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THE NEGATIVE PARTICIPATION PARADOX IN

THREE-CANDIDATE INSTANT RUNOFF ELECTIONS

DAVID MCCUNE AND JENNIFER WILSON

Abstract. In this paper, we provide theoretical and empirical estimates for
the likelihood of a negative participation paradox under instant runoff voting
in three-candidate elections. We determine the probability of the paradox and
related conditional probabilities based on the impartial anonymous culture and
impartial culture models for both complete and partial ballots. We compare
these results to the empirical likelihood of a negative participation paradox oc-
curring under instant runoff voting in a large database of voter profiles which
have been reduced to three candidates. Lastly, we analyze the relative likeli-
hood of this paradox in comparison to other well-known paradoxes.

1. Introduction

The voting method of instant runoff voting (IRV) is famously susceptible to
many classical paradoxes. For example, under IRV an election can demonstrate an
upward or downward monotonicity paradox [4, 16, 18, 22], or a no-show paradox
[3, 4, 20]. IRV is also susceptible to paradoxes of negative participation, a lesser-
studied type of paradox. The purpose of this article is to examine the likelihood
that a three-candidate IRV election demonstrates this paradox.

An election is said to demonstrate a negative participation paradox under a given
voting method if the addition of voters who rank candidate A last causes A to go
from losing to winning. This paradox is closely related to the notion of a positive
participation paradox [11], also referred to in the language of “positive involvement”
[25], where the addition of voters who rank candidate A uniquely first causes A to
go from winning to losing. Such outcomes are sometimes referred to as strong
no-show paradoxes [2, 24]. To the best of our knowledge, positive participation
paradoxes have received more attention in prior literature than negative partici-
pation paradoxes, even though IRV is not susceptible to the positive type. Prior
research on positive participation paradoxes focuses on other voting methods such
as Condorcet methods [2, 8, 9, 24] (this literature tends to use the term “strong
no-show paradox” instead of positive participation paradox). Much of the prior
work concerning negative participation paradoxes also examines the susceptibility
of Condorcet methods to this paradox [2, 24], while some focuses on scoring runoff
rules like IRV [11, 13]. Much previous work on these kinds of voting paradoxes
focuses on elections with a small number of candidates, often analyzing elections
with only three candidates. Our work similarly focuses on the three-candidate case.

This paper makes one small and two substantive contributions regarding the
likelihood that an election demonstrates a negative participation paradox under
IRV in a three-candidate election. First, for our small contribution we provide new
theoretical results under the impartial anonymous culture (IAC) model of voter
behavior. Most of the interesting work in this vein has been done in [11, 13], and
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our results in this area fill some small gaps left from those papers. Second, we
provide results under the impartial culture (IC) model of voter behavior. We are
able to obtain these new results using geometric techniques developed in [10] and
[26]. Third, we provide empirical results using a large database of IRV elections from
American and Scottish political elections, as well as elections from the American
Psychological Association. Ours is the first study which provides such empirical
results; the only other previous work which searched for negative participation
paradoxes in real-world ballot data is [15], which focuses on multiwinner single
transferable vote elections from Scotland. Our general finding is that negative
participation paradoxes occur at a much higher rate than other paradoxes.

Because we are interested in providing both theoretical and empirical analyses of
the negative participation paradox we consider situations when all voters provide
complete rankings and when voters are allowed to provide only partial ballots. This
allows for a better comparison between theoretical and empirical results since partial
ballots are extremely common in real-world election data. On the theoretical side,
we provide estimates that the likelihood of a negative participation paradox occurs
under IRV for 3 candidates under under both the IAC model and IC models. For
the IAC model, we analyze the complete and partial ballot cases using the software
package Normaliz and Monte Carlo simulations, respectively. For the IC model we
use geometric techniques for both full and partial ballots.

The widespread use of the method of single transferable vote in Scotland and
other locations, as well as the recent rise of IRV in the US, has made available a large
collection of ranked data from real elections. When an election contained more than
three candidates, we reduce each election to three candidates by running a number
of initial rounds of IRV. Then we determine the number of elections susceptible
to a negative participation paradox using the existing ballot data as well as data
which we make more “complete” using numerical techniques which we describe in
Section 4.

The paper is organized as follows. Section 2 provides relevant definitions as well
as a motivating example. In Section 3 we provide theoretical results under the IAC
and IC models of voter behavior. As mentioned above, our primary contribution
is for the IC model, as the IAC model has been mostly analyzed previously. In
Section 4 we give results using a large database of real-world elections. Section
5 provides a discussion and comparison of the likelihood of negative participation
paradoxes to other well-known paradoxes. We conclude in Section 6.

2. Preliminaries

Instant-runoff voting (IRV), often colloquially referred to as “ranked-choice vot-
ing”, has become increasingly popular in the United States as an alternative to the
method of plurality when there are more than 2 candidates. In such elections voters
cast preference ballots with a (possibly partial) linear ranking of the candidates.
After an election, the ballots are aggregated into a preference profile, which shows
the number of each type of ballot cast. For example, Table 1 shows a preference
profile involving the three candidates J , S, and W . The number 1430 denotes that
1430 voters ranked J first, S second, andW third. We use ≻ to denote when a voter
ranks one candidate over another, so that 1430 voters cast the ballot J ≻ S ≻ W .
An IRV election proceeds in rounds. In each round, the number of first-place votes
for each candidate is calculated. If a candidate has a majority of the first-place
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Num. Voters 1149 1430 1012 830 1989 821 149 303 216

1st choice J J J S S S W W W
2nd choice S W J W J S
3rd choice W S W J S J
Table 1. Vote totals for the top 3 candidates in the 2023 election
for Minneapolis City Council Ward 8

votes, they are declared the winner. If no candidate receives a majority of votes,
the candidate with the fewest first-place votes is eliminated and the names of the
remaining candidates on the affected ballots are moved up. The process repeats un-
til a candidate is declared the winner1. In the case when partial ballots are allowed,
any ballot in which all candidates have been eliminated is considered “exhausted”
and plays no further role in the determination of the winner.

