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This study investigates lightning at tall objects and evalu-
ates the risk of upward lightning (UL) over the eastern Alps
and its surrounding areas. While uncommon, UL poses a
threat, especially to wind turbines, as the long-duration cur-
rent of UL can cause significant damage. Current risk as-
sessment methods overlook the impact of meteorological
conditions, potentially underestimating UL risks. Therefore,
this study employs random forests, amachine learning tech-
nique, to analyze the relationship between UL measured at
Gaisberg Tower (Austria) and 35 larger-scale meteorological
variables. Of these, the larger-scale upward velocity, wind
speed and direction at 10 meters and cloud physics vari-
ables contribute most information. The random forests pre-
dict the risk of UL across the study area at a 1 km2 resolu-
tion. Strong near-surface winds combined with upward de-
flection by elevated terrain increase UL risk. The diurnal cy-
cle of the UL risk as well as high-risk areas shift seasonally.
They are concentrated north/northeast of the Alps in win-
ter due to prevailing northerly winds, and expanding south-
ward, impacting northern Italy in the transitional and sum-
mer months. The model performs best in winter, with the

1

ar
X

iv
:2

40
3.

18
85

3v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 1

8 
M

ar
 2

02
4



2 Stucke et al.

highest predicted UL risk coinciding with observed peaks
in measured lightning at tall objects. The highest concen-
tration is north of the Alps, where most wind turbines are
located, leading to an increase in overall lightning activity.
Comprehensive meteorological information is essential for
UL risk assessment, as lightning densities are a poor indica-
tor of lightning at tall objects.
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1 | INTRODUCTION

Wind power has become the cornerstone of the transition to a greener and more sustainable future. This transition
is being driven by the continued expansion of wind turbines as well as by investments to extend the life time of
existing facilities. The sensitive turbines are exposed not only to the wind that generates the electricity, but also to
various other forces of nature. Among these natural forces, lightning has gained particular attention in recent years
[e.g., 1, 2, 3]. Depending on both the physical height of the turbine and its elevation relative to the surrounding
terrain, it can be exposed to a strong amplification of the electric field. This amplification is often expressed in terms
of the effective height. The effective height is larger if a tall object is located on a mountain or hill [e.g., 4, 5]. For
objects with effective heights below about 100 m, the main proportion of lightning at tall objects is assumed to be
downward lightning (DL). For objects with an effective height greater than 100 m, a critical proportion of lightning can
be upward lightning (UL). UL only initiates from tall objects and propagates upward towards the charged thundercloud.
For objects with effective heights greater than 500 m, all lightning is assumed to be UL [6].

Although rare, UL may cause considerable damage to wind turbines. A particularly prolonged current flow can
transfer large amounts of charge, which can lead to the melting of individual rotor blades or even the complete failure
of the turbine [e.g., 7]. The lightning receptors installed at the tip of theGaisberg Tower in Salzburg (Austria) reveal that,
unlike DL, UL is relatively evenly distributed throughout the year, with a slight preference for the colder seasons [8].
Better understanding and predicting these rare events, as well as a better risk assessment, is essential for extending
the life of individual existing or planned wind turbines, e.g., by equipping them with appropriate lightning protection
devices [1].

The most serious problem in a spatio-temporal risk assessment is the lack of necessary data. The UL observations
at the Gaisberg Tower show that more than 50 % of UL never appear in the data of conventional lightning location
systems (LLS). This is because conventional LLS cannot detect a particular subtype of UL that does not emit an elec-
tromagnetic field strong enough to be detectable and consists only of a long duration initial continuous current (ICC)
[9]. The result is a critical underestimation of the actual UL activity and therefore of total lightning at tall objects. As
LLS do not distinguish between UL and DL, in the current study lightning at tall objects may include both DL and UL
from an effective height ≥ 100 m.

Current standards to assess the risk of lightning at wind turbines incorporate technical and topographical features,
focusing on three key elements. These include the density of lightning strikes per square kilometer annually, the height
of the wind turbine represented by its circular collection area (with a radius three times its height), and a specific
environmental factor [1, 10, 11, 12]. However, challenges arise in this assessment. The local annual lightning density
predominantly considers lightning during the convective warm season when they peak annually, largely overlooking
lightning during other seasons and particularly UL, which studies suggest pose a significant threat to wind turbines
year-round [e.g., 13]. Since UL results from complex atmospheric processes acting on different scales, it is crucial to
recognize the significant impact of meteorological conditions. Neglecting these factors might lead to a substantial
underestimation of the risk posed by lightning at tall objects, particularly by UL.

Investigating the rare and underrated phenomenon using unique UL observations at the Gaisberg Tower in com-
bination with a wide range of globally available atmospheric reanalysis variables using flexible machine learning tech-
niques offers a great opportunity for better risk assessment compared to the current standards. Machine learning can
not only compensate for the problem of missing data, but also provide meaningful insights, recognize patterns and
achieve better predictability.

The study consists of two main steps. In the first step, random forests based on data from the Gaisberg Tower are
used to learn which larger-scale meteorological variables are responsible for triggering UL. The tower-trained models



4 Stucke et al.

are then applied to a larger study area, including Austria, southern and central Germany, Italy, and Switzerland, to
obtain high-resolution ( 1 km2 ) seasonal and annual UL risk maps for the entire area. In order to better understand
the predicted risk, the seasonal variations of the most influential larger-scale meteorological variables found at the
Gaisberg Tower are investigated. LLS-observed lightning at objects (not just at wind turbines) with an effective height
≥ 100 m are used to verify the resulting risk maps.

2 | DATA

The study requires meteorological data, lightning data and a database of all tall objects within a chosen study area
comprised of flat, hilly and complex terrain in the eastern Alps (Fig. 1). Larger-scale reanalysis data (ERA5) with hourly
resolution [14] form the basis of all meteorological investigations in this study. In addition, ground-truth lightning
current measurements at the Gaisberg Tower in Salzburg [Austria, 8] and LLS data from the European Cooperation
for Lightning Detection [EUCLID, 15] are used. In order to verify the predicted risk at tall objects, different types
of tall objects documented by the national aviation safety authorities of Austria, Switzerland, Germany and Italy are
employed [16, 17, 18, 19]. The verification period covers three years (2021–2023).

2.1 | Atmospheric reanalysis

ERA5 is the fifth generation of global climate reanalysis provided by the European Centre for Medium-RangeWeather
Forecasts (ECMWF). Data are available at hourly resolution and at a spatial resolution of 31 kmhorizontally ( 0.25 ◦ × 0.25 ◦

latitude-longitude grid) and at 137 levels vertically. Given that a precise risk assessment may necessitate a higher res-
olution than that offered by ERA5, the ERA5 variables are bilinearly interpolated to a 0.01◦ × 0.01◦ latitude-longitude
grid, roughly equivalent to 1 km × 1 km. In this study, 35 different variables from ERA5 are used to explain the occur-
rence of UL. These are either directly available or derived from variables at the surface, on model levels, or integrated
vertically. A complete list of the variable groups and individual variables can be found in the supporting information.

Atmospheric reanalysis data are first used in the modeling step, where each variable is spatially and temporally
interpolated to each UL observation at Gaisberg Tower. They are secondly used in the transfer step to the larger study
domain shown in Fig. 1, where each variable is bilinearly interpolated to each 1 km2 grid cell within the chosen study
area in a verification period between 2021 and 2023.

2.2 | Lightning measurements

LLS measurements for the study area (45◦N–50◦N and 8◦E–17◦E) are from the LLS EUCLID. The LLS measures at a
frequency range from 400 Hz to 400 kHz and quantifies lightning flash activity with a median location accuracy of
about 100 m [15, 21, 22]. While the LLS detects DL with a detection efficiency of more than 90 %, the detection
efficiency drops to less than 50 % in the case of UL. Therefore, the proportion of UL can significantly affect the
detection efficiency of lightning at tall objects.

