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Abstract—The lack of an efficient preamble detection al-
gorithm remains a challenge for solving preamble collision
problems in intelligent massive random access (RA) in practical
communication scenarios. To solve this problem, we present a
novel early preamble detection scheme based on a maximum
likelihood estimation (MLE) model at the first step of the grant-
based RA procedure. A novel blind normalized Stein variational
gradient descent (SVGD)-based detector is proposed to obtain
an approximate solution to the MLE model. First, by exploring
the relationship between the Hadamard transform and wavelet
transform, a new modified Hadamard transform (MHT) is de-
veloped to separate high-frequencies from important components
using the second-order derivative filter. Next, to eliminate noise
and mitigate the vanishing gradients problem in the SVGD-based
detectors, the block MHT layer is designed based on the MHT,
scaling layer, soft-thresholding layer, inverse MHT and sparsity
penalty. Then, the blind normalized SVGD algorithm is derived
to perform preamble detection without prior knowledge of noise
power and the number of active devices. The experimental
results show the proposed block MHT layer outperforms other
transform-based methods in terms of computation costs and
denoising performance. Furthermore, with the assistance of
the block MHT layer, the proposed blind normalized SVGD
algorithm achieves a higher preamble detection accuracy and
throughput than other state-of-the-art detection methods.

Index Terms—massive random access, early preamble detec-
tion, maximum likelihood estimation, Hadamard transform, Stein
variational gradient descent,

I. INTRODUCTION

G IVEN the prevalence of massive machine-type commu-
nication (mMTC) [1], [2], the forthcoming wireless com-

munication system is required to accommodate the extensive
network of devices. However, there can be challenges related
to the potential preamble collision [3]–[5] issues, particularly
when a considerable number of devices attempt to access the
network simultaneously. Furthermore, effectively detecting or
tackling preamble collision is crucial for the implementation
of Internet of Things (IoT) scenarios [6]. Currently, to reduce
transmission latency and signaling overhead, a range of strate-
gies, such as grant-based and grant-free random access (RA)
schemes, are utilized to mitigate preamble collision problems
in mMTC.

The currently standardized procedure for device access in
IoT networks is grant-based RA [7]–[11]. It utilizes a com-
munication protocol where devices seek and obtain permission
prior to transmitting data on the network. As shown in Fig.
1, in the first stage, every active device randomly chooses
a preamble from the pool at each time slot. After that, the

Fig. 1: (a) The grant-based RA procedure. (b) The grant-free
RA procedure.

base station (BS) transmits the RA responses corresponding
to the activated preambles. Next, active devices send message
3 (MSG3), requesting the BS to allocate resources for data
transmission. Finally, if the preamble sent in Step 1 is chosen
by a single user, the BS will grant the corresponding request
and send a contention-resolution message to inform the active
device of the available resources. Otherwise, a preamble
collision happens. The conflicting devices will not be granted
permission and will retry access in the next time slot.

Unlike grant-based RA, each active device directly transmits
the preamble and data to the BS without any permission
under the grant-free RA schemes [12]–[14]. Additionally, each
user is pre-assigned a dedicated preamble, which can also
serve as the user ID. In each time slot, the BS first detects
preambles to identify active devices. Subsequently, the BS
performs channel estimation based on metadata and decodes
data using the acquired channel information. Compared with
grant-based RA, grant-free RA alleviates preamble collisions
and reduces access latency. However, assigning orthogonal
preambles to massive devices is not feasible. Therefore, it is
a challenging task to detect active devices under grant-free
RA [15]. Additionally, grant-free RA often leads to unreliable
transmissions [16]. Hence, to ensure high-rate transmissions
alongside both extensive access and reliable connectivity, we
consider the grant-based RA scheme in this paper.
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A. Early preamble collision detection schemes

In the grant-based RA scheme, the preamble collision can
only be identified in the fourth step. Therefore, in the second
step, the BS still allocates wireless resources to devices in-
volved in collisions. It results in a waste of wireless resources.
To address this issue, the authors of [17] introduced an early
preamble collision detection (e-PACD) scheme based on the
tagged preambles at the first step of grant-based RA. The
tagged preambles consist of the preambles and tag Zadoff-
Chu (ZC) sequences with different root numbers. The e-
PACD scheme determines preamble collision by detecting
whether the same preamble contains multiple tags. However,
the overuse of root sequences escalates the complexity of
detection. Besides, as ZC sequences with varying root indexes
lack orthogonality, the frequency of false alarms rises along-
side the number of root sequences utilized in correlation op-
erations. Additionally, a single-root preamble sequence-based
early collision detection scheme was proposed for satellite-
based IoT [18] at the first step of grant-based RA. In the
scheme, all feasible preambles are generated using the ZC
sequence with different cyclic shifts. The intricate design of
the cyclic shift offset set improves the efficiency of preamble
collision detection at the second step. However, the cyclic
shift offsets increase the complexity of the preamble design.
Moreover, since the single root ZC sequences are employed,
the number of preambles is limited, leading to increasing the
probability of preamble collision in a dense user scenario.