When there are only three candidates, at most 2 rounds are required to determine
a winner; in general, several rounds may be required. In our analysis of the real-
world database in Section 4, we run a sufficient number of rounds for each set of
voter preferences until the number of candidates is reduced to three and consider
the resulting three-candidate election. We demonstrate IRV in such a case in the
following example.

Example 1. The 2003 election for Minneapolis City Council in Ward 8 involved

four not write-in candidates: Andrea Jenkins, Soren Stevenson, Bob Sullentrop,

and Terry White. Sullentrop earned the fewest first-place votes and is eliminated

first, creating the three-candidate preference profile shown in Table 1. The resulting

first-place vote totals for Jenkins, Stevenson, and White are 3591, 3640, and 668,

respectively. White is eliminated in the next round, causing a transfer of 303 votes

to Jenkins and 216 to Stevenson. As a result, Jenkins defeats Stevenson 3894 votes

to 3856.

It is well-known that IRV can produce strange outcomes when ballots are added
or removed from an election [3, 4, 5, 6, 11, 13, 15, 16], or when candidates are added
or removed from an election [7, 17, 19, 28]. The example below illustrates a type
of paradoxical outcome which can occur when ballots are added to an election.

Example 2. Suppose we add 3000 ballots of the form W ≻ J ≻ S to the ballots

from in Table 1. What effect should this have on the electoral outcome? Since these

voters all prefer W , it would make sense for White to win after receiving this large

boost of support. Since these voters prefer Jenkins to Stevenson, it would also make

sense for these ballots to bolster Jenkins’ victory. However, the addition of these

ballots causes Jenkins to be eliminated before White and Stevenson edges out White

in the final round.

Thus, adding thousands of ballots in which Stevenson is ranked last can result
in a good outcome for him. Note that this outcome is also true in the original four-
candidate election including Sullentrop (Su): the same result is obtained if we add
3000 ballots of the form W ≻ J ≻ Su ≻ S or 3000 ballots of the form W ≻ Su ≻
J ≻ S. That is, when we add ballots to create a negative participation paradox in

1The issue of ties does not arise in our work in this paper, and thus we ignore the possibility
of multiple winners.
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an IRV election which has been reduced to three candidates, only the first and last
rankings matter. We can fill in the intermediate rankings in an arbitrary fashion;
the original election with all candidates also demonstrates a negative participation
paradox as long as sufficient votes are added so that the plurality loser remains
until eliminated in the final round.

This example motivates the primary definition of the paper.

Definition 1. An election with preference profile P is said to demonstrate a neg-

ative participation paradox if there exists a losing candidate A and a set of

identical ballots B with A ranked last such that if we add the ballots from B to the

ballots from P , candidate A wins the resulting election.

That is, an election demonstrates this paradox when a losing candidate can
be made into a winner by adding ballots on which the loser is ranked last. We
use the language of “negative participation paradox” following [11], but there is
no standard vocabulary around the topic. For example, much of the literature
concerning these paradoxes and Condorcet methods [8, 9, 24] uses the the language
of no-show paradoxes and negative and positive involvement. The previous example
shows that IRV is susceptible to negative participation paradoxes; we note that
other voting methods such as positional scoring rules cannot exhibit this type of
paradox.

In the US, the most common voting method for political elections is the method
of plurality, in which the candidate with the most first-place votes wins the election.
Throughout the article, we refer to the candidate who receives the most first-place
votes in a three-candidate election as the plurality winner. For example, Stevenson
is the plurality winner of the preference profile in Table 1. The plurality loser is
the candidate with the fewest first-place votes. In the Minneapolis Ward 8 election
Sullentrop was the actual plurality loser; because we care only about the three-
candidate case, we ignore Sullentrop and say that White is the plurality loser of
the election in Table 1.

In a three-candidate election, a negative participation paradox can only occur
when several conditions are satisfied. First, the added votes cannot result in the
plurality loser being made into the IRV winner: if the added votes rank the plurality
loser last, the candidate will remain the plurality loser and be eliminated in the first
round. Second, the IRV winner must be different from the plurality winner. To see
this, suppose that the IRV winner is A and the candidates are ranked by first-place
votes A > B > C. Since A is the IRV winner, B must be the losing candidate who
can be made into a winner by the addition of votes ranking B last. But B cannot
be the winner in such a fashion: if B becomes the new plurality loser then they
are eliminated in the first round, and if C remains the plurality loser than C is
eliminated in the first round, leaving B to be eliminated in the second round as
they were in the original election (the added votes increase the margin of A over B).
Hence the IRV and plurality winners must be distinct, implying it is the plurality
winner who can be made to win under IRV by the addition of votes ranking them
last. Similar reasoning implies that the new votes must rank the plurality loser first
so that the original IRV winner is eliminated in the first round of the new election.

We use this logic to determine the probability of a negative participation paradox
when there are three candidates in the next section.
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3. The Impartial Anonymous and Impartial Culture Models

In this section we provide probabilities that an election demonstrates a negative
participation paradox under the impartial anonymous culture (IAC) and impartial
culture (IC) models of voter behavior. Suppose the three candidates are labeled
A, B and C, and there are V voters. If voters must provide complete rankings,
there are six possible candidate rankings; if voters can provide partial rankings,
this number increases to 9. Assume the preference profiles for complete and partial
rankings are as shown in Tables 2 and 3 where in each case the numbers ai, bi, and
ci indicate the number of voters with the corresponding ranking and that these
numbers sum to V. Note in Table 3 we equate the rankings A ≻ B and A ≻ B ≻ C
and hence do not list them separately. For either model of voter behavior, we are
concerned with the limiting probability that an election demonstrates a negative
participation paradox, where V → ∞.