The fundamental data source for constructing models to understand the occurrence of UL is only accessible
through direct measurements on specifically instrumented towers. With a physical height of 100 m above ground
and 1,288 m above mean sea level (47◦48′ N, 13◦60′ E, Fig. 1), Gaisberg Tower predominantly experiences UL [23]. In
total, 956 UL flashes were recorded at the Gaisberg Tower between 2000 and 2015 and from mid-2020 to the end of
2023.
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F IGURE 1 Topographic overview of study area and location of the instrumented Gaisberg Tower (Salzburg,
Austria). Colors indicates the elevation above mean sea level according to data taken from the Shuttle Radar
Topography Mission with a 90 m spatial resolution [20].
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Equipped with a sensitive shunt-type sensor, Gaisberg Tower measures all UL flashes, irrespective of the current
waveform. Three distinct current waveforms are observed at Gaisberg Tower [8]. The first type emerges when the
lightning process ends after the initial phase, involving only a prolonged ICC (ICConly). The second type involves this
ICC being overlaid with pulse type currents with relative peaks ≥ 2 kA (ICCP). Lastly, the third type of UL evolves
after a brief phase of no current followed by one or more downward leader-upward-return stroke processes similar
to those observed in DL processes (ICCRS).

The measurements at the Gaisberg Tower showed that the ICConly subtype cannot be detected by LLS at all.
According to [9], the other two subtypes of UL presented, (ICCRS) and (ICCP), are detected by LLS in 96 % and 58 %
of the cases, respectively. In order to better verify the resulting models, all analyses in this study are based exclusively
on UL that can be detected by LLS, i.e., UL of the ICCRS and the ICCP type.

2.3 | Lightning at tall objects

Fortuitously, international aviation regulations require each country to keep and update a database of tall objects that
might endanger flight safety. The study area contains several objects with heights significant for aviation safety (see
Table 1). This documentation is freely available for Germany, Austria, Switzerland and Italy, but does not include data
from the Czech Republic, Slovenia, Hungary and Croatia. The available database gives precise details of the geographic
location and physical height of each object, providing a basis for verifying the models from Sect. 3.1. Each country is
based on a different database with different levels of detail, e.g., tall trees are included in the Swiss database but not
in the others.

UL becomes important only from an effective height of 100 m of the object [e.g., 6]. Hence, the verification
process shall extract all LLS-observed lightning that hit an object with an effective height ≥ 100 m between 2021
and 2023. To match the location accuracy of LLS, all lightning within a radius of 100 meters around each object are
considered [21, 24].

The effective height considers the difference between the height of the object above mean sea level and the
height of the surrounding environment. This adjustment to the effective physical height accounts for the electric field
enhancement when the mean terrain elevation is significantly lower than the elevation at which an object is located,
such as when it is on a mountain or hill. The greater this difference, the greater the effective height and possibly the
greater the proportion of total lightning at tall objects.

Several methods have been proposed to compute the effective height. This study uses the method described in
[4], which assumes that the mountain is hemispherical with a height equal to the difference between the elevation of
where the tall object stands and the average elevation in 1 km2 around it. The method uses electrical field parameters
derived mainly from laboratory experiments. More details are found in [4] and in the supplemental information. While
this method is readily computable with the information available, it might underestimate the true effective height [25].

Figure 2a gives an overview how tall objects are distributed over the study area and panel b illustrates the distri-
bution of the effective height (≥ 100 m) of objects, represented by varying colors.

The highest concentration of tall objects is observed in the easternmost part of Austria and the central-eastern
subarea of Switzerland. There are also some areas in central Germany with an increased number of tall objects. Inter-
estingly, despite the relatively flat terrain in the German subarea, objects exhibit a comparatively large effective height
in contrast to more mountainous terrain (panel b). This phenomenon may be attributed to the hilly terrain in the Ger-
man subarea. In complex terrain, where mountains dominate the landscape, the mean elevation at the area of 1 km2

is relatively high. Conversely, in hilly terrain, the mean elevation is relatively low, causing hills to stand significantly
above the environmental average.
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TABLE 1 List of objects in the national regions of the study area documented by the respective aviation
authorities. Listed are the numbers of objects with an effective height ≥ 100 m and physical height ≥ 100 m (in
parenthesis).

Type of object Austria German
subarea

Italian
subarea

Swiss
subarea

Wind turbine 1318
(1283)

1638
(1632)

8 (8) 17 (11)

Mast (e.g., antenna,
tower)

270 (26) 166 (129) 35 (35) 90 (12)

Building 35 (35) 13 (11) 14 (5) 25 (5)

Stack 26 (26) 75 (75) 30 (30) 2 (2)

Transmission line 97 (85) 7 (7) 75 (75) 1862
(1216)

Cable car 169 (119) 1 (1) 265 (90) 520 (287)

Catenary 61 (16) 45 (45) - 1169
(566)

Others (e.g,
vegetation, bridge)

15 (15) 12 (3) 23 (15) 30 (12)

Total 1991 1957 450 3715

Total per km2 0.024 0.024 0.009 0.17

5 2 2 7 2 2

1 1 2 2 1 1 1

2 3 4 31 1 3 7 2 1 2 10 1

4 1 6 1 2 4 1 1 1 2 2 6 1

5 18 5 37 104 7 5 9 4 19 2 3 1 2 1 2

21 9 54 150 99 37 5 22 8 20 3 2 2 5 1 5 4 4 3 2 2 5 5

17 137 184 48 40 119 29 32 69 2 3 9 16 18 8 13 9 4 2 7 13 6 7 1 2 1

40 80 151 89 7 98 69 79 66 54 2 8 18 47 3 3 5 7 2 3 9 2 3 3 1 1 2 53 4 1

30 104 263 173 327 80 57 37 7 17 4 4 10 16 16 4 5 11 4 7 5 2 1 1 1 2 6 18 3 5 1

25 45 64 45 55 148 79 7 7 25 6 4 4 8 5 5 5 6 12 21 7 15 7 4 25 2 1 5 15 5 6 1 2

2 11 54 72 2 19 77 3 2 3 4 4 8 4 2 1 2 8 5 10 3 5 5 1 4 13 3 18 49 4 6 6 18

2 3 7 4 1 3 1 1 6 12 5 1 1 1 3 2 4 3 4 3 4 4 4 5 1 2 2 6 6 3 1 24

5 1 2 13 3 3 1 16 15 5 1 1 1 12 6 3 8 4 1 2 4 4 45 29 163 367

39 11 1 1 1 5 1 4 9 9 6 3 2 11 2 4 2 11 31 7 10 90 90

7 12 1 1 28 12 10 7 11 9 9 3 1 4 1 1 9 19 7 10 1 15 3 1 4 3 89 157

1 25 1 1 8 7 16 55 60 1 2 3 1 8 4 3 3 3 1 1 2 2 2 17 29 38

6 20 4 2 5 6 6 39 18 39 7 20 34 36 20 4 3 2 3 4 1

34 5 1 3 24 18 46 18 13 12 1 3 42 11 1

9 32 21 13 2 10 65 14 45 30 5 41 7 1 18 13 8 10

72 112 3 10 18 17 19 40 27 2 12 16 7 1 26 14 1 8

1 9 2 22 4 1 1 27 30 18 1 2 17 5 13 1

(a)46°N

47°N

48°N

49°N

50°N

 8°E 10°E 12°E 14°E 16°E

100 200 300

Tall objects per ERA5 grid cell

F IGURE 2 Panel a: accumulated number of objects with effective heights ≥100 m in ERA5 grid cells
(0.25◦ × 0.25◦). Panel b: all objects with effective heights ≥100 m coded by color.
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3 | METHODS

First, the relationship between UL events and the larger-scale meteorology is analyzed using random forests, linking
direct UL measurements from the Gaisberg Tower to meteorological reanalysis data. Gaisberg Tower is the only
location in the study area where all types of UL are measured. The random forests are subsequently applied to the
study area and evaluated with LLS-observed lightning at tall objects.