B. Preamble Detection Algorithms

The appropriate preamble detection algorithms are crucial
for detecting preamble collisions in advance. In [19], a max-
imum a posteriori (MAP) estimation model was proposed
for detecting preambles. A low-complexity Markov Chain
Monte Carlo (MCMC) algorithm was employed to sample
the MAP model to obtain an approximate solution. However,
the MCMC algorithm increases estimation errors due to the
stochastic nature of sampling. To enhance the accuracy of
the MCMC-based scheme, the normalized Stein Variational
Gradient Descent (NSVGD) detector [20] was proposed based
on the maximum likelihood estimation (MLE) model. The
NSVGD detector enhances the accuracy of preamble detection
through the deterministic update characteristics of particles.
However, to improve robustness in low signal-to-noise ratio
(SNR) environments, the NSVGD detector introduces a bias
term. This bias term necessitates the BS to know the number
of active devices. In practical communication scenarios, it is
challenging to obtain the number of active devices in the
cell. Moreover, the authors of [21] established a maximum
likelihood preamble detection model based on non-Bayesian
methods. The non-Bayesian method offers lower computa-
tional complexity, enabling rapid preamble detection. Never-
theless, the non-Bayesian approach cannot be used to detect
preamble collisions. Furthermore, deep learning methods have
been applied for solving detection problems. In [22], the
convolutional neural network-based approach was employed
to detect preambles by extracting features from signals.

C. Motivations and Contributions

The early preamble collision detection schemes make it
possible to improve the efficiency of wireless resource uti-
lization [23]. Therefore, this paper develops a novel preamble
detection scheme at the first step of the grant-based RA
process. Instead of designing the complicated preambles to
detect preamble collision [15], [18], we utilize the non-
orthogonal Gaussian preambles with a simple structure, which
is suitable for a dense user scenario. Additionally, we design an
efficient maximum likelihood preamble detection model using
the blind NSVGD-based detector, which strives to fully exploit
the potential of the NSVGD detector to improve the preamble
detection accuracy. More specifically, first, by investigating the
connection between the Hadamard transform and Haar wavelet
transform, we design a new modified Hadamard transform
(MHT) by replacing the last half rows in the Hadamard matrix
with the second-order derivative filter. Based on the MHT,
a new block MHT domain layer is proposed. We developed
the discrete cosine transform (DCT) and Hadamard transform
domain layers in several applications [24]–[27]. In this paper,
the key idea is to apply the MHT, scaling layer, trainable
soft-thresholding layer, and Kullback Leibler divergence-based
sparsity penalty to remove the noise from the complex signals.
Then, we derive a new blind NSVGD algorithm that combines
the SVGD algorithm and momentum strategy to perform
preamble detection. The main contributions are concluded as
follows:

1) A novel MHT is designed by modifying the Hadamard
matrix. Compared with the Hadamard transform, the
MHT has a better ability to separate high-frequency
bands from important components in the transform do-
main.

2) An efficient block MHT layer is proposed to denoise
the signal received by the BS, which helps to alleviate
the vanishing gradient problem and enhance the robust-
ness of the NSVGD detector in noisy environments.
Compared with other state-of-the-art methods, the block
MHT layer achieves a better denoising performance with
a lower computation cost.

3) A new blind NSVGD algorithm is derived. In com-
parison to the NSVGD detector, the blind NSVGD
algorithm is capable of finishing preamble detection
without the knowledge of noise power and the number
of active devices, making it feasible for implementation
in practical communication scenarios.

4) The experimental results show that the proposed pream-
ble detection scheme achieves a higher preamble detec-
tion accuracy and better robustness than other baselines
under different SNRs and different numbers of antennas
and active devices. Additionally, the proposed method
is superior to other schemes in terms of throughput.

The remainder of the paper is structured as follows. Sec-
tion II describes the maximum likelihood preamble detection
model at the first step of grant-based RA. The introduction
and error analysis of SVGD-based detectors are provided in
Section III. The blind NSVGD-based detector is derived in
Section IV. Simulation results are presented in Section V.
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Finally, conclusions are given in Section VI.

II. SYSTEM MODEL

Suppose the BS is equipped with T antennas, and each
active device in the cell is equipped with one antenna. Each
preamble is randomly chosen by each active device from
the pool. The length of each preamble is L. Additionally,
assume the signals transmitted by the active devices experience
Rayleigh fading. Then, the signal received by the BS on the
t-th antenna can be computed as follows:

yt =

M∑
m=1

z(m)Hm,tem + nt, (1)

for t = 1, . . . , T , where M stands for the number of active
devices. z(m) ∼ CN (0, 1/L) is the non-orthogonal preamble
chosen by the m-th active device. CN (a,B) stands for the
circularly symmetric complex Gaussian (CSCG) distribution,
which has a mean vector a and a covariance matrix B.
Additionally, nt ∼ CN (0, δI) represents the background noise
and δ represents the noise power. Hm,t indicates the channel
coefficient. em denotes the data symbol transmitted from the
active device to the BS.

Assume the number of preambles is K and xk ∈ [0,M ] de-
notes the number of active devices choosing the k-th preamble.
The vector x = [x1, . . . , xk, . . . , xK ]T stands for the numbers
of active devices choosing each preamble. As our target is to
detect preamble collisions in the first step of grant-based RA,
we concentrate on estimating x in the subsequent steps: First
of all, the likelihood of x is computed as follows:

Lik(x) = f(yt | x), (2)

After that, let vt = [v1,t, v2,t, . . . , vk,t, . . . , vK,t]
T, and

vk,t =
∑

m∈Nk

Hm,tem, (3)

where Nk represents the index set of active devices choosing
the k-th preamble. Suppose Hm,t ∼ CN (0, β2), we have:

f(vt|x) =
∏

k∈ζ+(x)

1
πβ2xk

exp(− |vk,t|2
β2xk

), (4)

where ζ+(x) = {k | xk>0}. Next, let Z = [z1, . . . , zK ]. yt

in the Eq. (1) can be caculated as follows:

yt = Zvt + nt, (5)

According to nt ∼ CN (0, δI), we have:

f(yt|vt) =
1

(πδ)L
exp(− 1

δ ∥yt − Zvt∥2). (6)

