clouds can provide immediate quantitative insight into the effects of design redundancy.
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We introduce redundancy by splitting the longitudinal fiber of the minimal design, in blue, into two
independent longitudinal fibers, in blue and yellow, in addition to the two helical fibers, see Fig. 4A.
Figure 4B visualizes reachability clouds with 2 · 106 points each for both the minimal design, top, and
redundant design, bottom, color-coded by the activation magnitudes of the blue or yellow fibers.
Importantly, the reachability cloud of the minimal design displays a continuous and single-valued
progression of longitudinal fiber activation across the entire volume. In contrast, the reachability
cloud of the redundant design appears more noisy due to the overlap of points with different fiber
activation values. The slices of the redundant design in Fig. 4C confirm the multi-valued nature of
the mapping from the end-effector positions to the underlying fiber activations. Furthermore, the
end-point density in the redundant design cloud is more heterogeneous than that of the mimimal
design cloud; the region in the front and to the sides of the two longitudinal fibers exhibits a higher
point density in comparison to the opposite side of the manipulator. As such, the redundant design
shows a localization effect in that two neighboring longitudinal fibers contribute a higher degree of
redundancy on the front side of the manipulator.

To gain further insight into the non-uniqueness of activation for redundant designs, we intro-
duce a mean distance metric that characterizes the variation of activation in a small neighborhood
of points of the reachability cloud. We define this mean activation-space distance as D̄(pi, rS ) =

∑K
j=1 ∥ΓSi,j − Γi∥2/K , where pi ∈ R3 is the i-th point in the cloud, i ∈ {1, . . . , N}, Γi ∈ RM is a vector

of fibrillar activation values for point pi, and ΓSi,j is the activation vector at one of the K points inside
the boundary of a sphere of radius rS centered at pi. As a result, D̄ computes the mean Euclidean
distance in the M-dimensional activation space within a physical three-dimensional neighborhood
of each point in the cloud.

Figure 4D shows the mean activation-space distances plotted over a 10,000-point subset of the com-
plete cloud for both the minimal and redundant designs. For the minimal design, the values of D̄
are generally small and uniformly distributed throughout the entire cloud, which is indicative of the
continuous changes in activation during cloud traversal. In contrast, for the redundant design, D̄
varies significantly throughout the cloud and assumes much larger values in some regions. For our
example, mean distance values on the order of 1.0 are highly indicative of redundancy.

Regional variations in the mean activation-space distance D̄ coincide with our previous observation
of regional variations in sparsity throughout the reachability cloud. The points in the front and to
the sides of the two longitudinal fibers indeed demonstrate a more significant effect of redundancy
compared to the points on the opposite side of the design. We conclude that we can use the mean
activation-space distance D̄ as a quantitative lens into the localized effects of soft actuator redun-
dancy.

From a high-level perspective, the single-valued mapping from the workspace to the activation space
of the minimal design is a noteworthy manifestation of how the generally ill-posed inverse problem
in an infinite-degree-of-freedom soft-robotic manipulator becomes well-posed when discretely ac-
tivated through three fiber bundles. In fact, the number M = 4 of independent fibers marks the
boundary of ill-posedness of the inverse problem. However, we emphasize that, since redundancy
is typically contextualized within a given motion task, not every design considered redundant for a
given task results in the ill-posedness of the inverse problem. In our analysis, we considered redun-
dancy in the context of the most exhaustive set of deformations permitted by a prescribed range of
activation magnitudes.
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6 Conclusions

Our study presents a comprehensive investigation of the design and reachability of bio-inspired
soft slender manipulators through the generation and analysis of reachability clouds. We estab-
lished a highly efficient computational framework to explore the influence of critical design pa-
rameters—fiber count, revolution, tapering angle, and activation magnitude—on the manipulator’s
workspace. The creation of reachability clouds allowed us to visualize and quantify the convoluted
workspaces of minimal and redundant actuator designs.

Using this method, we found that both fiber helicity and tapering are pivotal in expanding the reach-
ability of soft manipulators, enabling them to access a larger volume of space with intricate maneu-
vers that mimic the adaptive and flexible movements we can observe in nature. Both parameters can
significantly change design functionality, as they govern the trade-off between reachability, design
complexity, and control precision.

Our work is inspired on a key idea: the reduction of complex three-dimensional slender structures
to one-dimensional curves that allow extremely fast computation and rapid generation of millions of
configurations. This computational tool allows us to generate enough points to accurately compute
the concave and convex hulls of the reachability clouds, from which we have established guide-
lines for maximizing workspace while maintaining control efficacy. The statistical examination of the
configuration space provides quantitative insights into its richness, and emphasizes the benefits of
tapering for generating diverse configurations.

Exploring design redundancy reveals its double-edged nature: while increasing redundancy in-
creases the manipulator’s flexibility, it also introduces complexity in the control scheme due to the
presence of multiple configurations that can reach the same endpoint. Specifically, the introduc-
tion of redundancy in actuator design, through the addition of a fourth independently contractible
fiber, illustrates the balance between increased configuration versatility and the challenges in control
strategy due to non-unique activation tuples. Therefore, our study highlights the importance of a
balanced approach to design, where the benefits of increased reachability and configuration diver-
sity must be weighed against the added complexity in control. More generally, our study shows how
designs with a finite number of controllable degrees of freedom in the form of discrete fibers can
help address the well-known ill-posedness of the inverse problem in an otherwise infinite-degree-
of-freedom soft-robotic system. In contrast to the four-fiber design, we demonstrate that three-fiber
designs offer a unique activation solution to the inverse problem for every point in their workspace.