3.1 | Model construction based on Gaisberg Tower data

To link meteorological reanalysis data with the occurrence of UL at the Gaisberg Tower, this study uses random forests,
which is a flexible machine learning technique able to tackle nonlinear effects [26].

Whether or not UL occurs at Gaisberg Tower is a binary classification problem. In this classification problem,
35 larger-scale meteorological variables are the predictors chosen to explain the response. The response is LLS-
detectable UL at Gaisberg Tower (1) or no (LLS-detectable) UL (0) at Gaisberg Tower. Each of the meteorological
variables is spatio-temporally interpolated to an UL observation at Gaisberg Tower. Excluding LLS undetectable UL
(ICConly), 549 UL observations are recorded at Gaisberg Tower.

The algorithm constructs decision trees by assessing the connection between the binary response and each pre-
dictor variable through permutation tests, also known as conditional inference [27]. At each recursive step of tree
construction, the predictor variable exhibiting the highest (most significant) association with the response variable is
chosen. Subsequently, the dataset is partitioned based on this selected predictor variable to optimize the separation
of different response classes. This splitting procedure is recursively applied within each subset of the data until a
predefined stopping criterion, such as significance or subsample size, is satisfied. A qualitative example of a single
decision tree is given in the supporting information.

In the final stage, the random forest aggregates predictions from this ensemble of trees, thereby enhancing pre-
diction stability and performance. For additional insights into the algorithm and its implementation, refer to [28] and
[29].

The models’ response, which indicates the rare presence (1) or very frequent absence (0) of UL, is sampled equally
to ensure a balanced representation of the two classes. Hence, the predicted probabilities of the random forestmodels
shown in this study are termed “conditional probability” due to the balanced setup of the model response. To increase
the robustness of the results, 10 different random forest models are used to compute the conditional probability. Each
of these random forest models consists of the 549 UL observations associated with the larger-scale meteorological
setting and 549 randomly selected non-UL situations. The results shown in this study are the median of these 10
random forests.

3.2 | Transfer of the Gaisberg model result to the study area

Previous studies by the authors have shown that the random forest models trained on the Gaisberg Tower perform
well when tested on withheld data from the Gaisberg Tower or when tested on another tower, the Säntis Tower in
Switzerland [e.g., 30]. In this study, the results from the Gaisberg Tower are transferred to a variety of topographic
environments from flat to hilly to complex terrain. The tower-trained random forest model computes the conditional
probability of UL in grid cells of 1 km2 and 1 hour from the larger-scale meteorological reanalysis data. Whether the
resulting models are reasonable is justified by comparing the predicted conditional probabilities with LLS-observed
lightning at tall objects as described in Sect. 2.
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4 | RESULTS

The results of the study are presented in three distinct parts. In order to take into account the factors that critically
influence lightning at wind turbines according to the current lightning protection standards, the LLS-observed light-
ning at tall objects is compared with the total lightning activity including DL to ground within the selected study area
(Sect. 4.1). Then the influence of the effective height of the objects on the LLS-observed lightning is investigated.
The section then proceeds to showcase the application of Gaisberg Tower-trained models to the different subareas,
illustrating the modeled risk of UL at objects annually and for each season (see Sect. 4.2). Along with this, the seasonal
variations of the modeled risk (Sect. 4.2.1) as well as the seasonal variation in the diurnal cycle of the modeled risk is
presented (Sect. 4.2.2). Sect. 4.2.3 examines the performance of the results by quantitatively comparing the modeled
outcomes with LLS-observed lightning at tall objects. Following this, Sect. 4.3.1 investigates the meteorological con-
ditions that predominantly contribute to UL at the Gaisberg Tower. Section 4.3.2 explains the resulting modeled risk
from the most important meteorological variables that affect UL risk, including how these influential variables vary
throughout the seasons. A case study is included to demonstrate the models’ predictive behavior and the conditions
leading to an increased risk of UL (Sect. 4.3.3).

4.1 | LLS-observed lightning at tall objects

As mentioned, current lightning protection standards [1] take (i) the physical properties of the structure and (ii) the
local annual lightning flash density into account. Considering that the effective height may influence lightning at a
tall object according to the standards, panels a and b in Fig. 3 examine the role of effective height on the number of
flash-hours for objects with corresponding effective height values.

Panel a shows that the majority of objects have an effective height around 100 m. Panel b shows that objects
with higher effective heights are more frequently struck by lightning corroborating previous findings [e.g., 6, 5]. The
gap between 425 m and 500 m is likely due to the very few objects in that height range being located in areas with
low overall LLS-observed lightning at tall objects (see Fig. 4b). The Gaisberg Tower as computed using the method in
[4] is in a range between 250 m and 275 m.

The second important factor in assessing the risk of lightning at wind turbines according to the standards is the
local annual flash density (Fig. 4a).

Fig. 4a shows that the highest concentration of the total lightning activity is in the southern part of the study area
in northern Italy. These hotspots are thought to result from enhanced moisture transport from the Adriatic Sea by the
mountain plain circulation, which hits the rising topography and initiates convection. This is consistent with previous
studies investigating lightning climatologies in these regions [e.g., 31, 32, 33].

However, panel b in Fig. 4 is in stark contrast to panel a, as the maximum cumulative flash-hours of lightning at
tall objects are concentrated in the southwesternmost part of the German subarea and the central region of the same
subarea. In addition, the central-eastern and southernmost parts of Switzerland show a significant accumulation of
flash-hours. Similarly, panel b in Fig. 4 shows no association with the distribution of objects over the study area in
panel a of Fig. 2.

Flash-hours in panel b may have DL to ground in addition to lightning at tall objects within the same hour. To
examine the proportion of flash-hours exclusively characterized by lightning at tall objects, panel c examines lightning
within a 10 km radius of each object. The panel shows that the high concentration of lightning at tall objects in the
Swiss subarea is largely associatedwith DL to the ground also occurring within 10 km of the tall object within the same
hour. In the German subarea, however, the proportion of flash-hours at tall objects with no other lightning activity in
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F IGURE 3 Panel a: number of objects per effective height range. Panel b: number of flash-hours scaled by the
number of objects per effective height range.

the vicinity is significantly higher than in the other subareas. While in most cases hours with exclusively lightning at
tall objects accounts for less than 5 % of the total lightning activity around a tall object, in the German subarea hours
with exclusively lightning at tall objects accounts for up to 20 % or more of the total. It can be assumed that the mere
presence of the tall object significantly increases the total lightning activity. From Fig. 4d it can be concluded that
lightning at wind turbines accounts for the largest proportion of lightning activity 10 km around an object in this area,
while lightning at wind turbines in the eastern part of Austria, where also many wind turbines are located, accounts
for less than 5% of the surrounding lightning activity.

From this analysis it can be suggested that the local flash density does not sufficiently account for the occurrence
of lightning at tall objects and in particular for the occurrence of UL, so that for a more reliable risk assessment detailed
meteorological information must be included.