From Eq. (4), Eq. (5) and Eq. (6), the mean value of yt is
zero and its covariance matrix is computed as follows:

E[yty
H
t | x] = β2ZCxZ

H + δI = φ(x), (7)

where Cx = diag(x1 . . . xK). (·)H represents the conjugate
transpose. From Eq. (7), yt is a CSCG vector:

yt | x ∼ CN (0, φ(x)), (8)

f(yt | x) = 1
(πL) det(φ(x))

e−yH
t φ(x)−1yt . (9)

Then {yt}Tt=1 is defined as the set of received signals across
T antennas. Its likelihood function is:

f({yt}Tt=1 | x) =
∏T

t=1
f(yt | x), (10)

Furthermore, its log-likelihood function is:

ln f({yt}Tt=1 | x) =
T∑

t=1

ln f(yt | x)

=

T∑
t=1

−yH
t φ(x)

−1yt − ln det(φ(x)) + η,

(11)

where η is a constant. Finally, the maximum log-likelihood es-
timation model can be obtained by utilizing the log-likelihood
function:

x̃ = argmax ln f({yt}Tt=1 | x). (12)

The computational complexity of maximum likelihood es-
timation is (M + 1)K , which grows exponentially with K.
Hence, as K increases, the computational complexity escalates
significantly.

III. SVGD BASED PREAMBLE DETECTION

Due to the high computational complexity associated with
directly solving the maximum likelihood detection model,
some variational inference methods are applied to obtain an
approximate solution, e.g., SVGD-based algorithms. There-
fore, we introduce the SVGD-based approaches for the pream-
ble detection problem in this section.

A. Stein Variational Gradient Descent (SVGD)

SVGD [28]–[31] is a particle-based variational inference
algorithm used for gradient descent optimization. The algo-
rithm iteratively updates particles to gradually transition from
the initial distribution to the target distribution by minimizing
the KL divergence between the two distributions. A set of
particles are first initialized with an arbitrary distribution.
Next, the particles are updated using the optimal perturbation
direction, which corresponds to the steepest descent on the KL
divergence. After multiple iterations, the particles converge
towards the target distribution. By leveraging the gradient
information of the target distribution, SVGD offers a flexible
and scalable approach to take samples from the complicated
distribution.

B. SVGD Detector

To solve the preamble detection problem, we employed the
SVGD algorithm to obtain an approximate solution to the
maximum likelihood model [20]. The key idea is applying
SVGD to sample x from the target distribution p(x). Here,
the density function of p(x) is g(x) = f({yt} | x). It is
mentioned in [28] that the particles can be initialized with any
distribution. Therefore, we first use the uniform distribution
to initialize a set of particles {xu}nu=1. n is the number of
particles. Then, for r-th iteration, the particles are updated as
follows:

xr+1
u ← xr

u + λω(xr
u), (13)
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where λ is a step size. ω(·) is a velocity field, which transports
the particles to approximate the target distribution. It is defined
as:

ω(x) =
1

n

n∑
i=1

[k(xr
i ,x)▽xr

i
ln g(xr

i ) +▽xr
i
k(xr

i ,x)], (14)

where k(xr
i ,x) = exp(− 1

h ||x
r
i − x||22) is the Gaussian radial

basis function (RBF) kernel function [32]. h = med2/ lnn.
med is the median of pairwise distances between {xu}nu=1.
After sufficient iterations, the particles {x̃u}nu=1 sampled
by SVGD approximate the target distribution p(x). Next,
{x̃u}nu=1 is utilized to estimate the number of devices choos-
ing each preamble.

C. NSVGD Detector

From Eq. (11), it is observed that the value of the MLE
function is mainly determined by φ(x) = β2ZCxZ

H + δI. δ
represents noise power. When the modulus of each entry τ in
matrix ϕ(x) = β2ZCxZ

H is much smaller than δ, we have
φ(x) ≈ δI, which indicates φ(x) is independent to the change
of ϕ(x). Furthermore, Eq. (11) is rewritten as:

ln g(xr
u) = −

T∑
t=1

yH
t (δI)

−1yt − T ln det(δI) + η, (15)

Hence, ▽xr
u
ln g(xr

u) = 0. Then ω(x) is caculated as:

ω(x) =
1

n

n∑
i=1

[▽xr
u
k(xr

u,x)], (16)

According to Eq. (16), it is noticed that only ▽xr
u
k(xr

u,x)
is applied to update x. However, ▽xr

u
k(xr

u,x) does not
contain any effective information about the target distribution.
Then, the particles are updated towards the wrong direction.
Therefore, the noise can cause the vanishing gradients problem
in the SVGD detector, which increases the estimation errors.
To enhance the robustness of the SVGD-based model, we
further proposed NSVGD based on the momentum and a bias
correction term ϑ, which is defined as:

ϑ = ν

(
nM −

n∑
u=1

||xr
u||1

)
, (17)

where ν is constant weight. ϑ utilizes the number of active
devices in the cell as a constraint to correct the direction of
particle updates. However, the number of active devices is
unknown in practical communication scenarios. Therefore, the
NSVGD detector cannot directly be applied in the random
access scheme.

IV. THE BLIND NSVGD-BASED DETECTOR FOR
PREAMBLE DETECTION

As described above, the performance of the SVGD de-
tector is susceptible to environmental noise. Additionally,
the NSVGD detector requires unknown prior knowledge to
detect the preamble. To address these issues, we propose a
novel blind NSVGD-based detector. Firstly, the new modified
Hadamard transform (MHT) is introduced to replace the

Hadamard transform. Next, the block MHT layer is developed
to eliminate noise using the MHT, scaling layer, trainable
soft-thresholding layer and inverse MHT. Then, a new blind
NSVGD algorithm is designed for preamble detection without
requiring unknown prior knowledge.