Before providing the limiting probabilities, we examine the conditions (expressed
as inequalities) under which an election demonstrates a negative participation para-
dox.

Table 2. Preference profile with complete preferences.

a1 a2 b1 b2 c1 c2
A A B B C C
B C A C A B
C B C A B A

Table 3. Preference profile with some partial preferences.

a0 a1 a2 b0 b1 b2 c0 c1 c2
A A A B B B C C C

B C A C A B
C B C A B A

In the complete ballot case, we can assume WLOG that

(1) a1 + a2 > b1 + b2 > c1 + c2;

similarly, in the partial ballot case we assume WLOG that

(2) a0 + a1 + a2 > b0 + b1 + b2 > c0 + c1 + c2.

That is, we assume A is the plurality winner and C is the plurality loser. As
described in Section 2, a negative participation paradox can only occur when the
plurality (A) and IRV (B) winners are distinct and when additional votes are added
with the ranking C ≻ B ≻ A. Hence, initially

(3) a1 + a2 + c1 < b1 + b2 + c2.

If z votes are added, then we require B to be eliminated in the first round
followed by C in the second round. Hence,

b1 + b2 < c1 + c2 + z, a1 + a2 + b1 > b2 + c1 + c2 + z

Solving for z in each of these yields for z yields

b1 + b2 − (c1 + c2) < z < a1 + a2 + b1 − (b2 + c1 + c2)
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which implies

(4) b1 + b2 − (c1 + c2) < a1 + a2 + b1 − (b2 + c1 + c2) or a1 + a2 > 2b2.

It is easily seen that (3) and (4) are also sufficient to ensure a negative participation
paradox can occur given that A is the plurality winner and C is the plurality loser.

In the partial rankings case, (3) and (4) are replaced by

(5) b0 + b1 + b2 + c2 > a0 + a1 + a2 + c1

and we obtain

(6) a0 + a1 + a2 > b0 + 2b2.

Before defining and analyzing the two models, we note that they are widely used
in the social choice literature to provide a priori estimates for the probabilities
of many phenomena in social choice, and they tend to provide theoretical upper
bounds for such probabilities. For example, in three-candidate elections the prob-
ability that an election fails to contain Condorcet winner is 6.25% under the IAC
model (this is easily calculated using Normaliz); the probability falls essentially
to 0 in real-world elections [6, 21, 27]. Thus, the models are useful for providing
theoretical “worst-case” estimates for various election probabilities.

3.1. Impartial Anonymous Culture. Under the impartial anonymous culture
(IAC) model, the vector of vote totals at the top of the preference profile is assumed
to be chosen at random. For example, in the complete ballot case we choose at
random a vector of the form (a1, a2, b1, b2, c1, c2) subject to the constraints that
each entry is non-negative and the six vote totals sum to the number of voters.
Since we examine only limiting probabilities, we choose a vector of proportions of
length six in the complete ballot case or a vector of proportions of length nine in the
partial ballot case. Limiting probabilities involving IAC can be determined using
the theory of Ehrhart polynomials, which has been implemented in the software
package Normaliz [1]. The probabilities presented in Proposition 1 were calculated
using Normaliz. The probability of a negative participation paradox using IRV
assuming complete rankings appears in [11]. In the following proposition, we include
this result along with related conditional probabilities for reference.

Assuming, as in the previous section, that first-place vote ranking is A > B > C,
the probability that an election demonstrates a negative participation paradox is
equal to the probability that (3) and (4) are satisfied. The results in (ii) and (iii)
below are conditional probabilities. If an election demonstrates a negative par-
ticipation paradox then there cannot be a majority candidate (since the plurality
and IRV winners would coincide). Thus, in (ii), the probability that an election
demonstrates a negative participation paradox winner assuming the election does
not contain a majority candidate is equal to the the probability of a negative partic-
ipation paradox divided by the probability that an election does not have a majority
candidate. Likewise, in (iii), the probability that an election demonstrates a neg-
ative participation paradox assuming the IRV winner is not the plurality winner
is equal to the probability that an election demonstrates a negative participation
paradox divided by the probability the IRV winner is not the plurality winner.

Proposition 1. In a 3-candidate election in which all voters provide complete

preferences, under IAC
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i the limiting probability that an election demonstrates a negative participation

paradox is 7/96 = 7.29% [11].
ii the limiting probability that an election demonstrates a negative participation

paradox is 7/54 = 12.96%, assuming the election does not contain a majority

candidate.

iii the limiting probability that an election demonstrates a negative participation

paradox is 42/71 = 59.15%, assuming the IRV winner is not the plurality win-

ner.

We are unaware of analytical methods which extend the Ehrhart polynomial
techniques employed by Normaliz to the partial ballot setting where a preference
profile has nine parameters. Thus, to estimate the corresponding IAC probabilities
under partial ballots we use Monte Carlo simulation. For each run, we choose a
percentage distribution of length nine at random (straightforward techniques exist
for this task, see [12] for example) and check for a paradox. Using 100,000 runs, in
the partial ballot setting we estimate the corresponding limiting probabilities from
Proposition 1 to be approximately 7.24%, 16.74%, and 62.49%.

3.2. Impartial Culture. Under the impartial Culture (IC) model, each voter se-
lects uniformly and independently among all possible rankings of the candidates.
We can approximate the likelihood of a negative participation paradox for a large
number of voters by calculating the limiting probability as V → ∞ using the geo-
metric methods introduced in [26] and subsequently elaborated on in [10]. Note that
the probability that there is a majority candidate is zero in the limiting case, thus
we provide counterpoints to only two of the probabilities identified in Proposition
1.

Proposition 2. In a 3-candidate election in which all voters provide complete

preferences, under IC

i the limiting probability that an election demonstrates a negative participation

paradox is approximately 0.151084 ≈ 15.11%..
ii the limiting probability that an election demonstrates a negative participation

paradox is 0.617525 ≈ 61.75%, assuming the IRV winner is not the plurality

winner.