The big-data nature of our reachability atlas and the well-posedness of the inverse problem for our
three-fiber design suggest to expand the use of data-driven approaches for effective design and con-
trol of fiber-based manipulators. Future work could explore the fully dynamic system—rather than
the quasi-static deformations computed here—to examine the effects of transient deformations on the
reachability clouds. Beyond the minimal three-fiber design of this study, a natural expansion would
be to explore reachability atlases for more complex fiber architectures.

Taken together, our study integrates extreme mechanics and soft robotics to provide quantitative
insights into the design of bio-inspired soft slender manipulators using the concept of reachability
clouds. We demonstrate that reachability clouds not only offer an immediately clear perspective into
the inverse problem of reachability, but also introduce powerful metrics to characterize reachable vol-
umes, unreachability, and redundancy, all of which quantify the performance of soft slender robots.
As such, this work lays the theoretical and computational foundations for automated design, control,
and optimization of soft robotic systems. We expect that our systematic quantitative study of soft
slender manipulators will generalize to other soft robots and guide the design of more effective soft
robotic systems with the objective of minimal activation and maximal reach.
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Appendix A. Expressions for δ0, δ1, δ2, δ3

According to the theory in [13], the functions δ0(Z), δ1(Z), δ2(Z), and δ3(Z) read

δ0 = 2
(

R2
1 − R2

2
)

ν− 2(1 + ν)

c2
ϕ − c2

α

log


(

1 + R2
1c2

ϕ

) (
1 + R2

2c2
α

)(
1 + R2

2c2
ϕ

) (
1 + R2

1c2
α

)
 (7)

δ1 =
2

cϕcα

(
c2

ϕ − c2
α

)[3(1 + ν) ·
(
arctan

(
R1cϕ

)
− arctan

(
R2cϕ

))
cα +

(
R3

1 − R3
2
)

νc3
ϕcα

− cϕ

(
3(1 + ν) (arctan (R1cα)− arctan (R2cα)) +

(
R3

1 − R3
2
)

νc3
α

)]
= δ2

(8)

δ3 =
3

c2
ϕc2

α

√
c2

ϕ − c2
α

[
(T(−R1) + T(R1)− T(−R2)− T(R2)) c2

ϕ + 6cα (−S(R1) + S(R2))

]
, (9)

where

T(R) = arctan

(
cα + ic2

ϕR
S(R)

)
S(R) =

√(
c2

ϕ − c2
α

)(
1 + c2

ϕR2
)

cϕ =
tan ϕ

R2
cα =

tan α

R2
. (10)

Note that the δ3 equation contains the imaginary unit i to simplify the expression; it is still true
that δ3 ∈ R. For a manipulator with M distinct fiber architectures, we obtain the corresponding
expressions δ0,k, δ1,k, δ2,k, δ3,k for the k-th architecture, k ∈ 1, . . . , M, by simply substituting α ← αk in
each of the expressions above.

Appendix B. Fiber rotation Θ̃2

We stated that, based on [13], the total helical fiber rotation at R = R2 in the i-th architecture through-
out the interval [0, Z] and for a linearly tapered geometry is

Θ̃2,i(Z) = −
(

tan αi

sin ϕ

)
log
(

R2(Z)
R2(0)

)
, (11)

which contains a singularity for the non-tapered case ϕ = 0. We recover the case of the rotation Θ̃2,i
of a given fiber F for a non-tapered geometry by evaluating the general expression from [13]:

Θ̃2,i(Z) = tan αi

∫ Z

0

√
1 + (R0 f ′(s))2

R2(0) f (s)
ds, (12)

where R0 is the distance from the center of the cross-section to the fiber F at Z = 0, and f (Z) is
the normalized tapering profile such that R2(Z) = R2(0) f (Z). The non-tapered case corresponds to
f (Z) = 1, Z ∈ [0, L], which gives the simple expression

Θ̃2,i(Z) =
Z
R2

tan αi. (13)

Appendix C. Helical angles αi

For tapered domains, the fiber architecture is also appropriately tapered to prevent premature ter-
mination of fibers. As follows from [13], we make the following remarks regarding the helical angle
definition αi pertinent to the treatment of non-tapered and tapered geometries:
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• Given a cross-section center O and a point P at R = R2 from O, for non-tapered geometries
(ϕ = 0), the helical angle αi is exactly the angle between the fiber direction m at a point P and
the tangent vector eΘ = eZ ×

−→
OP.

• For tapered geometries with ϕ ̸= 0, αi does not denote the angle defined in (a). Instead, it
defines the angle between the projection of the fiber direction m onto a plane normal to eR at P
and the vector eΘ = eZ ×

−→
OP.

• As follows from (a) and (b), throughout the text, αi refers to an angle definition at a distance
R = R2 from O.

• In general, the helical angle that either m or the projection of m makes with eΘ = eZ ×
−→
OP′

changes as the distance R ∈ [R1, R2] of a point P′ from O changes. However, all expressions
in [13] adapted here only depend on the angle at R = R2.

All remarks above refer to the fibers arranged in the initial configuration before fibrillar activation.
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