A. The modified Hadamard transform (MHT)

Transform-based denoising methods have become prevalent
in data analysis for efficiently reducing noise from signals.
These techniques apply mathematical transforms to represent
signals in alternate domains, enabling the separation of noise
from the underlying structure. Commonly used transforms
include the Fourier transform, wavelet transform, Hadamard
transform, and discrete cosine transform (DCT). Among them,
the Hadamard transform concentrates the majority of the signal
energy in a small subset of coefficients. The rest of the
coefficients are redundant data. Such energy concentration
property allows for separating important components from
noise in the transform domain, thus enhancing denoising
effectiveness. Given an input vector x = [x0, x1, . . . , xD−1],
its Hadamard transform X = [X0, X1, . . . , XD−1] is defined
as:

X = T (x) =
√

1

D
HDx, (18)

where the Hadamard matrix HD is computed as follows:

HD =



1, D = 1,(
1 1

1 −1

)
, D = 2,(

HD
2

HD
2

HD
2
−HD

2

)
, D ≥ 4,

(19)

The inverse Hadamard transform is defined as:

x = T −1(X) =

√
1

D
HDX = T (X). (20)

Another interpretation of the Hadamard transform is re-
lated to the Haar wavelet transform [33]. The Hadamard
transform can be constructed using a Haar filter bank. The
two-channel Haar filter bank has a low-pass filter hl[n] =
{ 1√

2
, 1√

2
} and the high-pass filter hh[n] = {− 1√

2
, 1√

2
}

respectively, as shown in Fig. 2. Assume that x[n] =
{· · · , x0, x1, x2, x3, · · · } is peiodic extension of x0, x1. In
this case, xl[n] = {· · · , x0+x1√

2
, x0+x1√

2
, · · · } and xh[n] =

{· · · , x0−x1√
2

, x0−x1√
2

, · · · }, respectively. Therefore,

(
xl

xh

)
=

1√
2

(
1 1
1 −1

)(
x0

x1

)
, (21)

where the input to the filter bank is related to the output via
the two-by-two Hadamard transform matrix. Next, consider
the wavelet packet transform shown in Fig. 3.
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Fig. 2: The two-channel Haar filter bank.

Fig. 3: The four-channel Haar filter bank.

Let x[n] = {· · · , x0, x1, x2, x3, x0, x1, x2, x3, · · · } is a
periodic extension of {x0, x1, x2, x3}. We have

xll[n] = {· · · ,
x0 + x1 + x2 + x3

2
,
x0 + x1 + x2 + x3

2
, · · · }

xlh[n] = {· · · ,
x0 + x1 − x2 − x3

2
,
x0 + x1 − x2 − x3

2
, · · · }

xhl[n] = {· · · ,
x0 − x1 + x2 − x3

2
,
x0 − x1 + x2 − x3

2
, · · · }

xhh[n] = {· · · ,
x0 − x1 − x2 + x3

2
,
x0 − x1 − x2 + x3

2
, · · · }

Therefore,
xll[0]
xlh[0]
xhl[0]
xhh[0]

 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



x0

x1

x2

x3

 (22)

where the matrix establishing the relationship between input
and output has the same rows as the 4×4 Hadamard transform.
Therefore, the last two rows in the Hadamard matrix can be
considered as “high-pass filters” to extract the high-frequency
components, e.g., noise. Similarly, 8× 8 Hadamard transform
can be constructed from a log2 8 = 3 layers two-channel
filter bank. Then, the last four rows in the Hadamard matrix
can be considered as “high-pass filters”. The concept can
be generalised to N by N Hadamard transform which can
be constructed using a basic two-channel Haar filter bank.
Moreover, it is observed that the Hadamard transform requires
the size of the input to be a power of 2. However, the signal
received by the BS can be of arbitrary size. To solve this
problem, we divide yt into short-time windows of length 8.
If the size of the signal is not a multiple of 8, zeros will be
padded at the end of the signal.

Although the last half row vectors in the Hadamard matrix
work as high-pass filters, these row vectors may not be the
optimal choice. Inspired by this, we expect to use more
efficient high-pass filters to replace the last half rows in the
Hadamard matrix. At present, the derivative operator has been

widely used as a high-pass filter [34], [35]. In the case of RA,
the derivative of yt[i] is defined as follows:

y′
t[i] = lim

∆h→0

yt[i+∆h]− yt[i]

∆h
. (23)

For a discrete signal, the smallest interval ∆h is 1. Therefore,
the derivative is calculated as yt[i+ 1]− yt[i]. Similarly, we
have y′

t[i+1] = yt[i+2]−yt[i+1]. Furthermore, the second
derivative of yt[i] can be calculated as:

y′′
t [i] = y′

t[i+ 1]− y′
t[i]

= yt[i+ 2]− yt[i+ 1]− yt[i+ 1] + yt[i]

= yt[i+ 2]− 2yt[i+ 1] + yt[i]. (24)

It is observed that calculating the second-order derivative
is identical to performing a convolution operation with the
filter [1,-2,1]. Additionally, the second-order derivative of
yt represents the high-frequency components in the received
signal, which includes the noise. Hence, we replace the last
half rows in the Hadamard matrix with the second derivative
filter [1,-2,1]. Besides, we shift the filter across different rows
to high-pass filter the input vectors as much as possible.
In terms of the 8 × 8 Hadamard transform, we modify the
Hadamard matrix as follows:

Q8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −2 1 0 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 0 1 −2 1


. (25)

After that, for a block input x ∈ R8, the MHT is defined
as y = Q8x. The same structure can be extended to higher
dimensions in a straightforward manner. In this paper, we
only use 8 × 8 MHT because a small block size is very
helpful in reducing the computation cost and the number of
trainable parameters which will be introduced in section IV-B.
Furthermore, the small-sized MHT reduces latency due to its
low computation cost, especially in a mass RA procedure.
Additionally, it is experimentally shown in section V that
the MHT has a better capability in separating noise from the
main components in the frequency domain compared with the
Hadamard transform.

