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JEP-KD: Joint-Embedding Predictive Architecture
Based Knowledge Distillation for Visual Speech

Recognition
Chang Sun, Hong Yang, and Bo Qin.

Abstract—Visual Speech Recognition (VSR) tasks are generally
recognized to have a lower theoretical performance ceiling than
Automatic Speech Recognition (ASR), owing to the inherent lim-
itations of conveying semantic information visually. To mitigate
this challenge, this paper introduces an advanced knowledge
distillation approach using a Joint-Embedding Predictive Ar-
chitecture (JEPA), named JEP-KD, designed to more effectively
utilize audio features during model training. Central to JEP-KD
is the inclusion of a generative network within the embedding
layer, which enhances the video encoder’s capacity for semantic
feature extraction and brings it into closer alignment with the
audio features from a pre-trained ASR model’s encoder. This
approach aims to progressively reduce the performance gap
between VSR and ASR. Moreover, a comprehensive multimodal,
multistage training regimen for the JEP-KD framework is estab-
lished, bolstering the robustness and efficacy of the training pro-
cess. Experiment results demonstrate that JEP-KD significantly
improves the performance of VSR models and demonstrates
versatility across different VSR platforms, indicating its potential
for broader application within other multimodal tasks.

Index Terms—Visual Speech Recognition, Joint-Embedding
Predictive Architecture, Knowledge Distillation

I. INTRODUCTION

VSR, also known as lip-reading, is a domain of ma-
chine vision technology that translates sequences of lip

movements from videos into corresponding text. Distinct from
speech recognition, VSR is commonly utilized to facilitate
communication in environments with significant background
noise or where sound is absent [1]. As the discipline advances,
the video modality’s inherent semantic information deficiency
emerges as a prominent hurdle in VSR research, critically re-
stricting the task’s accuracy ceiling [2]. This issue is especially
acute in Chinese lip-reading, where homophonic characters
that share visual articulation patterns, as well as those with
weak visual cues for lip-assisted pronunciation, predominate.
The frequent occurrence of such characters within a sentence
can greatly obscure the intended message, risking the failure
of lip-reading systems.

Utilizing trained ASR models to conduct knowledge distil-
lation [3] is a widely acknowledged and efficacious strategy
to enhance performance. This process entails the integration
of a pretrained ASR model to function as a teacher network,
which during training, guides the VSR model by constrain-
ing its outputs and intermediary representations through the
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Fig. 1. Comparison of the current knowledge distillation structure with the
JEP-KD structure. (a) The knowledge distillation structure commonly used in
current VSR tasks. (b) The JEP-KD structure proposed in this paper, which
primarily differs from (a) in that JEP-KD introduces a prediction architecture
at the embedding layer.

ASR model’s analogous elements. Nonetheless, the prevalent
method involves employing a loss function, such as L1 Loss, at
the feature stage (refer to Figure 1 (a)) [4–7]. Given the video
modality’s intrinsic semantic limitations, such rigid alignment
tactics are challenging and typically yield suboptimal results.
On one side, these methods inadequately exploit the auditory
features, thus failing to facilitate a robust knowledge transfer;
on the other end of the spectrum, studies have identified
an intrinsic disparity across modalities akin to interlingual
translation [8]. We hold that the semantic gaps manifesting in
video modalities relative to audio ones adhere to a systematic
pattern — that is, these consistent omissions are correlated
with sentence content and are, therefore, predictable. Inspired
by the JEPA [9, 10], introducing a tailored generative network
into the semantic domain to augment the video semantic
features could not only allow the video encoder to more
foucsed on video feature extraction but also promote better
alignment with the audio semantic features. Consequently, this
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enhances the VSR model’s ability to mirror the performance
of ASR models. Moreover, such a predictive framework can
discern the semantic variances across modalities and construct
a mapping interlinking the respective feature domains, thereby
optimizing the interchange of knowledge.

It is widely recognized that the video modality encapsulates
unique semantic information absent from the audio modality
[11]. So indiscriminately aligning video features with audio
features may lead to the loss of such information. Nevertheless,
considering the considerable performance gap that still exists
between VSR and ASR, enhancing the capabilities of VSR
as much as possible remains the most important research
objective at the current stage. Additionally, employing an
Audio-Visual Speech Recognition (AVSR) model as a guiding
’teacher network’ presents a potential solution [12–14]. How-
ever, this paper focuses on discussing the feasibility of the
proposed knowledge distillation structure. This module, as a
plug-and-play enhancement structure, can be easily ported to
other related tasks and play an effective role.