4.2 | Modeled risk of UL at tall objects

The following analyses highlight the importance of considering the larger-scale meteorological environment for ac-
curate UL risk prediction. The figures show the seasonal variation of the UL risk over the study area as well as the
seasonal variation of the diurnal cycle of theUL risk. In addition, the predictive performance of themodels is presented
and examined seasonally.

4.2.1 | Seasonal variations of the modeled risk

Panels a–d in Fig. 5 depict the risk for fall, spring, summer and winter, while panel (e) presents the annual risk. Across
all five panels, notable regions exhibit increased or decreased risk of UL according to the larger-scale meteorological
setting, and these patterns shift with the seasons. Shown is the modeled seasonal (panels a-d) and annual (panel e)
risk of UL as predicted by the Gaisberg Tower trained random forests, which are solely based on UL and not DL. Risk
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F IGURE 4 Panel a: total number of flash-hours in ERA5 grid cell (including DL to the ground and lightning at tall
objects) between 2021 and 2023. Panel b: accumulated number of flash-hours at objects with effective heights
≥100 m. Panel c: proportion of hours exclusively having lightning at tall objects to the total flash-hours 10 km
around each object. Excluded are those flash-hours, where also DL to the ground occurred around the object. Panel
d: proportion of wind turbines to the total number of objects in cell. One flash-hour is defined by at least one
lightning flash within a grid cell and within one hour.
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F IGURE 5 Seasonal (panels a–d) and annual (panel e) UL risk at tall objects modeled by the Gaisberg
Tower-trained random forest models. Risk is quantified by counting the number of hours exceeding a conditional
probability of 0.5. Red dots are LLS-detected flash-hours at tall objects accumulated to the 1 km2 grid cell size. The
size category numbers are the upper limit, e.g., size category 5 includes flash-hours from 1 to 5. Light beige shaded
cells are cells without tall objects.



Stucke et al. 13

is quantified by counting the number of hours in which the models predict a conditional probability greater than 0.5
for each 1 km2 grid cell. Absolute values of increased risk are difficult to interpret because the tower-trained random
forests, based on a balanced response with UL and no-UL situations, model the conditional probability.

The areas with the highest risk of UL shift throughout the year. From winter through spring and into summer,
the areas of increased risk tend to move both southward and eastward. In the fall, the region with the highest risk
is mainly located in the western German subarea and the southern German subarea, extending into the Swiss and
Austrian northern subareas. While similar in spring, there is a slight southward and eastward shift, with the highest
risk observed in the westernmost part of Austria extending eastward through Austria along the Alps, the easternmost
part of Switzerland, and the southwestern part of Germany. In summer, the hotspot regions shift to the eastern
and western parts of northern Italy and the eastern part of Austria. Conversely, in winter, the highest risk extends
over most of the German subarea and the northern parts of Switzerland and Austria. In contrast, a rather low risk is
observed south of the Alps during the cold season.

Combining the seasonal data reveals a distinct annual pattern (panel e). Areas with a consistently higher risk
include the German subarea, the northern parts of Switzerland and north western and central Austria, along with the
western and eastern parts of northern Italy.

Looking at LLS-observed lightning at tall objects possibly including DL at tall objects and UL (red dots), it is im-
portant to note that more than half of the actual UL flashes may not have been recorded by LLS, as discussed in
the introduction. Notably, in winter and the transitional seasons, observed lightning at tall objects is confined to the
northern part of the study area, where the highest risk is identified. In contrast, during summer, observed lightning at
tall objects extends to the southern regions, where the risk is also increased.

4.2.2 | Seasonal variations in the diurnal cycle of the modeled risk

Figure 6 panels a–d illustrates that not only does lightning at tall objects vary seasonally, but it also exhibits distinct
daily patterns for each season.

Notably, despite the common substantial increase in DL activity during the summer season, the absolute number
of flash-hours at tall objects does not vary as much between seasons as one might expect. The transitional seasons
each have a single peak. Activity peaks both in the fall and spring around 14 UTC. The most notable difference
between fall and spring is the relatively high activity around midnight in spring, a pattern also observed in summer.
Both the summer and winter seasons have two prominent peaks. In summer, the first and second peaks occur around
16 UTC and 19 UTC, respectively, while in winter these peaks occur around 4 UTC and 22 UTC, respectively. This
suggests that different meteorological settings may contribute to lightning at tall objects in different seasons, with
strong diurnal heating possibly dominating in summer, triggering deep convection and other processes, such as those
associated with cold fronts, influencing lightning at tall objects in winter and transitional seasons.

The shaded regions in each panel represent the disparity between aggregating hours with conditional probabili-
ties above 0.25 and those exceeding 0.75. A smaller shaded area indicates sharper [34] predictions during observed
lightning at tall objects. Contrarily, larger shaded areas indicate that the models barely predicted a conditional proba-
bility above 0.75 when lightning was observed at tall objects, indicating less sharpness in the predictions. Among the
four seasons, the predictions in winter are sharpest with the most narrow shaded areas particularly during nighttime
starting from 20 UTC until around 3 UTC. As the random forests model only UL, the best performance in winter might
suggest a greater contribution of UL to all lightning at tall objects in the colder season. Contrarily, the underestimation
of random forest models in summer suggests the dominance of DL in lightning at tall objects which the random forest
does not account for.
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F IGURE 6 Diurnal cycle of accumulated observed flash-hours at tall objects over the entire study area and
verification period (orange dots) versus modeled risk of UL during these events (above conditional probability
threshold of 0.5, gray line) of UL. The database consists of LLS-observed lightning at tall objects only and neglects
situations without lightning at tall objects. As only hourly predictions are provided, situations in which the same
object is hit multiple times within the same hour are only counted once. Shaded area shows the difference of the
sum of predicted hours between conditional probabilities of 0.25 and 0.75. Smaller shaded areas indicate sharper
predictions for identifying lightning at tall objects. The median values in the predictions for UL at tall objects in
winter, summer, fall and spring are 0.834, 0.68, 0.68 and 0.67, respectively.
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4.2.3 | Model evaluation

UL is rare resulting in a highly imbalanced dataset with a substantially higher fraction of instances where no UL occurs.
To evaluate the performance of the Gaisberg Tower-trained random forest models in the study area, two statistical
approaches are employed. The basis to understand Fig. 7 is to understand the principle of a confusionmatrix explaining
the differences between true/false positives/negatives (see supporting information). The performance results are
adjusted to fit the ERA5 grid cell size instead of the original 1 km2, whichmakes it easier to accurately predict lightning
at tall objects over time and space. In these adjusted predictions, only the highest predicted conditional probability
within each ERA5 grid cell is considered.

Figure 7a shows the precision-recall curve, selected for its ability to handle imbalanced data. In contrast, Fig-
ure 7b illustrates the Receiver Operating Characteristic (ROC) curve, a commonly used method for analyzing model
classification performance or to compare different models. For both approaches the area under the curve represents
the performance, which increases for larger areas.

The precision-recall curve focuses on the positive class, i.e., the UL occurrence and minority in the data set. It
evaluates the relationship between the recall or true positive rate, i.e., what proportion of actual UL flashes the model
correctly identified, and the precision, i.e., what proportion of UL flashes predicted by the model actually occurred.
The curve shows howprecision and recall change at different cutoff values for distinguishing betweenUL and noUL. In
this case, a precision-recall curve that rises rapidly with increasing recall and levels off slightly in the upper right corner
indicates satisfactory model precision, especially in the early stages of recall. The rapid increase in precision at lower
recall values demonstrates that the models are accurately identifying UL when it actually occurs, while minimizing the
number of actual UL events missed. Seasonally, the precision-recall curves are almost indistinguishable.