B. The block MHT layer

In this section, the block MHT (BMHT) layer is designed
to remove the noise from the complex signals yt.

1) Data preprocessing: we consider the received signal
yt ∈ CL on a single antenna as one data sample. Since
neural networks cannot be trained with complex numbers, we
concatenate the real and imaginary parts of yt as yc

t ∈ R2L.
Next, we divide yc

t into the small blocks with a size of S = 8.
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Fig. 4: The block MHT layer.

2) Structure of the BMHT layer: as shown in Fig. 4, we
first perform the MHT on each input block ỹt ∈ RS . It is
computed as:

ŷt = H (ỹt) = QSỹt. (26)

Then, we employ the scaling layer to allocate weights for
different frequency components. It is defined as:

ȳt = ŷt ◦ u, (27)

where ◦ represents the element-wise multiplication. u ∈ RS is
the scaling vector, which is trained using the back-propagation
algorithm [36].

After that, the trainable soft-thresholding layer is utilized to
eliminate small entries or scale the large entries in the mod-
ified Hadamard domain. The small entries are usually noise
and redundant information. The soft-thresholding function is
defined as:

pt = ST (ȳt) = sign (ȳt) · (|ȳt| −T)+ (28)

where T ∈ RS is the threshold vector trained using the back-
propagation algorithm; (·)+ stands for the rectified linear unit
(ReLU) function. After the soft-thresholding layer, we perform
the inverse modified Hadamard transform:

p̃t = H −1(pt) = Q−1
S pt. (29)

where

Q−1
S =



1
8

5
8

1
8

5
8 − 1

2
1
2 1 0

1
8

7
8 − 1

8
1
8 −1 0 1

2
1
2

1
8

9
8 − 3

8 − 3
8 − 1

2 − 1
2 0 1

1
8

3
8 − 1

8 − 3
8 0 −1 − 1

2
1
2

1
8 − 3

8
1
8 − 3

8
1
2 − 1

2 −1 0
1
8 − 9

8
3
8 − 3

8 1 0 − 1
2 − 1

2
1
8 − 7

8
1
8

1
8

1
2

1
2 0 −1

1
8 − 5

8 − 1
8

5
8 0 1 1

2 − 1
2


(30)

Next, we process the signals block by block. For different
blocks, we utilize the same scaling parameters and soft thresh-
olds. Finally, we resize the signal back to its original size by
removing the padded zeros.

3) The training of the BMHT layer: : To eliminate noise
and redundant information efficiently, we impose sparsity in
the modified Hadamard domain during the training stage.
Assume the output of the soft-thresholding layer is pt ∈ RS .
Then the activity of pt,j is computed as:

p̂t,j = σ(pt)j =
ept,j

ept,j + 1
, j = 0, 1, · · · , S − 1, (31)

where σ(·) represents the sigmoid function. Furthermore, the
Kullback–Leibler divergence (KLD) [37] has the capability
to measure the distinction between the different distributions.
Therefore, we employ KLD as the sparsity penalty term:
S−1∑
j=0

KL(κ||p̂t,j) =
S−1∑
j=0

κ log
κ

p̂t,j
+(1−κ) log 1− κ

1− p̂t,j
, (32)

where κ is a sparsity parameter. Hence, for each block, the
overall loss function L of the MHT layer is :

L =
1

S

S−1∑
i=0

(p̄t,i − p̃t,i)
2
+ ρ

S−1∑
j=0

KL (κ||σ(pt)j) , (33)

where ρ is the sparsity penalty weight. p̃t,i and p̄t,i stands for
the denoised and clean signal on the t-th antenna, respectively.
Finally, the optimal scaling parameters and soft thresholds are
obtained by minimizing the loss function defined in Eq. (33).

C. Blind NSVGD algorithm

After the trained BMHT layer denoises the signals, the blind
NSVGD algorithm is utilized to perform preamble detection.
As mentioned in section III-C, the NSVGD detector requires
prior knowledge of the noise power δ and the number of
active devices. However, this prior knowledge is hard to
obtain in practical communication scenario. Therefore, this
section presents a new blind NSVGD algorithm capable of
performing preamble estimation tasks without unknown prior
knowledge. As is shown in Algorithm 1, we first initialize the
particles {xu}nu=1 with a uniform distribution. Next, we start
computing▽xr ln g(xr). Since δ is unknown, we remove term
δI from φ(x) directly. It is feasible because we have performed
denoising previously. Then Eq. (11) is rewritten as:

ln g(x) = ln f({yt} | x) =
T∑

t=1

−yH
t (β

2ZCxZ
H)−1yt + η

− T ln det(β2ZCxZ
H). (34)

Next, ▽xr ln g(xr) is obtained by computing ▽xr
k
ln g(xr):

▽xr ln g(xr) = [▽xr
1
ln g(xr), . . . ,▽xr

K
ln g(xr)]. (35)

From Eq. (34), ▽xr
k
ln g(xr) is computed as follows:

▽xr
k
ln g(xr) =−▽xr

k
(

T∑
t=1

yH
t (β

2ZCxZ
H)−1yt)

−▽xr
k
(T ln det(β2ZCxZ

H)). (36)
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Let ε(x) = β2ZCxZ
H, we have