This paper’s contributions are twofold: firstly, advancing
a JEPA-based knowledge distillation architecture applicable
to VSR and analogous tasks necessitating such frameworks;
secondly, formulating a comprehensive training methodology
comprising four models and three stages tailored to models
invoking the JEP-KD architecture.

The structure of this paper is organized as follows: Section
II provides an in-depth presentation of the model architecture
and delineates the multi-model, multi-stage training approach.
Section III explores the experimental setup and delineates the
findings. The paper concludes with a summary and a list of
references.

II. PROPOSAL

This section primarily discusses the fundamental principles
and model architecture of JEP-KD, and provides a detailed
introduction to the specific implementation processes utilized
for validation of the structure, including the VSR model, ASR
model, loss functions.

A. Overview

The principal architecture of JEP-KD is illustrated in Figure
1 (b). The commonly adopted knowledge distillation structure
for the current VSR tasks involves adding an L1 loss or
CE loss to constrain the output of the VSR encoder on the
feature level so that it more closely approximates the output of
the introduced pre-trained speech recognition model encoder.
As shown in Figure 1 (a), the audio encoder feA(·) takes
audio sequence XA as input, where a represents the output
of audio encoder feA (XA; θA). The a is a high-dimensional
semantic vector that can be translated into text modality by
audio decoder. Similarly, the v is the output feV (XV ; θV ) of
the video encoder, which is a vector that can be translated
into text mode by video decoder. The usual knowledge distil-
lation method adds a loss function L, usually L1 loss or CE
loss, in the embedding layer. Generally speaking, during the
training process of ASR tasks, the audio encoder gradually
learns to remove the semantic-irrelevant information from the

speech while retaining a vector a carrying all the semantic
information. Therefore, the vector a is a subset of the speech
signal that has been purified of semantic information. In other
words, the semantic information is still carried by a high-
dimensional representation of the speech signal. Similarly, the
output v of the video encoder is also a semantic information
representation based on the video signal. Even if the structure
of the encoder is similar, a and v may still not be in the
same dimension, but more like two different languages of the
same semantics, with cross-modal differences. On the other
hand, since lip movement is only an auxiliary movement
for human vocalization, there are innate defects in semantic
representation capabilities, resulting in incomplete semantics
of the video modality. Therefore, the effect of this direct fitting
constraint has certain limitations.

Therefore, we designed a joint embedding predictive knowl-
edge distillation structure as shown in Figure 1 (b). Here we
introduced a generator G(·), z is a random additional variable,
and G (z, v) is used to eliminate the previously mentioned the
modal differences between a and v in the embedding space
and simulate the semantic loss of the video modality compared
to the speech modality. Then we added a discriminator D(·)
to supervise the training of G (z, v) and a. And the similarity
constraint L between modalities is retained, but the input of
L is changed to G (z, v) and a. In this structure, we reference
the loss function of LS GAN [15] as shown in Equation 1 to
set the loss function for the predicted structure, where we set
a = c = 1, b = 0, and incorporate L (a,G (z, v)) into the loss
function of the generator, with the complete loss function for
G(·) and D(·) presented as shown in Equation 2.

min
D

J(D) = min
D

1
2Ex∼Pr [D(x)− a]2 + 1

2Ez∼Pz [D(G(z))− b]2

min
G

J(G) = min
G

1
2Ez∼Pz [D(G(z))− c]2

(1)

min
D

J(D) = min
D

1
2Ex∼Pr [D(a)− 1]2 + 1

2Ez∼PzD(G(z, v))2

min
G

J(G) = min
G

1
2Ez∼Pz [D(G(z, v))− 1]2 + L(a,G(z, v))

(2)

B. Details

In the practical implementation, we referred to Ma’s work
[16] and designed the model structure as shown in Figure 2.
To introduce the JEP-KD, we divided the recognition model
into four stages as shown in Figure 2 (a)-(d). These are the
encoder model, generator model, discriminator model, and
decoder model. The encoder model consists of a frontend
3D convolution layer, a ResNet18 feature extraction layer,
and 12 layers of Transformer encoder layer. The generator
model primarily comprises 5 layers of ResNet2D Block. The
discriminator is a hybrid model, consisting of a 1-dimensional
discriminator made up of one 1-dimensional convolution and a
2-dimensional discriminator composed of one 2-dimensional
convolution. The decoder is a standard 6-layer Transformer
decoder layer.