Proposition 3. In a 3-candidate election in which voters provide partial prefer-

ences, under IC

i the limiting probability that an election demonstrates a negative participation

paradox is approximately 0.143861 ≈ 14.39%.

ii the limiting probability that an election demonstrates a negative participation

paradox is approximately 0.672803 ≈ 67.28%, assuming the IRV winner is not

the plurality winner.

The proof of Proposition 3 is similar to that of Proposition 2. It can be found
in the Appendix. We prove Proposition 2 below.

Proof. Proof of (i)
Step 1 First, we find the probability that A and B are the plurality and IRV

winners respectively. Following the arguments of [26], the probability that (1) and
(3) are satisfied is equal to the area of the spherical simplex S defined by these
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inequalities on the surface of the unit sphere in R
3, divided by the area of this

sphere. Let

v1 = (1, 1,−1,−1, 0, 0)

v2 = (0, 0, 1, 1,−1,−1)

v3 = (−1,−1, 1, 1,−1, 1).

be the normal vectors of the three hyperplanes bounding S. By the Gauss-Bonet
Theorem, V ol2(S) = α12 +α13 +α23 − π where αij is the angle between vectors vi

and vj and V oln is the n−dimensional volume.
Using the law of cosines,

α12 = ∠(v1,v2) = cos−1(
−v1 · v2

‖v1‖‖v2‖
) = cos−1(

2

2 · 2) = cos−1(
1

2
)

α13 = ∠(v1,v3) = cos−1(
−v1 · v3

‖v1‖‖v3‖
) = cos−1(

4

2 ·
√
6
) = cos−1(

1√
6
)

α23 = ∠(v2,v3) = cos−1(
−v2 · v3

‖v2‖‖v3‖
) = cos−1(

−2

2 ·
√
6
) = cos−1(

−1√
6
).

Thus the probability is equal to

1

4π
V ol2(S) =

1

4π
[α12 + α12 + α12 − π] = 0.04077671.

Step 2: Next, we find the probability that additionally (4) is satisfied. Following
[10], we introduce the modified inequality with parameter t ∈ [0, 1],

(7) x1 + x2 > x3 + x4 + t(x4 − x3).

Inequality (7) replaces (4). If t = 0, (7) reduces to the first inequality in (1); if
t = 1, we recover (4). Similarly to Step 1, the probability that these conditions are
met for a large number of voters N is equal to the volume of the spherical simplex S
defined by these inequalities on the surface of the unit sphere in R

4, divided by the
volume of the surface of this sphere, 2π2. To find the V ol3(S), we use the Schäfli
formula

dV oln =
1

n− 1

∑

1≤j<k≤n

V oln−2(Sj ∩ Sk)dαjk.

where n = 3 and Si are the hyperplanes bounding S. Let Si be the hyperplane
with normal vector vi. Since (7) has normal vector v4 = (1, 1, t − 1,−t − 1, 0, 0)

and ‖v4‖ =
√
4 + 2t2, we have,

α14 = ∠(v1,v4) = cos−1(
−4

2 ·
√
4 + 2t2

) = cos−1(
−2√
4 + 2t2

)

α24 = ∠(v2,v4) = cos−1(
2

2 ·
√
4 + 2t2

) = cos−1(
1√

4 + 2t2
)

α34 = ∠(v3,v4) = cos−1(
4√

6 ·
√
4 + 2t2

).

Differentiating, gives

dα14 =
−
√
2

2 + t2
dα24 =

t√
3 + 2t2 · (2 + t2)

and dα34 =
2t√

2 + 3t2 · (2 + t2)
.
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To calculate V ol1(Sj ∩ Sk), we must determine where the hyperplanes intersect.
Let Pijk be the vertex lying at the intersection of Si, Sj and Sk. We identify a
basis for the subspace orthogonal to that spanned by v1 . . . ,v4. One such basis is
v5 = (1, 1, 0, 0, 0, 0) and v6 = (1, 1, 1, 1, 1, 1).

Next, we find points Pijk lying at the intersection of the hyperplanes with nor-
mals given by the vectors vi, vj and vk. Vertex P124, for instance, can then be
found by solving the conditions

n1 + n2 − n3 − n4 = 0

n3 + n4 − n5 − n6 = 0

−n1 − n2 + n3 + n4 − n5 + n6 > 0

n1 + n2 + (t− 1)n3 + (−t− 1)n4 = 0

n1 − n2 = 0

n1 + n2 + n3 + n4 + n5 + n6 = 0.

This yields P124 = (0, 0, 0, 0,−1, 1). Similarly, we have P134 = (1, 1, 1, 1,−2,−2)
and P234 = (1, 1, −3−t

2t , 3−t
2t ,−2, 1).

Since ‖P124‖ =
√
2, ‖P134‖ = 2

√
3 and ‖P234‖ = 1

t

√

3
2

√
5t2 + 3, we have

V ol(S1 ∩ C4) = ∠(P124, P134) = cos−1(
0√

2 · 2
√
3
) =

π

2

V ol(S2 ∩ C4) = ∠(P124, P234) = cos−1(

√
3t√

5t2 + 3
)

V ol(S3 ∩ C4) = ∠(P134, P234) = cos−1(

√
2t√

5t2 + 3
)

By the Schäfli formula, dV ol3 = 1
2

∑

1≤j<k≤4 V ol1(Sj ∩ Sk)dαjk, so

V ol3(St=1) = V ol3(St=0) +

∫ 1

0

dV ol3S

= V ol3(St=0) +
1

2

∫ 1

0

V ol1(S1 ∩ S4)dα14 + V ol1(S2 ∩ S4)dα24 + V ol1(S3 ∩ S4)dα34dt

= V ol3(St=0) +
1

2
[I1 + I2 + I3]

where I1 =
∫ 1

0
π
2 · −2

4+2t2 dt = −0.99679 and similarly I2 = 0.11231 and I3 = 0.268772

By Step 1, V ol3(St=0) = V ol2(St=0)
2π2

4π = 0.04077671(2π2). Hence the proba-
bility that all these conditions are met is equal to

1

2π2

[

0.04077671(2π2) +
1

2
(−0.99679+ 0.11231 + 0.268772)

]

= 0.02518064.