▽xr
k
(

T∑
t=1

yH
t ε(x)

−1yt) =
T∑

t=1
yH
t ▽xr

k
(ε(x)−1)yt. (37)

From inverse matrix derivative lemma [38], ▽xr
k
(ε(x)−1)

is computed as:

▽xr
k
(ε(x)−1) = −ε(x)−1 ▽xr

k
(ε(x))ε(x)−1, (38)

where

▽xr
k
(ε(x)) = β2zkz

H
k . (39)

From Eq. (38) and Eq. (39), Eq. (37) is rewritten as:

▽xr
k
(

T∑
t=1

yH
t ε(x)

−1yt) = −β2
T∑

t=1

yH
t ε(x)

−1zkz
H
k ε(x)

−1yt

(40)

At the next step, ▽xr
k
(T ln det(ε(x))) is calculated as:

▽xr
k
(T ln det(ε(x))) = T ▽xr

k
(ln det(ε(x)))

=
T

det(ε(x))
▽xr

k
(det(ε(x))). (41)

Applying the matrix determinant derivative lemma [38], we
obtain:

▽xr
k
(det(ε(x))) = det(ε(x))tr(ε(x)−1 ▽xr

k
(ε(x))). (42)

From Eq. (41) and Eq. (42), we have

▽xr
k
(T ln det(ε(x))) = T · tr(ε(x)−1β2zkz

H
k ). (43)

Finally, we have:

▽xr
k
ln g(xr) =β2

T∑
t=1

yt
Hε(x)−1zkz

H
k ε(x)

−1yt

− T · tr(ε(x)−1β2zkzk
H). (44)

After computing ▽xr
k
ln g(xr), we update the gradient ac-

cording to Eq. (14). Next, the history gradients are accumu-
lated. Then, the accumulated gradient is normalized as follows:

ω(xr
u)←

ω(xr
u)

ϵ+
√
qr

, (45)

where ϵ is a constant and
√
(·) stands for element-wise square

root. These operations address the issue of the learning rate
continually decreasing compared to the AdaGrad method [39].
Moreover, we employ weight decay [40] and momentum
strategy [41] to optimize the gradient ω(xr

u) as shown in
Algorithm 1. Finally, the particles are updated according to Eq.
(13). After numerous iterations, the particles {x̂u}nu=1 sampled
by the blind NSVGD algorithm are employed to estimate the
number of devices choosing each preamble. For example, as
shown in Fig. 5, we have six active devices and six preambles
in the cell. At first, ten particles are initialized using random
numbers. As the number of iterations increases, the particles
gradually approach the ground truth. After 1000 iterations, the
particles converge to the ground truth.

It is observed that the blind NSVGD algorithm performs
preamble detection without using the information of noise
power and the number of active devices compared with the

Algorithm 1: Blind NSVGD-Based Detector

Input: The received signals {yc
t}Tt=1, a target

function g(x) and the initial particles {x0
u}nu=1

Output: A set of particles {x̂u}nu=1 that approximates
the target function

/* Denoising stage */
1 Divide {yc

t}Tt=1 into S-length short-time windows.
2 for block i do
3 Perform the MHT using Eq. (26).
4 Remove the noise using Eq. (27) and Eq (28).
5 Perform the IMHT using Eq. (29).
6 end
/* Preamble detection stage */

7 for iteration r do
8 Compute ▽xr

k
ln g(xr) using Eq. (44).

9 Update ω(xr
u) according to Eq. (14).

/* Accumulate history gradients */
10 if ϱ ̸= 0 then
11 if r > 1 then
12 qr ← ϱqr−1 + (1− ϱ)ω2(xr

u)
13 else
14 qr ← ω2(xr

u)
15 end
16 end
17 Calculate ω(xr

u) using Eq. (45).
/* Weight Decay */

18 if γ ̸= 0 then
19 ω(xr

u)← ω(xr
u)− γxr

u

20 end
/* Gradient with Momentum */

21 if α ̸= 0 then
22 if r > 1 then
23 br ← αbr−1 + (1− α)ω(xr

u)
24 else
25 br ← ω(xr

u)
26 end
27 ω(xr

u)← br

28 end
29 Compute xr+1

u using Eq. (13).
30 end

NSVGD detector. This is because we apply the BMHT layer
to denoise the complex signals before detecting preambles,
which mitigates the vanishing gradients problem in the SVGD
detector discussed in section III-C. Therefore, we do not
need to introduce any bias correction term to provide extra
information to update the particles. The process of the blind
NSVGD-based detector is summarized in Algorithm 1.

V. EXPERIMENTAL RESULTS

In the experimental section, we present the simulation re-
sults to explore the effectiveness of the algorithms proposed in
our study. Specifically, to validate the denoising performance
of the block MHT layer, other transform domain layers are
selected as comparison models such as the DCT layer [24],
block wavelet transform perceptron (BWTP) layer [42] and
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Fig. 5: Updating process of particles. The circles represent particles and the pentagrams represent ground truth. k is the index
of the preamble and xk is the number of devices choosing k-th preamble. K = 6, L = 6, M = 6, T = 20, and SNR = 16 dB.

Hadamard Transform Perceptron (HTP) layer [26]. In the HTP
layer, we set the number of channels as 3. Besides, the con-
volutional neural network (CNN) [43] and sparse autoencoder
(AE) [37] are also utilized as comparison benchmarks because
the convolutional and linear layers are widely employed for the
denoising tasks. Additionally, to verify the preamble detection
performance of the blind NSVGD-based detector, we choose
other approximate inference-based detectors as comparison
models, such as the MCMC detector [19], SVGD detector [20]
and NSVGD detector [20].