During the training process, we divide it into three stages.
The first stage we call the warm-up phase, where we enable
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Fig. 2. Visualization of the VSR model after the introduction of the JEP-KD structure. (a), (b), (c), and (d) are the structural diagrams of the video encoder,
generator, discriminator, and decoder, respectively. During the training process, three types of loss functions—L1, CTC, and CE—are used for constraints.

updates to the parameters of the encoder, generator, and
decoder, allowing the model to possess the original network’s
VSR capabilities, and the encoder to extract video semantic
features from the video sequence. In this stage, we constrain
the models with the decoder’s CTC loss and CE loss as shown
in Equation 3. The second stage is the enhancement stage,
where we lock the encoder and decoder’s parameters and
begin training the generator and discriminator. Through the
adversarial interaction between generator and discriminator,
the generator gradually learns to transcribe video features into
audio semantic features and progressively learns to complete
the video semantic features. This stage employs adversarial
loss between generator and discriminator as constraints and
includes a distance loss between video semantic features
and audio semantic features as a regularization term in the
generator’s loss, as detailed in Equation 2. The third stage
is called the refinement phase, where we lock the parameters
of the encoder, generator, and discriminator, and only train
the decoder to fine-tune it to adapt to the updated input more
closely matching the audio semantic features. This stage uses
the Equation 4 as the loss function which omits L (a,G (z, v))
compared to the stage 1.

Lstage 1 = λLCTC(x, y) + γLL1(a,G(v, z))

+ (1− λ− γ)LGE(x, y)
(3)

Lstage 3 = λLCTC(x, y) + (1− λ)LGE(x, y) (4)

Because GAN models are prone to imbalance during train-
ing, we designed this three-stage training process to ensure
that the input to the generator is a stable and regular vector in
feature space, which guarantees the stability of the generator
during the optimization process. In other words, we introduced
the JEP-KD for further optimization when the original model
reached its theoretical upper limit. More details about the
models and training processes are discussed in Section III.

TABLE I
RESULTS ON THE CMLR DATASET

Methods Pre-training
Set

Training
Set

Total Size
(hours)

CER

CSSMCM [23] - CMLR 61 32.48

LIBS [4] - CMLR 61 31.27

CTCH [24] - CMLR 61 22.01

CT-MIR-Net [25] - CMLR 61 21.45

Ours - CMLR 61 19.92

Ours+JEP-KD - CMLR 61 14.26

Ours+JEP-KD CNCVS+Ours CMLR 361 11.97

Ma’s model [16] - CMLR 61 9.10

WeNet(ASR) WeNetSpeech - 10,000+
(Audio)

2.36

III. EXPERIMENT

A. Dataset

We conducted preliminary experimental verification on the
CMLR dataset [17]1, which is a Chinese sentence-level lip-
reading dataset. It was collected by the Visual Intelligence and
Pattern Analysis (VIPA) group of Zhejiang University. The
CMLR dataset contains 11 speakers, with a total of 102,072
spoken sentences, including 71,448 in the training set, 20,418
in the test set, and 10,206 in the validation set. In the early
stage, we referred to Ma’s work [18]2 and preprocessed the
dataset. Specifically, we extracted the lip-centered lip area of
88×88 size from the video data and saved it as a numpy
array. It is worth noting that we did not use randomcrop to
randomly intercept an 88×88 area from the 96×96 image. This
was to ensure the speed of data reading during model training,
reduce the amount of calculation during data reading, and
improve the experimental efficiency. In addition, we maintain
the three-channel input of the RGB image instead of using a

1https://www.vipazoo.cn/CMLR.html
2https://github.com/mpc001/auto avsr/tree/main/preparation
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single-channel input. In terms of speech features, we used a
pre-trained WeNet [19, 20] speech recognition model3 trained
on WeNetSpeech [21] dataset for feature extraction, and saved
the output of the model encoder as a numpy array. The reason
why we use this model is not only that it can achieve good
speech recognition performance on this dataset, but also be-
cause its encoder structure is consistent with our video encoder
structure, and it uses audio input with a sampling rate of
16,000Hz. After fbank feature extraction and quadruple length
downsampling, the feature length is consistent with the video
feature length of 25 fps, so that the length and dimension of
our video semantic features are the same as the audio semantic
features. In order to accelerate the model training speed, the
pretrained weights of the ASR model are loaded at the start of
training. So we use the vocabulary of the ASR model as the
vocabulary of our VSR model. The length of the vocabulary is
5,536, but the actual CMLR dataset only contains about 3,300
different characters. Increasing the vocabulary increases the
difficulty of the recognition task to a certain extent, but our
experiments mainly focus on performance improvement of the
model before and after the introduction of JEP-KD.