Complementing the precision-recall curve, the ROC curve in Figure 7b shows that the models perform best in
winter, as indicated by the blue curve. The ROC curve illustrates the trade-off between how many situations with no
UL are incorrectly predicted as having UL and how well the models predict UL situations that have actually occurred.

4.3 | The larger-scale meteorological influence on the risk of UL

The random forest model takes advantage of information contained in the 35 meteorological input variables. It also
allows to identify the variables containing most information about the occurrence of UL.

4.3.1 | The most influential meteorological variables at the Gaisberg Tower

To calculate the individual impact of each meteorological predictor variable in classifying UL, the values of each pre-
dictor variable are randomly shuffled, and the resulting decline in performance is assessed. The larger the decline the
more important that variable is.

As evident in the summarized variable importance presented in Fig. 8, one can deduce that both the wind field
and cloud physics-related variables exert most influence on the UL occurrence at the Gaisberg Tower, which is in
line with earlier research findings [35, 36]. The top five variables include maximum larger-scale upward velocity,
10 m wind speed, 10 m wind direction, convective available potential energy (CAPE), and convective precipitation.
Subsequent analyses will specifically focus on the top three most important variables to enhance our understanding
of the modeled risk of UL at tall objects. The maximum larger-scale upward velocity should not be confused with the
updrafts associated with the convective processes involved in thunderstorm development. Rather, it is the result of
larger-scale processes such as lifting along fronts, synoptic troughs or topography.
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F IGURE 7 Performance of the random forest models compared to no-skill models. Panel a: precision-recall
curve illustrating the trade-off between what proportion of actual UL flashes the model correctly identified (recall),
and what proportion of UL flashes predicted by the model actually occurred (precision) for varying cutoff values
determining whether UL occurred or not. Panel b: ROC curves for each season showing the trade-off between the
proportion with no UL incorrectly predicted as having UL and how well the models predict UL situations that have
actually occurred. The larger the area under the curve in both panels, the better the performance.

F IGURE 8 Permutation variable importance according to random forests based on balanced proportions of
situations with and without UL at the Gaisberg Tower. Importance increases from left to right.
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4.3.2 | Seasonal analysis of the larger-scale meteorology during lightning at tall objects

Each row in Fig. 9 represents a season and shows a distinct meteorological setting prevalent during LLS-observed
lightning at tall objects. The panels summarize the median wind speed and wind direction at 10 m (left column) and
the median maximum larger-scale upward velocity (right column).

The increased predicted risk in the German subarea as depicted in Fig. 5 is associated with northerly and north-
westerly near-surface winds in all four seasons. Coupled with hilly terrain, where the winds are deflected upward, this
causes enhanced larger-scale upward velocities. Consequently, a relatively high risk of UL is evident throughout the
year, with the most significant impact observed in the transitional seasons and winter.

Similarly, the increased risk associated with complex terrain appears to result from increased maximum upward
velocities, likely induced by strong winds impinging the topography and being deflected upward, triggering convec-
tion and UL at tall objects. Depending on the prevailing wind direction, increased larger-scale upward velocities are
observed either north or south of the eastern Alps (right column).

Overall, it appears that regions located on the windward side have an increased risk of UL due to comparatively
strong near-surface winds and the presence of hills and mountains that deflect the wind upward, creating conditions
favorable for UL on tall objects. This is true for the windward side of the northern Alps, which are influenced by strong
northerly winds in northern Switzerland, Austria, and the entire German subarea during the transitional seasons and
winter. This might also be true for the weak southerly flow, which might influence the risk in western and eastern
northern Italy, especially in summer. Conversely, the risk is lower in the central southern Alpine regions of Austria,
central southern Switzerland, and central northern Italy.

We propose that especially in winter, and also in spring and fall, processes associated with cyclogenesis, cold front
passages, and troughs induce large wind speeds, convective precipitation, and an unstable atmosphere conducive to
initiating convection andUL. In contrast, the summer situationmight be often characterized by smaller-scale processes
and/or strong diurnal heating and solar irradiation, providing conditions for both deep convection initiation and UL at
tall objects triggered by nearby DL activity [30].

4.3.3 | Case study

A case study of the earlymorning hours (3–6UTC) of February 21, 2022 demonstrates the performance of the random
forests. For simplicity, again only the three most important meteorological variables out of 35 are examined in detail.

The synoptic situation in this case study is dominated by the passage of a cold front, evident from the densely
packed isothermes in panel b. The blue linewith triangles illustrates the approximate location of the cold front at 6UTC
after having passed through the north-western corner of the study area. The region with high predicted conditional
probabilities is characterized by strong near-surface winds originating from the north, peaking in the area where most
actual lightning flashes were observed (panel c). Elevation contour lines in panel a indicate elevated terrain, resulting
in increased maximum upward velocity when the wind gets deflected. This, in turn, enhances the probability of UL,
particularly in the southwesternmost part of Germany, where actual UL flashes have been observed, as indicated by
the yellow dots.

In panel d, a substantial area exceeds a conditional probability value of 0.5, which is the threshold chosen in Fig. 5.
The highest predicted probabilities, surpassing 0.8, are concentrated in the German subarea, particularly fromwestern
to central southern Germany. Observed lightning at tall objects aligns with the areas of increased risk of UL. However,
not all grid cells with elevated probability do experience UL.
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F IGURE 9 Seasonal median of the three most influential meteorological variables during LLS-observed lightning
at tall objects. Left column: wind speed coded by color and wind direction indicated by arrows (average over
0.5 ◦ × 0.5 ◦). Right column: Median of the maximum larger-scale upward velocity for each season. Negative values
indicate upward motion.
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F IGURE 10 Case study from February 21, 2022 between 3 UTC and 6 UTC. Panel a: maximum of the
larger-scale upward velocity over verification period. Panel b: Location of 850 hPa isothermes at 6 UTC with the
approximate location of the cold front. Panel c: Color areas are maximum of wind speed over verification period,
arrows illustrate wind direction at 6 UTC. Panel a: Maximum of predicted conditional probability over considered
verification period. Yellow dots are accumulated LLS-detected flashes at tall structures. Dark gray shaded cells are
cells without tall objects.
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5 | DISCUSSION

The findings provide clear indications that the seasonal variability in preferred larger-scale meteorological patterns
influences the risk of UL at tall objects. Certain regions exhibit higher susceptibility during specific seasons, as also
evidenced by observed lightning at tall objects. For instance, in the colder season, the risk is considerably higher
north of the Alps. This might be attributed to processes connected to cyclogenesis preferably evolving from north-
/north-west to east in the colder season. Conversely, certain areas of northern Italy, particularly the western and
eastern parts, where the overall lightning activity is quite high, show a relatively high risk for UL during the summer,
in contrast to the lower risk during the colder season. The prevailing favorable meteorological conditions combined
with obstructive terrain and elevated effective heights, especially in the hilly regions of southern Germany, may cause
the risk to exceed the risk predicted by the random forest models trained on the Gaisberg Tower.

Although observed lightning at tall objects indicate a reasonable risk assessment, there are naturally discrepancies
between the modeled risk and the observation. The most obvious reason for discrepancies is the fact that the models
trained at Gaisberg Tower consider only UL and ignore DL, since the former is almost exclusively observed at Gaisberg
Tower. While the models only consider UL, lightning at tall objects used for verification may include both UL and DL,
since LLS do not distinguish UL from DL. Consequently, the models may not adequately capture the prevalence of
DL at tall objects. This might be less critical in the winter season, which is suggested to be dominated by UL [37, 10].
Especially in the late afternoon and evening in summer, the models underestimate the risk of observed lightning at tall
objects, while the increased number of observed lightning at tall objects could actually be majorly DL at tall objects
and not UL striking the object (see Fig. 6).

