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ABSTRACT
We explore link prediction as a proxy for automatically surfacing
documents from existing literature that might be topically or con-
textually relevant to a new document. Our model uses transformer-
based graph embeddings to encode the meaning of each document,
presented as a node within a citation network. We show that the
semantic representations that our model generates can outperform
other content-based methods in recommendation and ranking tasks.
This provides a holistic approach to exploring citation graphs in
domains where it is critical that these documents properly cite each
other, so as to minimize the possibility of any inconsistencies.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Retrieval models and ranking.

KEYWORDS
graph neural networks, citation recommendation

1 INTRODUCTION
Deep learning has proven successful in creating high dimensional
representations of data that can be leveraged to learn complex tasks.
For instance, convolutions form the backbone for many image-
based tasks, and text-based data has relied upon recurrent net-
works and attention mechanisms to produce high quality results
for natural language processing and machine translation. Recently,
the inception of transformer-based models by [11] has lead to a
paradigm shift that is currently driving new state-of-the-art perfor-
mance in many tasks, including graph-based analysis. This paper
examines a graph-based approach using transformers to build doc-
ument embeddings from a large citation network. We show that
the resulting embeddings can be used to recommend citations for
new documents, outperforming baselines on both precision and
recall. In addition, we show that traditional graph tasks such as link
prediction can be used as proxies for other important applications,
such as search recommendation and recovery tasks.

Our approach operates on a corpus of documents known as
methodology or criteria, maintained by a credit rating agency (CRA).
These institutions cover thousands of entities globally. Each entity
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is rated according to a strict analytical framework that includes
methodological criteria that guides every step of analysis. It is
critical to keep this citation graph up-to-date, as any inconsistency
can pose a risk to the accuracy of the ratings process. Hence, there is
immense value in organizing, recommending, and ranking relevant
criteria based on their joint semantic and graphical representations
to resolve hidden and implicit citations.

2 RELEVANT BACKGROUND
Deep learning has proven to be versatile to a number of diverse tasks
and datasets, and several attempts have been made to extend cur-
rent architectures and frameworks to deal with data structured as
graphs. Early attempts with graph data involved applying modified
recurrent neural networks on a target node embeddings, propagat-
ing node states until an equilibrium is reached [3, 10]. Many authors
have investigated spectral representations of graphs, simplifying
earlier methods by restricting the scope of the filters with respect
to the node’s neighborhood [6]. Non-spectral approaches apply
convolutions directly on groups of spatially close neighbors [4].
However, attention-based mechanisms introduced by [11] have
been applied to graph problems by [12] and shown to outperform
previous methods on citation datasets.

3 DATA: CRA CRITERIA CORPUS
Our dataset contains 2,247 criteria documents, publicly accessible
via the CRA’s website1. Citations can be expressed as inline hyper-
links or mentions of titles of other criteria documents. For the latter
case, we used string matching to resolve explicit mentions. This
method surfaced 13,959 directed citations within our dataset, an av-
erage rate of 6.2 citations per document. Our set originally featured
10,428 lemmatized nouns (with stop words removed). We reduced
the set to the 300 most frequent words, and calculated TF-IDF vec-
tors for each word-document pair. The vectors are normalized with
mean 0 and standard deviation 1.

4 PROBLEM STATEMENT
Our approach employs link prediction as a proxy for citation rec-
ommendation and ranking. During training, a subset of nodes (i.e.
criteria) are used to teach the model how to recover their missing
links (i.e. citations). Linkages from validation nodes are masked, and
our model reconstructs them. As each predicted link is associated
with a probability, these confidence scores can be used as a ranking
heuristic to order relevant citations. Key performance metrics are
measured by the coverage and accuracy of the recovered missing
linkages.