In the experiments, we mainly consider a dense device
scenario by setting K = M because our target is to detect
preamble collision. Besides, since the noise power δ and the
number of active users M are unknown in the practical com-
munication scenarios, all detectors perform preamble detection
without using the information of δ and M . Additionally, for all
SVGD-based detectors, the particles {xu}nu=1 are initialized
using a uniform distribution on [1, 1.1]. Then, the parameters
n, β, λ, κ, ρ, ϵ, and γ are chosen as 6, 1, 0.01, 0.001,
0.5, 1, and 0.1, respectively. Suppose N denotes the number
of iterations required to achieve stable particles. The sample
mean of the particles is computed as:

x̄ =
1

n

n∑
u=1

x̂u = [x̄0, . . . , x̄k, . . . , x̄K ]. (46)

Then, x̃k is estimated by the rounded sample mean, i.e., x̃k =
⌊x̄k⌉ ∈ {0, . . . ,M}, where ⌊x⌉ is the nearest integer of x.

A. Performance metrics

To evaluate the denoising performance of different methods,
the percent root mean square difference (PRD) and root mean
square (RMS) are employed. RMS measures the distinctions
between the clean signal and the denoised signal.

RMS =

√√√√ 1

w

w−1∑
i=0

(
sci − sdi

)2
, (47)

where w is the length of the signal. sci is the clean signal.
sdi is the denoised signal. The lower the RMS is, the better
denoising performance the approach has.

PRD evaluates the distortion of the denoised signal:

PRD =

√√√√∑w−1
i=0

(
sci − sdi

)2∑w−1
i=0 (sci )

2 . (48)

The lower the PRD is, the better the model is.
Moreover, we utilize two performance metrics to evaluate

the accuracy of the proposed preamble detection algorithm.
Firstly, we consider the mean squared error (MSE). The
MSE measures the difference between the true values and the
estimated values. It is defined as follows:

MSE(xk) = E(xk − x̃k)
2. (49)

The lower the MSE is, the higher the accuracy of the preamble
detection is.

Another performance metric is the probability of activity
detection error, which reflects the average proportion of incor-
rectly estimated preambles. It is defined as:

PADE = Pr(xk ̸= x̃k). (50)

The lower the PADE is, the higher the accuracy of the
preamble detection is.

Additionally, Np represents the number of trainable param-
eters. The Multiply–Accumulates (MACs) are employed to
evaluate the computation complexity. One MAC represents one
addition and one multiplication.

B. Denoising Experiment

In the denoising experiment, we generate a dataset using
the signal reception model defined in Eq. (1). Specifically, we
generate 3000 noisy samples as inputs and corresponding clean
samples as labels by setting K = 20, L = 10, M = 20 and
SNR = 12 dB. These data samples are employed as training
datasets. Furthermore, to test the generalization capability of
denoising models, another 3000 sample pairs are generated
as testing datasets by changing SNR to 8 dB. Additionally,
during the training stage, we use the AdamW optimizer [44].
The learning rate and batch size are set as 0.001 and 128
respectively.

Table I presents the denoising results of different models on
the testing datasets. Compared with CNN, the BMHT layer
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TABLE I: Denoising Experimental Results.

METHOD Np MACS RMS (%) PRD (%)

CNN 824 840 34.61 34.56
DCT LAYER 40 820 27.48 27.44
SPARSE AE 676 640 47.59 47.52
BWTP LAYER 51 550 27.48 27.44
HTP LAYER 195 1216 27.48 27.44
BMHT LAYER 16 216 27.38 27.34

TABLE II: Ablation study.

METHOD Np MACS RMS (%) PRD (%)

NO PENALTY 16 216 27.47 27.43
NO SCALING 8 192 28.04 27.99
NO THRESHOLD 8 216 27.49 27.44
STANDARD HT 16 216 27.85 27.81
BMHT LAYER 16 216 27.38 27.34

reduces RMS from 34.61 to 27.38 (20.89%) and PRD from
34.56 to 27.34 (20.89%). Additionally, Np decreases from
824 to 16 (98.06%) and MACs decreases from 840 to 216
(74.29%). Although CNN applies more trainable parameters
than the BMHT layer, the BMHT layer still achieves a
better denoising performance than CNN. It indicates too many
training parameters can result in overfitting of the model.
Moreover, the sparse AE and the BMHT layer both use the
penalty term to reduce noise. However, the BMHT layer
outperforms the sparse AE in terms of RMS, PRD and MACs.
It experimentally shows that the transform-based method is
more efficient than the linear-based method. Additionally, the
BMHT layer is superior to other familiar transform-based
models such as the DCT layer, BWTP layer and HTP layer
because of a lower RMS and PRD. The reason is that the
KL divergence-based sparsity penalty is applied in the BMHT
layer to keep latent space sparse, which helps remove noise
in the transform domain. Besides, in comparison to the HTP
layer, no convolutional layers are implemented in the BMHT
layer, which reduces the computation costs and number of
parameters.

The ablation experiments are used to validate the function
of each module in the BMHT layer. As shown in Table II,
when the scaling layer is removed, the denoising performance
degrades as the RMS increases from 27.38 to 28.04 (2.41%)
and PRD from 27.34 to 27.99 (2.38%). This is because the
scaling layer is capable of assigning appropriate emphasis to
frequency domain components. Additionally, when the sparsity
penalty and soft thresholding layer are not present in the
BMHT layer, the RMS and PRD both increase. It shows that
the penalty term and soft threshold are beneficial to retaining
important features and eliminating redundant information such
as noise. Furthermore, it is observed that the RMS and
PRD increase when the MHT is replaced with the standard
Hadamard transform (HT). Therefore, it is experimentally
shown that the MHT has a better ability to separate the noise
from the important components than the standard Hadamard
transform.