Another aspect is that successful verification depends on the availability of high quality lightning data. Although
the LLS has a high detection efficiency for DL, its efficiency for UL is less than 50%, which poses a challenge for
a reasonable verification of the modeled risk. Although the models exclude ICConly UL, both ICCRS and especially
ICCPulse UL also face limitations in detection efficiency (see also Sect. 2).

Other non-meteorological factors may significantly influence the occurrence of UL at wind turbines. Neither
topographic characteristics nor varying effective heights can be accounted for in the tower-trained models. As men-
tioned, the occurrence of UL at tall objects is closely related to the effective height, with both UL and DL possible
in the range of approximately 100 m to 500 m. The Gaisberg Tower has a specific effective height of about 270 m
according to [4] and considerably higher according to [25]. Consequently, the maps in Fig. 5 show the risk for objects
in this height range. Figure 3b may be used to adjust it for objects of different heights.

Applying the same algorithm [4] to compute the effective height as for all other objects, the effective height
of Gaisberg Tower is 270 m. Since it sits on a hill that is approximately 800 m higher than the terrain to the north,
its actual effective height likely exceeds 500 m and was determined [25] to range between approximately 300 m
to 670 m. From the results we suggest that the combination of favorable meteorological conditions and increased
effective heights, as is especially the case in southern and southwestern Germany and easternmost Austria, could
increase the fraction of UL over DL in total lightning at tall objects.

Physical properties of the object may also play a role, for example, the shape of the structure, as well as the
rotation of the wind turbine blades may affect the UL risk [38]. In addition, wind farms with many turbines can create
"hotspots" for lightning due to a significant increase in the electric field [24]. This would also support the hypothesis
that the German subarea, where many wind turbines are located, has the highest proportion of hours in which only
lightning at tall objects occurs without any other lightning activity to the ground around the turbine.

Finally, it is often much more important to correctly predict a high risk at the appropriate time, when the event
actually occurs, than to overestimate it. The performance analysis and verification have shown that the random forest
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models trained at Gaisberg Tower are able to reliably and correctly assess this risk, which has the most valuable
application also for the wind energy sector.

6 | CONCLUSIONS

This study examines the risk of lightning at tall objects large enough to experience a significant proportion of rare
but destructive upward lightning (UL). In recent years, UL has become a major concern for wind turbines as they
increasingly suffer from UL. Direct lightning current measurements at the specially instrumented Gaisberg Tower in
Austria show that more than half of the UL is not detected by the local Lightning Location System (LLS) due to very
specific current waveforms observed in UL making a proper spatio-temporal risk assessment of UL nearly impossible.
Current approaches to assessing lightning risk often overlook crucial meteorological factors, potentially leading to a
considerable underestimation of UL risk for wind turbines. This study highlights the necessity of integrating detailed
meteorological data into risk assessment to achieve amore reliable understanding of lightning risk at tall wind turbines.

Therefore, this study investigates the larger-scale meteorological role of UL at tall objects and uses direct UL ob-
servations at the Gaisberg Tower together with globally available larger-scale meteorological reanalysis data. Random
forests, a popular and flexible machine learning technique, distinguish UL from non-UL situations. The results show
the importance of wind field and cloud physics relevant variables, which is in agreement with previous studies. The
three most important variables from a set of 35 distinguishing UL from no-UL situations at Gaisberg are the maximum
large-scale upward velocity, wind speed at 10 m, and wind direction at 10 m. Further convective available potential
energy and cloud physics related variables are important.

In a second step, these findings are applied to a study area covering Austria, parts of Italy, Germany and Switzer-
land. Themodels trained at the Gaisberg Tower predict the conditional probability of ULwithin this area at a resolution
of 1 km2. For verification, all objects large enough to experience UL, i.e., having an effective height of ≥ 100 m, are
considered, and LLS-detected lightning at tall objects in the verification period between 2021 and 2023 within a
100 m radius of each tall object are extracted. Tall objects are distributed throughout the study area, with maxima
in the central-eastern Swiss subarea and eastern Austria. Objects with large effective heights are found in southern,
south-western and central Germany, as well as eastern Austria.

The highest LLS-observed activity of lightning at tall objects is mainly in the central southern and western Ger-
man subarea, as well as in the Swiss subarea. Wind turbines are most pronounced in the German subarea and in
easternmost Austria. In the German subarea, lightning at tall wind turbines can account for up to 20 % and more of
the total lightning activity within a 10 km radius particularly around wind turbines. In all other subareas the proportion
of lightning at tall objects to the total lightning activity 10 km around an object is less than 5 %.

Evaluating the risk of UL at tall objects from Gaisberg Tower-trained random forest models based only on larger-
scale meteorological variables shows that the annual risk is highest in southern Germany as well as northern and
eastern Austria and northern Switzerland. Western and eastern northern Italy also have an increased risk of UL. A
seasonal analysis shows that in winter the highest risk is limited to the regions north and east of the eastern Alps,
while south of the eastern Alps (eastern and western northern Italy) the risk is also increased in the transition seasons
and especially in summer. The analysis of the three main variables shows that the highest predicted probabilities are
due to the deflection of strong larger-scale near-surface winds at the topography, leading to an increase in larger-scale
upward velocities. In the winter and transition seasons, the wind is predominantly from the north, increasing the risk
of UL north of the Alps. In thewarmer seasons and in summer, the increased risk south of the Alpsmay be due to other
influences, such as thermally driven slope winds, valley winds and mountain-plain circulations. Between the high-risk
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areas of southern Switzerland, central northern Italy and southern parts of Austria, the risk is lower in all seasons.
The diurnal cycle of the modeled risk varies seasonally. While the transitional seasons show a prominent peak in the
afternoon, summer and winter show two prominent peaks. The highest risk in summer is in the late afternoon and
evening, while the highest risk in winter is in the late evening and night.

A comparison with LLS-observed lightning at tall objects shows a qualitatively good agreement with increased or
decreased risk. While the areas of increased risk are much larger than areas with observed lightning at tall objects (UL
is a very rare phenomenon), the performance of the models to correctly predict high risk of UL when lightning has
actually occurred at a tall object is good throughout the year. The precision of the predictions is highest in winter.

acknowledgements

We acknowledge the funding of this work by the Austrian Climate Research Program - Implementation. The compu-
tational results presented have been achieved in part using the Vienna Scientific Cluster (VSC).

conflict of interest

The authors declare no competing interests.

data availability

ERA5 data are freely available at the Copernicus Climate Change Service (C3S) Climate Data Store [14]. The results
contain modified Copernicus Climate Change Service information (2020). Neither the European Commission nor
ECMWF is responsible any use that may be made of the Copernicus information or data it con- tains. EUCLID data
and ground truth lightning current measurements from the Gaisberg Tower are available only on request. For more
details contact Wolfgang Schulz.



Stucke et al. 23

references
[1] IEC 61400-24. International Standard: Wind Energy Generation Systems - Part 24: Lightning Protection. Second ed.

IEC 61400-24:2019-07(en), Geneva, Switzerland: International Electrotechnical Commission (IEC); 2019.

[2] Candela Garolera A, Madsen SF, Nissim M, Myers JD, Holboell J. Lightning Damage to Wind Turbine Blades FromWind
Farms in the U.S. IEEE Transactions on Power Delivery 2016;31(3):1043–1049.

[3] Montanyà J, Fabró F, van der Velde O, March V, Williams ER, Pineda N, et al. Global Distribution of Winter Lightning:
A Threat to Wind Turbines and Aircraft. Natural Hazards and Earth System Sciences 2016;16(6):1465–1472. https:
//www.nat-hazards-earth-syst-sci.net/16/1465/2016/nhess-16-1465-2016.pdf.