B. Evaluation Metric

Since the smallest unit of the Chinese language is the
character, similar to most Chinese lip-reading or speech recog-
nition tasks, we use CER (Character Error Rate) instead of
WER (Word Error Rate) as the model evaluation metric.
The formula for CER is shown in Equation 5, where S, D,
I represent the number of substituted, deleted, and inserted
characters, respectively, required to transform the reference
into the hypothesis, and N is the total number of characters
in the reference.

CER =
S +D + I

N
(5)

C. Training Protocol

The model structure and loss functions during the training
process are as previously described. On the CMLR dataset,
we set the first phase of training for 20 epochs, the second
phase for 10 epochs, and the third phase for 2 epochs. All
four models use the Adam optimizer, with the encoder and
decoder using warmup learning rate scheduling, maximum
learning rate of 0.001, and warmup steps of 5,000. We set
the loss weight λ to 0.3, γ to 0.1.

Due to the JEP-KD being a universal architecture for lip-
reading models, the primary objective of our initial exper-
iments is to verify the enhancement of lip-reading models
provided by the JEP-KD structure. Therefore, we mainly
focus on the comparison of model’s performance before and
after the introduction of the JEP-KD structure. To address
this, a controlled experiment was conducted, during which
2 models were trained for 32 epochs on the CMLR training
set, without employing data augmentation techniques. The first
model underwent only the warmup stage of training, whereas

3https://github.com/wenet-e2e/wenet/blob/main/examples/wenetspeech
/s0/README.md

the second model proceeded through both the second and
third stages. For the first model, starting only the first phase
of training is simply equivalent to introducing the common
knowledge distillation structure used in current VSR works.

D. Analysis
Table I shows that after incorporating the JEP-KD struc-

ture, the character error rate (CER) of the lip-reading model
decreased further, from 19.92% to 14.26%. Compared to other
methods listed in the table, our baseline model did not undergo
significant updates. It was similar to the latest mainstream
methods, which is why the results obtained from training on
the same dataset were not much different, with CERs around
20%. However, after adding the JEP-KD structure, our model
experienced a more substantial decrease in CER, dropping to
14.26%, a reduction of about 5 percentage points. Considering
the already low CER, a 5-percentage-point decrease is quite
substantial. However, the last row of the Table I indicates that
the ASR model could achieve around 2% CER without being
fine-tuned on this dataset, suggesting significant information
loss during the knowledge distillation process or that the
predicted model’s output in the feature space still has a
considerable distance from the audio features.

Additionally, we performed pre-training using part of the
CNCVS dataset [22] and our own collected dataset to test
the performance of the JEP-KD structure under large-quantity
conditions. Table I indicates that after adding nearly 300
hours of pre-training data, the CER was further reduced to
11.97%. This result demonstrates that the JEP-KD structure,
particularly the predictive structure part, maintains a certain
level of stability during the training process on large-scale
datasets with complex scenes.

IV. CONCLUSION

In this paper, we proposed a knowledge distillation frame-
work for lip-reading based on the JEP-KD structure, which
introduces a generator in the embedding layer to translate
video semantic features into audio semantic features. Also, it
can predict the regularity loss of video semantic features com-
pared to audio semantic features and complete the semantic
features. Additionally, we implemented a four-model, three-
stage training scheme to ensure the stability of the knowledge
distillation of the JEP-KD structure during the training process,
enabling the model to achieve optimal training results. Exper-
iments demonstrate that the knowledge distillation framework
based on the JEP-KD structure can enhance the performance
of lip-reading models. However, it is regrettable that the
experimental results indicate that there is still a significant
gap compared to semantic recognition models with similar
structures, suggesting that there is substantial room for re-
search in the completion of semantic features. Whether we can
further narrow this gap by enhancing the predictive model’s
capabilities remains a question worth exploring. On the other
hand, verifying the universality of the JEP-KD structure among
different lip-reading models, as well as employing an AVSR
as teacher network combined with the JEP-KD structure to
further improve the performance of lip-reading models, is also
part of our next research content.
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