1https://www.standardandpoors.com/en_US/web/guest/ratings/ratings-criteria
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Figure 1: Augmented Transformer with Learned Residual.
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Table 1: Ablation: Number of Hops
Learned Residual Recovery

𝑛 hops L1 L2 L3 L4 L5 % Original MAP@k MAR@k No. Params

0-hop - - - - - 100.0 0.214 0.545 23,360
1-hop 10.5 - - - - 89.5 0.253 0.644 56,897
2-hop 12.8 6.4 - - - 81.6 0.254 0.653 90,434
3-hop 15.5 5.5 6.9 - - 74.3 0.218 0.523 123,971
4-hop 16.2 7.7 6.0 6.7 - 67.8 0.181 0.398 157,508
5-hop 17.2 11.4 6.2 7.1 9.9 57.6 0.170 0.342 191,045

Table 2: Ablation: Effect of Different Components
Similarity Recovery

Model (Embedding Size) MSE Cosine MAP@k MAR@k No. Params

TF-IDF (300) 22.39 0.18 0.105 0.346 -

GT (64) 2.54 0.41 0.186 0.490 69,696
GT-LR (64) 2.55 0.47 0.198 0.556 86,338

Pairwise Bilinear (64) 7.28 0.71 0.214 0.545 23,360
GT + Bilinear (64) 2.45 0.74 0.219 0.548 73,792
GT-LR + Bilinear (64) 2.83 0.71 0.254 0.653 90,434

Table 3: Comparison for Different Citation Thresholds
Citation Threshold

Metric 25% 50% 75% 90% 95% 99% 99.9%

Total Citations 250,301 176,356 122,171 83,329 63,758 33,138 11,177
% Recommended 5.0 3.5 2.4 1.7 1.3 0.7 0.2
Within-Domain % 55.3 57.5 59.3 60.8 61.7 62.6 62.9
Out-of-Domain % 44.7 42.5 40.7 39.2 38.3 37.4 37.1

KL Divergence 1.540 1.147 0.817 0.534 0.392 0.186 0.340
Total EMD 0.405 0.363 0.321 0.253 0.212 0.134 0.130

5 RANKING EVALUATION
We measure embedding similarity and ranking recovery rates for
the TF-IDF input, different model configurations, and the final logit
predictions on the validation set. We also conduct several ablation
studies as a reference. We rank candidates by their probability of
citation for a given target criteria document through a pairwise dot
product of their embeddings. We report the MAP and MAR scores
for the top 20 results. Similarity scores are provided to display how
close (MSE) and how well oriented (cosine similarity) our citation
embeddings are to the target node’s embedding.

6 METHODOLOGY & ABLATION
Training: Experiment Details. We split our nodes into a train

and validation set to only include nodes with citations. The train
set contains 1,472 nodes (65.5%), the validation set has 260 nodes
(11.6%). Therefore 22.9% of nodes do not have outward citations,

but may be cited. Following the transductive setup of [14], the
training algorithm has access to all the node features. To prevent
data leakage from our validation set, we void all of their outgoing
connections in the original adjacencymatrix, andwe only predict on
the training set. Therefore, we never correct errors in the validation
set. Given the imbalance that is natural for link prediction tasks
in sparse matrices, we employ negative sampling on a random
subset of nodes known to not link together [9]. We use the Adam
optimizer [5] with 𝛼 = 0.001, and trained for 1,920 updates. The
model with the best validation recall score at 𝑘 = 20 is saved.

Graph Attention Network. Themodel’s core components aremod-
ular attention layers that follow the full transformer encoder struc-
ture [11], but inspired by the graph attention layers presented
in [12]. We use a single linear embedding layer to compress the top
300 normalized TF-IDF features to a dense, 64-dimensional vector as
our initial node embedding. Each graph layer (GT) operates on the
updated node embedding, incorporating all direct neighbors which
have been updated with information from their direct citations, and
so on. We stack 2 graph layers to allow for each node to encapsulate
the 2-hop sub-graph surrounding it. We apply a dropout layer with
𝑝 = 0.15 on the adjacency matrix to simulate missing links, forcing
the graph to attend on incomplete information. We use 8 heads for
the multiheaded attention, ELU activation [2], and a feedforward
dropout of 𝑝 = 0.1. We conducted an ablation study in Table 1 that
revealed the optimal number of hops as 2. Our embeddings became
too noisy after this, as a 5-hop network can traverse 66.2% of the
total paths, compared to 5.0% for the 2-hop network.