Since the choice of A and B as plurality and IRV winners was arbitrary, the
probability of a negative participation paradox is 6× 0.02518064 ≈ 0.151084.

Proof of (ii) Since a negative participation paradox can only occur when the
IRV and plurality winners are distinct, the probability that an election demonstrates
a negative participation paradox given that these winners are different is equal to
the probability of negative participation paradox divided by the probability that
the IRV and plurality winners are distinct. The latter was determined in Step 1;
hence this probability is equal to 0.02518386/0.04077671≈ 0.617525. �
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3.3. Analysis of IAC and IC Results. Overall, a negative participation para-
dox is twice as likely under the IC than the IAC model, and somewhat more likely
assuming the IRV and plurality winners are distinct. This is to be expected, as
the IAC model frequently produces preference profiles containing a majority can-
didate while this is impossible under IC in the limiting case. Under both models,
the probability of a negative participation paradox is slightly higher for complete
voter preferences than for partial voter preferences; the relationship is reverse when
conditioned on the elections having distinct IRV and plurality winners. This is pos-
sibly because the probability that these winners are distinct is somewhat lower for
partial preferences than for complete preferences (in the IC case, 21% versus 24%),
With partial ballots, it is less likely that a candidate ranking second in first-place
votes will gain sufficient additional votes, after the plurality loser is eliminated, to
overcome the vote total of the plurality winner. We compare these results with an
empirical analysis in the next section.

4. Empirical Results

In this section we present empirical results using a large database of real-world
IRV elections. Our data comes from three sources. First, we use single-winner polit-
ical elections from the United States with at least three (not write-in) candidates.
This data is available at the FairVote data repository [23], and contains ballot
data from municipal elections in cities such as San Francisco, CA and Minneapolis,
MN. The repository also contains ballot data from federal elections in Alaska and
Maine. Second, we use single-winner elections from the American Psychological
Association, which generally is willing to share ballot data for ranked-choice pres-
idential elections and elections for the Board of Directors. Some of this data is
available on preflib.org [14], and some was shared directly with the first author.
Third, we use single-winner political elections from Scotland from a database of
Scottish local government elections. The ballot data for these elections is available
at https://github.com/mggg/scot-elex.

In total, we have access to the preference profiles for 361 single-winner IRV
elections with at least three candidates. Many of these elections contain more than
three candidates; because we focus on the three-candidate case, for each election we
run the IRV algorithm until three candidates remain and use the resulting profile.
As with Example 1, any paradox we find in the resulting three-candidate profile will
also be demonstrated in the original election. The reason is that when we create
the ballots which produce the paradox only the first and last rankings matter; the
intermediate rankings can be filled in arbitrarily using the remaining candidates
from the original candidate set. Of course, it is possible that an election with four
or more candidates demonstrates a paradox which cannot be found when we reduce
down to three candidates; our methodology would not find such elections.

In Section 3 we analyze the likelihood of negative participation paradoxes in
two cases: when all voters provide complete preferences and when some voters
cast partial ballots. To provide comparisons to those results, with our real data
we also give results using fully complete preferences and using partial ballots. In
real elections voters often provide partial rankings of the candidates, and thus our
results from partial ballots represent the “actual” results, the results obtained from
using the actual ballot data. To create complete preferences, we proportionally fill

https://github.com/mggg/scot-elex
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in partial ballots using the available complete ballots to create hypothetical results
for the case that all voters submit complete preferences.

To see how we fill in the ballots, consider the preferences profile from Table 1.
We need to take the bullet votes for J and extend them to complete ballots over
the three candidates. Since 1430 + 1012 = 2442 voters rank J first and provide
complete rankings, we extend 1430/2442 ∗ 100% of the 1149 bullet votes for J to
ballots of the form J ≻ S ≻ W and 1012/2442 ∗ 100% of the bullet votes for J
to ballots of the form J ≻ W ≻ S, rounding to the nearest integer. As a result,
673 of the 1149 bullet votes are extended to J ≻ S ≻ W and 476 are extended to
J ≻ W ≻ S. This methodology is used on every three candidate profile to create
complete preferences.

Jurisdiction USA APA Scotland
Elections 304 27 30

No Majority Cand 191 23 30
IRV Winner 6= plurality winner 18, 30 3, 3 5, 8

Paradoxes 7, 17 3, 3 2, 3
Table 4. Results from real-world elections. In the final two rows,
the first number is obtained using the actual ballots and the second
is obtained from ballots which have been completed.

Our results are summarized in Table 4. The top row shows the number of
elections from each jurisdiction and the second row shows the number of elections
without a majority candidate. The third row shows the number of elections in
which the IRV winner is different from the plurality winner. The first number is the
number of such elections when using the actual data with partial ballots; the second
number is the number of such elections when using complete preferences, created
as described above. The fourth row shows the number of participation paradoxes,
using the same format. For example, there are 191 American political elections
without a majority candidate. Of these, the IRV winner is not the plurality winner
in 18 (respectively 30) elections when using the actual ballot data (respectively,
complete preference data). Seven American elections demonstrate a paradox when
using the actual data, which rises to 17 when we complete the ballots.

Table 5 provides a complete list of elections which demonstrate a paradox when
using the actual ballots. The table also provides the range of the number of ballots
which can be added to produce the paradox. For example, the third row shows that
we can add anywhere from 2924 to 3389 ballots of the form W ≻ J ≻ S to create
the paradox in Example 1. Note that the last election in the table just barely
produces a paradox, as the paradox can be demonstrated using only 266 ballots
exactly.