[4] Zhou H, Theethayi N, Diendorfer G, Thottappillil R, Rakov VA. On Estimation of the Effective Eeight of Towers onMoun-
taintops in Lightning Incidence Studies. Journal of Electrostatics 2010;68(5):415–418. https://www.sciencedirect.
com/science/article/pii/S030438861000077X.

[5] Shindo T. Lightning Striking Characteristics to Tall Structures. IEEJ Transactions on Electrical and Electronic Engineering
2018;13(7):938–947. https://onlinelibrary.wiley.com/doi/abs/10.1002/tee.22649.

[6] Rakov VA, Uman MA. Lightning: Physics and Effects. Cambridge University Press; 2003.

[7] Birkl J, Shulzhenko E, Heidler F, Diendorfer G. Measuring Lightning Currents on Wind Turbines. In: 4th International
Symposium on Winter Lightning (ISWL2017); 2017. .

[8] Diendorfer G, Pichler H, Mair M. Some Parameters of Negative Upward-Initiated Lightning to the Gaisberg Tower
(2000–2007). IEEE Transactions on Electromagnetic Compatibility 2009;51(3):443–452. https://ieeexplore.ieee.
org/document/5089467.

[9] Diendorfer G, Pichler H, Schulz W. LLS Detection of Upward Initiated Lightning Flashes. In: Proc. 9th Asia-Pacific
International Conference on Lightning (APL) Nagoya, Japan; 2015. p. 5. https://www.ove.at/fileadmin/user_upload/
aldis/publication/2015/2_APL2015_Diendorfer.pdf.

[10] Rachidi F, Rubinstein M, Montanyà J, Bermudez JL, Sola RR, Solà G, et al. A Review of Current Issues in Lightning Pro-
tection of New-Generation Wind-Turbine Blades. IEEE Transactions on Industrial Electronics 2008;55(6):2489–2496.

[11] Pineda N, Montanyà J, Salvador A, van der Velde OA, López JA. Thunderstorm Characteristics Favouring Downward
and Upward Lightning to Wind Turbines. Atmospheric Research 2018;214:46–63.

[12] March V. Key Issues to Define aMethod of Lightning Risk Assessment forWind Farms. Electric Power Systems Research
2018;159:50–57. https://www.sciencedirect.com/science/article/pii/S0378779617303450, recent Developments
on Lightning Research and Protection Technologies.

[13] Becerra M, Long M, Schulz W, Thottappillil R. On the Estimation of the Lightning Incidence to Offshore Wind
Farms. Electric Power Systems Research 2018;157:211–226. https://www.sciencedirect.com/science/article/pii/
S0378779617304790.

[14] Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, et al. The ERA5 Global Reanalysis. Quarterly
Journal of the Royal Meteorological Society 2020;146(730):1999–2049. https://rmets.onlinelibrary.wiley.com/
doi/abs/10.1002/qj.3803.

[15] Schulz W, Diendorfer G, Pedeboy S, Poelman DR. The European Lightning Location System EUCLID - Part 1: Per-
formance Analysis and Validation. Natural Hazards and Earth System Sciences 2016;16(2):595–605. https://pdfs.
semanticscholar.org/dba9/b99d6050e3032b823dc88302fd922b89ab83.pdf.

[16] ENAV Group, Obstacle Data Set -Italy: Aeronautical information publication;. Accessed: 2024-02-01. https://
onlineservices.enav.it/enavWebPortalStatic/AIP/AIP/(A11-23)_2023_12_28/index.html.

https://www.nat-hazards-earth-syst-sci.net/16/1465/2016/nhess-16-1465-2016.pdf
https://www.nat-hazards-earth-syst-sci.net/16/1465/2016/nhess-16-1465-2016.pdf
https://www.sciencedirect.com/science/article/pii/S030438861000077X
https://www.sciencedirect.com/science/article/pii/S030438861000077X
https://onlinelibrary.wiley.com/doi/abs/10.1002/tee.22649
https://ieeexplore.ieee.org/document/5089467
https://ieeexplore.ieee.org/document/5089467
https://www.ove.at/fileadmin/user_upload/aldis/publication/2015/2_APL2015_Diendorfer.pdf
https://www.ove.at/fileadmin/user_upload/aldis/publication/2015/2_APL2015_Diendorfer.pdf
https://www.sciencedirect.com/science/article/pii/S0378779617303450
https://www.sciencedirect.com/science/article/pii/S0378779617304790
https://www.sciencedirect.com/science/article/pii/S0378779617304790
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.3803
https://pdfs.semanticscholar.org/dba9/b99d6050e3032b823dc88302fd922b89ab83.pdf
https://pdfs.semanticscholar.org/dba9/b99d6050e3032b823dc88302fd922b89ab83.pdf
https://onlineservices.enav.it/enavWebPortalStatic/AIP/AIP/(A11-23)_2023_12_28/index.html
https://onlineservices.enav.it/enavWebPortalStatic/AIP/AIP/(A11-23)_2023_12_28/index.html


24 Stucke et al.

[17] Austro Control, Obstacle Data Set (ICAO) - Austria;. Accessed: 2024-01-11. https://sdimd-free.austrocontrol.at/
geonetwork/srv/eng/catalog.search#/metadata/7e38519b-c0c4-4ad3-a918-d38f5f80106b.

[18] Swiss Federal Spatial Data Infrastructure, Obstacle Data Set - Switzerland;. Accessed: 2024-01-11. https:
//data.geo.admin.ch/browser/index.html#/collections/ch.bazl.luftfahrthindernis/items/luftfahrthindernis?
.asset=asset-luftfahrthindernis_4326.csv.zip.

[19] Deutsche Flugsicherung, Obstacle Data Set - Germany;. Accessed: 2024-01-11. https://aip.dfs.de/datasets/.

[20] Farr TG, Kobrick M. Shuttle Radar Topography Mission produces a wealth of data. Eos, Transactions American Geophys-
ical Union 2000;81(48):583–585.

[21] Diendorfer G. A Review of 25 Years of Lightning Research in Austria from 1991–2015. In: World meeting on Lightning;
2016. .

[22] Vergeiner C, SchulzW, Pack S. On the Performance of the Austrian Lightning Detection and Information System (ALDIS).
In: Institute of High Voltage Engineering and System Management Graz University of Technology; 2013.

[23] Diendorfer G, Zhou OA, Stockholm K, Pichler H. Review of 10 Years of Lightning Measurement at the Gaisberg Tower
in Austria. Proc 3rd International Symposium on Winter Lightning 2011 01;.

[24] Soula S, Georgis JF, Salaün D. Quantifying the Effect of Wind Turbines on Lightning Location and Characteristics. At-
mospheric Research 2019;221:98–110. https://www.sciencedirect.com/science/article/pii/S0169809518316648.

[25] Smorgonskiy A, Rachidi F, Rubinstein M, Korovkin N. On the Evaluation of the Effective Height of Towers: The Case of
the Gaisberg Tower. In: 2012 International Conference on Lightning Protection (ICLP); 2012. p. 1–4.

[26] Breiman L. Random Forests. Machine Learning 2001;45:5–32. https://rdcu.be/c61Vu.

[27] Strasser H, Weber C. On the Asymptotic Theory of Permutation Statistics. Mathematical Methods of Statistics
1999;8:220–250. https://epub.wu.ac.at/102/.

[28] Hothorn T, Hornik K, Zeileis A. Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Com-
putational and Graphical Statistics 2006;15(3):651–674.