Fig. 6: MSE for different SNR when K = 20, L = 10, M =
20 and T = 30.

Fig. 7: PADE for different SNR when K = 20, L = 10,
M = 20 and T = 30.

C. Preamble Detection Experiments

In the preamble detection experiments, to test the general-
ization ability of the proposed model, we use the fixed BMHT
layer which is trained when K = 20, L = 10, M = 20 and
SNR = 12 dB. It means that even if K, M and SNR change
in the environment, we do not train the BMHT layer again.

Fig. 6 and Fig. 7 show the preamble detection performance
of four models at different SNR. As the SNR increases, the
MSE and PADE of each model decrease, which indicates an
improvement in detection accuracy. It is observed that the blind
NSVGD-based detector surpasses the MCMC, SVGD and
NSVGD detectors in terms of MSE and PADE. Additionally,
when the SNR is 8 dB, the proposed method exhibits a
small performance improvement over the NSVGD detector.
It is because there is a small noise in the environment when
SNR is high. However, as SNR decreases, the performance
gap between the proposed method and the NSVGD detector
also widens. When SNR is 4 dB, compared with the NSVGD
detector, the proposed detector reduces MSE from 0.4185 to
0.3703 (9.61%) and PADE from 0.3721 to 0.3340 (10.24%).
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Fig. 8: MSE for different numbers of T when K = 20, L =
10, M = 20 and SNR = 8 dB.

Fig. 9: PADE for different numbers of T when K = 20, L =
10, M = 20 and SNR = 8 dB.

The reason is that the BMHT layer achieves good denoising
performance under low SNR. Therefore, the blind NSVGD-
based detector can extract more efficient gradient information
to update the particles without prior knowledge of active
devices and noise power.

Fig. 8 and Fig. 9 show the effect of different numbers of
antennas on the MSE and PADE. With the number of antennas
increasing, both the MSE and PADE decrease, leading to
a continuous reduction in preamble detection error. This is
because more antennas introduce diversity in receiving signals,
which alleviates noise and fading. Additionally, the perfor-
mance of the blind NSVGD-based detector remains superior to
that of the MCMC, NSVGD and SVGD detectors. It indicates
that the proposed detector has better robustness than other
baselines.

In Fig. 10 and Fig. 11, we show the performances of
the MCMC, SVGD, NSVGD and the blind NSVGD-based
detectors for different numbers of active devices. When the
number of active devices increases, the MSE and PADE both
increase. The reason is that the number of preamble collisions

Fig. 10: MSE for different numbers of active devices when
K = 20, L = 10, T = 30 and SNR = 8 dB.

Fig. 11: PADE for different numbers of active devices when
K = 20, L = 10, T = 30 and SNR = 8 dB.

increases when more active devices try to access to network si-
multaneously. Severe preamble collisions bring much interfer-
ence, which makes it difficult for approximate inference-based
methods to perform preamble detection. Additionally, the blind
NSVGD-based detector still outperforms other detectors under
different M , which indicates the proposed method can achieve
good results in both sparse and dense device scenarios.

Fig. 12 compares the throughputs of different detectors.
Throughput refers to the average count of successfully ac-
cessed preambles, excluding instances of collisions and false
detections. As M increases, the throughputs of different de-
tectors decrease. One reason for this is that the preamble
collisions rise with the active devices increasing, leading to
a decrease in the number of successfully accessed devices.
Moreover, when M = 24, compared with the SVGD detector,
the blind NSVGD-based detector achieves a significant perfor-
mance improvement as it increases throughput from 5.16 to
6.01 (16.47%). Moreover, the blind NSVGD-based detector
also performs better than the NSVGD detector. It indicates
even when severe preamble collisions happen, the proposed
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Fig. 12: Throughput for different numbers of active devices
when K = 20, L = 10, T = 30 and SNR = 8 dB.

detector still can achieve higher accuracy in detecting the
successfully accessed preambles.

D. The analysis of computational complexity
The computation complexities of the MCM detector, SVGD

detector and NSVGD detector are O(KL(L+T )), O(KTL3)
and O(KTL3) respectively [19], [20]. Additionally, compared
with the NSVGD detector, the blind NSVGD-based detector
introduces the extra computation cost of the BMHT layer.
The computation complexity of the BMHT layer is O(L).
Therefore it can be omitted compared with O(KTL3). Finally,
the overall complexity of the blind NSVGD-based detector is
O(KTL3). Hence, given a fixed L, the complexities of all
detectors are linearly proportional to K and T . Additionally,
they are independent of the number of active users.

VI. CONCLUSION

In this paper, to reduce resource wastage, we proposed an
early preamble detection scheme based on the blind NSVGD-
based detector at the first step of the grant-based RA scheme.
The blind NSVGD-based detector consist of two modules: a
BMHT layer and a blind NSVGD algorithm. At the receiver,
the MHT was first conceived. It separated the high frequencies
from the signal in the transform domain. After that, the BMHT
layer was designed based on the MHT, trainable scaling
layer and soft-thresholding layer. It removed the noise and
alleviated the issue of vanishing gradients in the SVGD-
based detectors. Finally, the derived blind NSVGD algorithm
finished the preamble detection task without requiring un-
known prior knowledge. The simulation results demonstrated
the BMHT layer outperformed other denoising methods with
a low computation cost. Additionally, aided by the BMHT
layer, the proposed detector had a consistent performance
improvement over the MCMC detector and other SVGD-based
detectors in terms of detection accuracy and throughput.
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