Learned Residual. We apply a learned attention mechanism on
the first residual connection in the transformer, to control the in-
fluence of a node’s neighborhood on the current node embedding
(GT-LR) [1, 7]. This allows the model to control the influence of
the graph structure on a node’s embedding. The additive scoring
function contextualizes local neighbors and their importance as a
citation. The best models used only 20% of the network, suggesting
that graph information is critical, albeit not as influential as the
node’s own embedding. The max residual weight observed for the
graph structure for the additive attention was 89.4% for the first
layer, and 83.2% for the second.

𝑧𝑎 = 𝜎

(
𝑣𝑇𝑎 tanh

(
𝑊𝑎𝑜𝑡 +𝑈𝑎𝑛𝑡 + 𝑏𝑎

) )
𝑟𝑡 = 𝑧𝑎 ⊙ 𝑜𝑡 + (1 − 𝑧𝑎) ⊙ 𝑛𝑡

(1)

Bilinear Scoring. To generate non-symmetric predictions, the
final layer is the bilinear scorer 𝑓 (𝑒𝑖 , 𝑒 𝑗 ) = 𝑒𝑇

𝑖
𝑊𝑏𝑒 𝑗 ; a pairwise dot

product would produce a symmetric, undirected citation matrix for
our asymmetric, directed matrix [13]. An ablation study revealed
the GT-LR + Bilinear model saw an improvement of 17.5% in recall
and 28.3% in precision over the pairwise scorer (GT-LR).

7 DISCUSSION
7.1 Link Prediction as a Proxy for Citation

Recommendation
We approached citation recommendation as a link prediction task,
where our model attempts to reconstruct the true citations from
our masked matrix. Our baseline was the 300-dimensional TF-IDF
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Figure 2: Embeddings, Colored by Subject Domain

Figure 3: True Cross-Reference Matrix Organized by
Subject Domain

Figure 4: Predicted Cross-Reference Matrix Organized
by Subject Domain, Threshold set at 50%

vectors that describe the content of the document. The idea was
simple: documents that cite each other most likely share the same
set of keywords and citations. The baseline performance for our
validation set was only 10.5% MAP and 34.6% MAR for 𝑘 = 20.
However, using our methodology, where each link is a citation, we
see that our results are maximized at 25.4% MAP and 65.3% MAR.
Table 2 highlights the effectiveness of using graph transformers for
link prediction.

7.2 Cross-pollination of Domain Areas
The model self-organizes embeddings to have the same orientation
as its citations for a positive prediction. Non-cited documents orient

in opposing directions, to create a negative prediction. The utility
of this approach lies in what the model recommends along side
the ground truth. An analysis of our citation matrix from Figure 3
shows that some domain areas are highly self contained, but others
tend to cross-pollinate with other areas. We know of 13,959 cita-
tions, and by setting the prediction threshold at 50%, the model
recommends 176,356 citations, out of a possible 5,049,009 (3.5%). Our
predicted recommendations in Figure 4 are 57.5% within-domain,
42.5% out-of-domain. In comparison, the true citation matrix is
62.6% within-domain, 37.4% out-of-domain. We provide several
metrics to compare citation threshold levels in Table 3.

7.3 Quality of Embeddings
A qualitative representation of the embeddings is generated by
t-SNE projections [8]. From Figure 2, we see that domains self-
organize into their respective clusters, indicating a strong desire
to cite within-domain over out-of-domain articles. Legal criteria
tends to cluster along a single axis, due to it’s strong within-domain
citation preference at 85%. General Criteria, as the domain with
the most diffuse cross-references, is scattered about the manifold
without a strong cluster.

8 CONCLUSION AND FUTUREWORK
In this study, we presented the utility for using link prediction as a
proxy for a citation recommendation engine. Here, we can organize
a citation network of criteria documents and generate relevant
citations to new documents. We hope to expand our approach to
other domains such as link prediction in business relationships and
supply chain networks.
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