[29] Hothorn T, Zeileis A. partykit: A Modular Toolkit for Recursive Partytioning in R. Journal of Machine Learning Research
2015;16(118):63905–3909. http://jmlr.org/papers/v16/hothorn15a.html.

[30] Stucke I, Morgenstern D, Diendorfer G, Mayr GJ, Pichler H, Schulz W, et al. Upward Lightning at the Gaisberg
Tower: The Larger-Scale Meteorological Influence on the Triggering Mode and Flash Type. Journal of Geophysical Re-
search: Atmospheres 2023;128(10):e2022JD037776. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2022JD037776.

[31] Simon T, Mayr GJ. Lightning Climatology for the Eastern Alpine Region on the Kilometer Scale with Daily Resolution. e
& i Elektrotechnik und Informationstechnik 2022;139(3):352–360.

[32] Feudale L, Manzato A, Micheletti S. A Cloud-To-Ground Lightning Climatology for North-Eastern Italy. Advances in
Science and Research 2013;10(1):77–84.

[33] Taszarek M, Allen J, Púčik T, Groenemeijer P, Czernecki B, Kolendowicz L, et al. A Climatology of Thunderstorms Across
Europe from a Synthesis of Multiple Data Sources. Journal of Climate 2019;32(6):1813–1837.

[34] Gneiting T, Balabdaoui F, Raftery AE. Probabilistic Forecasts, Calibration and Sharpness. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 2007;69(2):243–268.

[35] Stucke I, Morgenstern D, Diendorfer G, Mayr GJ, Pichler H, Schulz W, et al. Thunderstorm Types and Meteorologi-
cal Characteristics of Upward Lightning. In: 2022 36th International Conference on Lightning Protection (ICLP), 2–7
October 2022, Cape Town, South Africa; 2022. p. 282–288.

https://sdimd-free.austrocontrol.at/geonetwork/srv/eng/catalog.search#/metadata/7e38519b-c0c4-4ad3-a918-d38f5f80106b
https://sdimd-free.austrocontrol.at/geonetwork/srv/eng/catalog.search#/metadata/7e38519b-c0c4-4ad3-a918-d38f5f80106b
https://data.geo.admin.ch/browser/index.html#/collections/ch.bazl.luftfahrthindernis/items/luftfahrthindernis?.asset=asset-luftfahrthindernis_4326.csv.zip
https://data.geo.admin.ch/browser/index.html#/collections/ch.bazl.luftfahrthindernis/items/luftfahrthindernis?.asset=asset-luftfahrthindernis_4326.csv.zip
https://data.geo.admin.ch/browser/index.html#/collections/ch.bazl.luftfahrthindernis/items/luftfahrthindernis?.asset=asset-luftfahrthindernis_4326.csv.zip
 https://aip.dfs.de/datasets/
https://www.sciencedirect.com/science/article/pii/S0169809518316648
https://rdcu.be/c61Vu
https://epub.wu.ac.at/102/
http://jmlr.org/papers/v16/hothorn15a.html
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022JD037776
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022JD037776


Stucke et al. 25

[36] Stucke I, Morgenstern D, Diendorfer G, Mayr GJ, Pichler H, Schulz W, et al. Upward Lightning at
Wind Turbines: Risk Assessment From Larger-Scale Meteorology. Journal of Geophysical Research: Atmo-
spheres 2024;129(1):e2023JD039505. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023JD039505,
e2023JD039505 2023JD039505.

[37] Diendorfer G. Probability of Lightning Strikes toWind Turbines in Europe DuringWinter Months. Copernicus Meetings;
2020.

[38] Montanyà J, van der Velde O, Williams ER. Lightning Discharges Produced by Wind Turbines. Journal of Geophysi-
cal Research: Atmospheres 2014;119(3):1455–1462. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/
2013JD020225.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023JD039505
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JD020225
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JD020225


26 Stucke et al.

Supporting Information

| Estimation of the effective height

The effective height is computed following [4] by assuming a hemispherical mountain:

Heff =
(
5.87 × 10−3 + 2.04 × 10−6 × Eg

)−2.04×10−6 (1)

using:

Eg =
Ulc + 73400

(h + a ) (1 − a3

(h+a )3 )

Ulc =
1556 × 103

1 + 7.78
R

R =
2(h + a )

1 +
(

r1
r2−a2

)
−
(

r1
r2+a2

)
r1 = 2a (h + a ) ; r2 = (h + a )2

(2)

where Hef f (m) is the effective height and h (m) is the actual height of the object. Ul c (kV) is the continuous leader
inception potential due to the cloud charges, R (m) is a geometrical parameter, a (m) is the mountain height, which
in the current study is taken to be the difference between the 1 km2 mean elevation and the elevation at which the
object is located to also account for the surrounding terrain. Eg (kV/m) is the ambient uniform electric field. For more
details see [4].

| Example of a decision tree

Figure 11 shows the structure of a single decision tree. It shows several nodes, each associated with specific split
variables. Initially, the maximum large-scale upward velocity serves as the primary split variable. Thresholds between
nodes indicate where the split variable is splitted for optimal performance. Following a single UL observation along
the path determined by these thresholds leads to a terminal node, represented by the bottom bars. The colors of
these bars indicate the number of observations assigned to each terminal node, indicating UL or no UL prediction.
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F IGURE 11 Example of a decision tree. Meteorological variables in the nodes are splitted according to the split
points (numbers at the solid lines). Terminal nodes (bars) give the decision. The number of observations included in
the decision pars is given above the terminal nodes as N .

| Understanding a confusion matrix

Actual
Positive Negative

Predicted
Positive True positive False positive
Negative False negative True negative
Total a + c b + d N

A true positive rate is the proportion of true positive divided by the sum of true positives and false negatives. The
false positive rate on the other hand is the proportion of false positives divided by the sum of true positives and false
positives.

| List of variables included in the random forest models
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TABLE 2 Table of larger-scale variables taken from ERA5 and variables derived from ERA5. The derived variables
are suggested to be potentially important in the charging process of a thundercloud or for the development of
convection.

Variable Unit Variable Unit

Cloud base height above ground m agl Convective precipitation (rain + snow) m
Large scale precipitation m Cloud size m
Maximum precipitation rate (rain + snow) kg m−2 s−1 Ice crystals (total column, tciw) kg m−2

Solid hydrometeors (total column, tcsw) kg m−2 Supercooled liquid water (total column, tcslw) kg m−2

Water vapor (total column) kg m−2 Integral of cloud frozen water flux divergence kg m−2 s−1

Vertical transport of liquids around −10 ◦C kg Pa s−1 Ice crystals (−10 ◦C - −20 ◦C) kg m−2

Ice crystals (−20 ◦C - −40 ◦C) kg m−2 Cloud water droplets (−10 ◦C - −20 ◦C) kg m−2

Solid hydrometeors (−10 ◦C - −20 ◦C) kg m−2 Solid hydrometeors (−20 ◦C - −40 ◦C) kg m−2

Solids (cswc + ciwc) around −10 ◦C kg m−2 Liquids (clwc + crwc) around −10 ◦C kg m−2

2 m dew point temperature K Mean vertically integrated moisture convergence kg m−2 s−1

Water vapor (−10 ◦C - −20 ◦C) kg m−2 Boundary layer height m
Surface latent heat flux J m−2 Surface sensible heat flux J m−2

Downward surface solar radiation J m−2 Convective available potential energy J kg−1
Convective inhibition present binary Mean sea level pressure Pa
Height of −10 ◦C isotherm m agl Boundary layer dissipation J m−2

Maximum larger-scale upward velocity Pa s−1 Total cloud shear m s−1

Wind speed at 10 m m s−1 Wind direction at 10 m ◦

Shear between 10 m and cloud base m s−1
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