When using the actual ballot data, in total we find 12 elections which demon-
strate this paradox. From Table 4, we obtain an empirical probability of 12/361 =
3.3% that the paradox occurs. When we condition on the non-existence of a
majority candidate we obtain a probability of 12/244 = 4.9%, which rises to
12/26 = 46.2% when we restrict to elections when the IRV and plurality win-
ners are different. The corresponding three probabilities for complete preferences
are 6.4%, 9.4%, and 56.1%, respectively. As with the IAC and IC models we obtain
higher probabilities for complete preferences for the two conditional probabilities.



12 DAVID MCCUNE AND JENNIFER WILSON

Election Num. Voters Ballot Range
2020 San Francisco Board of Supervisors D7 38321 798-1606
2021 Minneapolis City Council Ward 2 8907 80-224
2023 Minneapolis City Council Ward 8 7899 2924-3389
2010 Oakland Mayor 113217 2315-3951
2016 Oakland School Director D5 12950 2876-4325
2022 Oakland School Director D4 26432 38-598
2021 New York City Rep Primary D50 8182 773-830
2005 APA President 14079 2275-2780
2007 APA President 12925 2397-2718
2020 APA Board of Directors Race 2 6227 1093-1883
2021 Argyll Bute By-Election Isle of Bute Ward† 1804 26-38
2021 Highland By-Election Aird Ward† 3321 266-266

Table 5. Each election which demonstrates a negative participa-
tion paradox when using the actual ballot data.

Unlike those models, we obtain higher probabilities for complete preferences for the
unconditioned probabilities as well. Overall, the frequency with which the para-
dox of negative participation occurs in the database is lower than that which is
predicted by the IAC and IC models, as expected since these models tend to pro-
vide upper bounds for the probabilities of paradoxical behavior. It is interesting,
though, that some of the empirical probabilities are not significantly lower than
the theoretical probabilities. Often, an empirical estimate of the probability that
an election demonstrates a particular voting paradox is much lower than what is
predicted by a model like IAC or IC. When we assume the IRV and plurality win-
ners are different, the empirical probability for negative participation paradoxes is
surprisingly close to the probabilities reported in Section 3.

5. Comparison to other paradoxes

In this section we compare the conditions and likelihood that an IRV election
demonstrates a negative participation paradox to other more well-known (and well-
studied) paradoxes: upward and downward monotonicity paradoxes, and no-show
paradoxes (see e.g. [4] and [18] for definitions and discussions of these paradoxes).
In the three-candidate complete ballot setting, for an upward (resp. downward)
monotonicity paradox to occur, the plurality loser must earn at least 25% (respec-
tively 16 2

3%) of the first-place votes [18]. In either the complete or partial ballot

setting, the plurality loser must earn at least 16 2
3% of the first-place votes for a

no-show paradox to occur [5]. By contrast, for a large enough electorate there is no
such positive lower bound for the plurality loser regarding negative participation
paradoxes. That is, it is possible for the plurality lower to receive an arbitrar-
ily small amount of first-place votes and yet the election demonstrates a negative
participation paradox.

To see this, consider Table 6. The top row shows the percentage of the first-place
vote controlled by each candidate. Suppose these percentages satisfy pC < pB <
pA < 0.5. Note that B is the IRV winner, but if we add enough C ≻ B ≻ A
ballots so that the adjusted percentages satisfy p′B < p′C < p′A (which is possible
for a large enough electorate), then A wins. Thus, it is possible for the plurality
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loser to be arbitrarily weak and yet observe this paradox. In particular, as long
as no candidate earns 50% or more of the first-place votes, it is possible to find
a preference profile which demonstrates a negative participation paradox for any
distribution of first-place votes.

% Voters pA pB pC
1st choice A B C
2nd choice B A B
3rd choice C C A

Table 6. A table illustrating that an election can demonstrate a
negative participation paradox even if the plurality loser controls
a small percentage of the first-place votes.

Furthermore, to create such a paradox we can control the type and number of
ballots added to the original ballot data. Thus, we expect that such paradoxes are
exhibited more frequently in real-world data than other paradoxes. Prior empirical
research bears this out. Using essentially the same database of American elections
that we use, [6] found four elections which demonstrate an upward monotonic-
ity paradox, three which demonstrate a downward monotonicity paradox, and one
which demonstrates a no-show paradox. The authors did not include the APA elec-
tions in that study, but they evaluated those elections using the same methodology
as in [6] and found no paradoxes of any kind. The study in [16] included the 30 Scot-
tish elections we evaluate as part of a much larger study of single transferable vote
elections, and of these 30 elections found only one which demonstrated a paradox
(this election demonstrated both an upward monotonicity paradox and a no-show
paradox). In total, of the 361 elections in our database there are five documented
elections which demonstrate an upward monotonicity paradox, three which demon-
strate a downward monotonicity paradox, and two which demonstrate a no-show
paradox. As in this paper, all of the previously documented paradoxes occurred
at the “three candidate level” in the sense that the paradox can be demonstrated
after eliminating all but the final three candidates.

Based on prior empirical work, IRV three-candidate elections demonstrate a
negative participation paradox 2-6 times more frequently than other classical para-
doxes, an unsurprising result given the above discussion.

6. Conclusion

We conclude with two final comments. First, IRV proponents sometimes claim
that a strength of IRV is that the method can choose a different (and presumably
more deserving) winner than the plurality winner. This is a natural point to make,
since if the two winners always coincide then there is no reason to use IRV, and
arguably the plurality winner sometimes does not deserve to win an election (e.g. if
the plurality winner is a Condorcet loser). However, in some sense our work shows
that this feature of IRV comes with a price: when the IRV and plurality winners
differ, it is often the case that the election demonstrates a negative participation
paradox. That is, when IRV “works properly” by choosing a more deserving candi-
date than the plurality winner, often the plurality winner could have been the IRV
winner if only the turnout of some voters who don’t like the plurality winner were
increased.
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Second, we make no claim regarding the normative status of negative participa-
tion paradoxes. Social choice theorists care about paradoxes such as monotonicity
and participation paradoxes in part because such paradoxes show there is some
mathematical irrationality built into the mechanics of IRV. Put simply, sometimes
IRV does not behave rationally in response to changes in the ballot data, and
this seems normatively undesirable. On the other hand, paradoxes in this vein
are hypothetical–negative participation paradoxes especially so. In Example 2, it
is extremely unlikely that there were thousands of potential voters in Minneapo-
lis’ eighth ward whose favorite candidate was White and whose least favorite was
Stevenson, and these voters abstained from the actual election. Example 2 is built
using thousands of people who probably do not exist, which perhaps ultimately
says nothing about whether IRV is a “good” or “appropriate” voting method.

Regardless of one’s normative stance on these paradoxes, the results in this paper
contribute to the literature on voting paradoxes by providing limiting probabilities
regarding negative participation paradoxes in the three-candidate case under the
impartial culture model, empirical probabilities using a large database of real-world
elections, and limiting probabilities in the three-candidate case for some cases left
over from [11] under the impartial anonymous culture model.
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[1] Bruns, W., Ichim, B. Söger, C. & von der Ohe, U. (2022). Normaliz. Algorithms for rational

cones and affine monoids., Normaliz. https://www.normaliz.uni-osnabrueck.de . Accessed
Mar. 8, 2024.

[2] C. Duddy. (2014). Condorcet’s principle and the strong no-show paradoxes. Theory and De-

cision 77(2): 275-285.
[3] D. Felsenthal and N. Tideman. (2013). Varieties of failure of monotonicity

and participation under five voting methods. Theory and Decision 75: 59-77.
https://doi.org/10.1007/s11238-012-9306-7.

[4] P. Fishburn and S. Brams. (1983). Paradoxes of preferential voting. Mathematics Magazine,
56 (4): 207-214. https://doi.org/10.2307/2689808.

[5] A. Graham-Squire. (2024). Conditions for Fairness Anomalies in Instant-Runoff Voting. In
M. Jones, D. McCune, J. Wilson (Eds), Mathematical Analyses of Decisions, Voting and

Games. Contemporary Mathematics, Volume 795. American Mathematical Society.
[6] A. Graham-Squire and D. McCune. (2023). An Examination of

Ranked-Choice Voting in the United States, 2004-2022. Representaion,
https://doi.org/10.1080/00344893.2023.2221689.

[7] J. Green-Armytage, T. Tideman, and R. Cosman. (2016). Statistical evaluation of voting
rules. Social Choice Welfare, 46: 183–212.

[8] W. Holliday. (2024). An impossibility theorem concerning positive participation in voting.
Economics Letters 236. https://doi.org/10.1016/j.econlet.2024.111589 .

[9] W. Holliday and E. Pacuit. (2021). Measuring Violations of Positive participation in Voting.
arXiv:2106.11502.

[10] E. Kamwa and V. Merlin. (2015). Scoring Rules over Subsets of Alter-
natives: Consistency and Paradoxes. J. of Math. Econ. 61: 130-138.
https://doi.org/10.1016/j.jmateco.2015.08.008.

[11] E. Kamwa, V. Merlin, and F.M. Top. (2023). Scoring Run-off Rules, Single-peaked Preferences
and Paradoxes of Variable Electorate. Preprint: https://hal.science/hal-03143741v2 .

[12] D. Lepelley, A. Louichi, and F. Valognes. (2000). Computer simulations of voting systems.
Adv Complex Syst 3(1):181–194. https://doi.org/10.1142/S0219525900000145 .

[13] D. Lepelley and V. Merlin. (2001). Scoring runoff paradoxes for variable electorates. Economic

Theory 14(1): 53-80.
[14] N. Mattei and T. Walsh. (2013). Preflib: A library for preferences. In ADT, 259–270. Springer.
[15] D. McCune. (2024). Single Transferable Vote and Paradoxes of Negative and Positive partic-

ipation. To appear in Mathematics Magazine.

https://www.normaliz.uni-osnabrueck.de
https://doi.org/10.1007/s11238-012-9306-7
https://doi.org/10.2307/2689808
https://doi.org/10.1080/00344893.2023.2221689
https://doi.org/10.1016/j.econlet.2024.111589
arXiv:2106.11502
https://doi.org/10.1016/j.jmateco.2015.08.008
https://hal.science/hal-03143741v2
https://doi.org/10.1142/S0219525900000145


THE NEGATIVE PARTICIPATION PARADOX IN THREE-CANDIDATE INSTANT RUNOFF ELECTIONS15

[16] D. McCune and A. Graham-Squire. (2023). Monotonicity Anomalies in Scottish Local Gov-
ernment Elections. Preprint: arxiv.org/abs/2305.17741 .

[17] D. McCune and J. Wilson. (2023). Ranked-Choice Voting and the Spoiler Effect. Public

Choice 196: 19-50.
[18] N. Miller. (2017). Closeness matters: monotonicity failure in IRV elections with three candi-

dates. Public Choice, 173: 91-108. DOI 10.1007/s11127-017-0465-5.
[19] N. Miller. (2019). Reflections on Arrow’s theorem and voting rules. Public Choice, 179:

113–124.
[20] H. Moulin. (1988). Condorcet’s principle implies the no show paradox. Journal of Economic

Theory, 45 (1): 53-64. https://doi.org/10.1016/0022-0531(88)90253-0.
[21] A. Myers. The Frequency of Condorcet Winners in Real Non-Political Elections, preprint.
[22] J. Ornstein and R. Norman. (2014). Frequency of monotonicity failure under Instant Runoff

Voting: estimates based on a spatial model of elections. Public Choice, 161 (1/2): 1-9.
https://doi.org/10.1007/s11127-013-0118-2.

[23] D. Otis. (2022). Single winner ranked choice voting CVRs. Harvard Dataverse,
https://doi.org/10.7910/DVN/AMK8PJ.
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Appendix

The proof of Proposition 3 is similar to that of Proposition 2.

Proof of Proposition 3 (i)
Step 1 First, we find the probability that A and B are the plurality and IRV

winners respectively. The inequalities (2) and (5) have normal vectors

v1 = (1, 1, 1,−1,−1,−1, 0, 0, 0)

v2 = (0, 0, 0, 1, 1, 1,−1,−1,−1)

v3 = (−1,−1,−1, 1, 1, 1, 0,−1, 1).

So

α12 = ∠(v1,v2) = cos−1(
−v1 · v2

‖v1‖‖v2‖
) = cos−1(

3√
6 ·

√
6
) = cos−1(

1

2
)

α13 = ∠(v1,v3) = cos−1(
−v1 · v3

‖v1‖‖v3‖
) = cos−1(

6√
6 ·

√
8
) = cos−1(

√
3

2
)

α23 = ∠(v2,v3) = cos−1(
−v2 · v3

‖v2‖‖v3‖
) = cos−1(

−3√
6 ·

√
8
) = cos−1(

−
√
3

4
).

Thus, the probability is equal to

1

4π
V ol2(S) =

1

4π
[α12 + α12 + α12 − π] = 0.03563737.

Step 2: Next, we find the probability that additionally (6) is satisfied. We
introduce the inequality x1 + x2 + x3 > x4 + x5 + x6 + t(x6 − x5). When t = 0 this
reduces to a (2); when t = 1 we get the required extra condition.

arxiv.org/abs/2305.17741
https://doi.org/10.1016/0022-0531(88)90253-0
https://doi.org/10.1007/s11127-013-0118-2
https://doi.org/10.7910/DVN/AMK8PJ
https://doi.org/10.1007/s10602-022-09375-9
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Since this inequality has normal vector equal to v4 = (1, 1, 1,−1, t − 1,−t −
1, 0, 0, 0), we have

α14 = ∠(v1,v4) = cos−1(
−6√

6 ·
√
6 + 2t2

) = cos−1(
−
√
3√

3 + t2
)

α24 = ∠(v2,v4) = cos−1(
3√

6 ·
√
6 + 2t2

) = cos−1(

√
3

2
√
3 + t2

)

α34 = ∠(v3,v4) = cos−1(
6√

8 ·
√
6 + 2t2

) = cos−1(
3

2
√
3 + t2

)

leading to

dα14 =
−
√
3

(3 + t2)
dα24 =

√
3t√

9 + 4t2(3 + t2)
and dα34 =

3t√
3 + 4t2(3 + t2)

.

Next, we require a basis for the space in R
9 that is orthogonal to v1,v2,v3 and

v4. One such basis is

v5 = (1, 1,−2, 0, 0, 0, 0, 0, 0)

v6 = (1,−1, 0, 0, 0, 0, 0, 0, 0)

v7 = (0, 0, 0,−2, 1, 1, 0, 0, 0)

v8 = (0, 0, 0, 0, 0, 0,−2, 1, 1)

v9 = (1, 1, 1, 1, 1, 1, 1, 1, 1).

We find P124, P134 and P234 as before to get P124 = (0, 0, 0, 0, 0, 0, 0,−1, 1),
P134 = (1, 1, 1, 1, 1, 1,−2,−2,−2) and P234 = (4t, 4t, 4t,−2t,−9−2t, 9−2t,−2t,−11t, 7t).

Since ‖P124‖ =
√
2, ‖P134‖ = 3

√
2 and ‖P234‖ =

√
48t2 + 8t2 + 121t2 + 49t2 + 162 + 8t2 =√

234t2 + 162 = 3
√

2(13t2 + 9), we have

V ol(S1 ∩ C4) = ∠(P124, P134) = cos−1(
0√

2 · 2
√
18

) =
π

2

V ol(S2 ∩ C4) = ∠(P124, P234) = cos−1(
18t√

2 · 3
√

2(13t2 + 9)
) = cos−1(

3t√
13t2 + 9

)

V ol(S3 ∩ C4) = ∠(P134, P234) = cos−1(
18t

3
√
2 · 3

√

2(13t2 + 9)
) = cos−1(

t√
13t2 + 9

)

So

V ol3(St=1) = V ol3(St=0) +

∫ 1

0

dV ol3S

= V ol3(St=0) +
1

2

∫ 1

0

V ol1(S1 ∩ S4)dα14 + V ol1(S2 ∩ S4)dα24 + V ol1(S3 ∩ S4)dα34dt

= V ol3(St=0) +
1

2
[I1 + I2 + I3]

where I1 =
∫ 1

0
π
2 · −

√
3

(3+t2)dt = −0.82247 and similarly I2 = 0.0806918 and I3 =

0.28144178
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By Step 1, V ol3(St=0) = V ol2(St=0)
2π2

4π = 0.03563737(2π2). Hence the proba-
bility that all these conditions are met is equal to

1

2π2

[

0.03563737(2π2) +
1

2
(−0.82247+ 0.0806918+ 0.28144178)

]

= 0.023976912.

Since the choice of A and B was arbitrary, the probability of a negative partici-
pation paradox is is 6× 0.023976912 ≈ 0.143861

Proof of (ii) As with the case with complete ballots, the probability that an
election demonstrates a negative participation paradox given that these winners
are different is equal to the probability of negative participation paradox divided
by the probability that the IRV and plurality winners are distinct. The latter was
determined in Step 1; hence this probability is equal to 0.023976912/0.03563737≈
0.672803.
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