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SOBOLEV SPACE THEORY FOR POISSON’S EQUATION IN
NON-SMOOTH DOMAINS VIA SUPERHARMONIC FUNCTIONS
AND HARDY’S INEQUALITY
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ABSTRACT. We introduce a general Lp-solvability result for the Poisson equa-
tion in non-smooth domains Q C R¢, with the zero Dirichlet boundary con-
dition. Our sole assumption for the domain €2 is the Hardy inequality: There
exists a constant N > 0 such that
2
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To describe the boundary behavior of solutions in a general framework, we
propose a weight system composed of a superharmonic function and the dis-
tance function to the boundary. Additionally, we explore applications across a
variety of non-smooth domains, including convex domains, domains with ex-
terior cone condition, totally vanishing exterior Reifenberg domains, and do-
mains Q C R% for which the Aikawa dimension of Q¢ is less than d — 2. Using
superharmonic functions tailored to the geometric conditions of the domain,
we derive weighted Lj-solvability results for various non-smooth domains and
specific weight ranges that differ for each domain condition. Furthermore, we
provide an application for the Hélder continuity of solutions.
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1. INTRODUCTION

The Poisson equation is among the most classical partial differential equations.
L,-theory for this equation in R?% and C?-domains has been developed long be-
fore, alongside Schauder theory and Ls-theory. In particular, there are extensions
in various directions, including variable coefficients [17, 36], nonlocal or nonlinear
operators [21, 22], and non-smooth domains.

Our primary focus is the Poisson equation on non-smooth domains €2, with the
zero-Dirichlet boundary condition:

Au=f inQ ; u=0 on 09Q. (1.1)

Unweighted or weighted L,-theories for this equation have been developed for vari-
ous types of domains, including C''-domains [27, 29], Reifenberg domains [11], con-
vex domains [1, 19], Lipschitz domains [23], domains with Ahlfors regular bound-
ary [46], domains with point singularities [43, 44], and piecewise smooth domains
[10, 45]. Despite the extensive analyses of the Poisson equation across these do-
mains, a comprehensive theorem for L,-solvability for various types of non-smooth
domains remains elusive. Moreover, L,-theory has been primarily developed on
domains with sufficient regularity, such as those mentioned above.

This paper presents a general result on weighted L,-solvability for (1.1) in non-
smooth domains. We consider domains Q C R? admitting the Hardy inequality:
There exists a constant Co(€2) > 0 such that

f((E) ‘2 / 2 o]
— < . .
/Q ‘d(z,aﬂ) Qo < Co(@ [ Vi@ de foral feC@) (1.2)
One of the notable sufficient conditions for (1.2) is the volume density condition:
i ’QC N B, (p)‘

inf ———>0 1.3

v |Br ()] -
(see Remark 4.11). We also use a class of superharmonic functions, called superhar-
monic Harnack functions, as a weight function in our L,-estimate. Consequently,
roughly speaking, we establish that for equation (1.1) in a domain  with (1.2), each
superharmonic Harnack function v immediately leads to a weighted L,-solvability
result associated with ¢, for general p € (1,00), where ¢ describes the boundary
behavior of solutions. We apply our result to various types of non-smooth do-
mains, constructing appropriate superharmonic functions. A detailed discussion of
our main result and its applications can be found in the last part of Subsection 1.1
and Subsection 1.2, respectively.

1.1. Historical remarks and overview of the main results.

Historical remarks on the L,-solvability in non-smooth domains. Studies of
L,-theory for non-smooth domains have mainly focused on the individual analysis
of specific domain classes. One of the most significant contributions to the study of



L,-THEORY FOR POISSON’S EQUATION IN NON-SMOOTH DOMAINS 3

non-smooth domains is the work of Jerison and Kenig [23] for Lipschitz domains.
The authors provided the following results for domains Q@ C R¢, d > 3 (resp. d = 2):

(1) If p € [3/2,3] (resp. p € [4/3,4]), then for any bounded Lipschitz domains
Q, the Poisson equation (1.1) has a unique solution in L?(Q) whenever
feL? (Q).

(2) For each p > 3 (resp. p > 4), there exists a bounded Lipschitz domain
and f € C°°(Q) such that (1.1) has no solution in L?(€).

(for the definition of function spaces LF(Q) and LP (), see Remark 1.4). The
first result provides a universal range of p that assures the unique solvability in
unweighted Sobolev spaces. However, as shown in the second result, the Poisson
equation is not uniquely solvable in unweighted Sobolev spaces Llf (Q), for general
non-smooth domains €2 and values of p € (1,00). Given these limitations in un-
weighted Sobolev spaces, we turn our attention to theories in weighted Sobolev
spaces.

Elliptic equations in smooth or polygonal cones have been extensively studied in
the literature, as indicated in monographs [10, 44, 45]. Here,

Q:={ro:r>0 and 0 € M} (M cCS™), (1.4)

is called a smooth cone if M is a smooth subdomain of S*~! and Q is called
a polygonal cone if M is a spherical polygon. For these domains, scholars have
investigated the unique solvability of elliptic equations in specific types of weighted
L,-Sobolev spaces for general p € (1,00). The weight system in these spaces is
composed of the distance functions for each vertex and edge of the domain; the
range of weights for the unique solvability is closely related to the eigenvalues of the
spherical Laplacian on M. For example, consider the case of M = { (cos,sinf) :
0<0<k}CS ke (0,2m), and Q C R? defined by (1.4). For any p € (1,00) and
2 s

S <mu< % + =, we have the estimate

[z~ ull, + [l ™ Dull, + [[la1 > D], S [l Au]],

for u € C°(Q) (see [45, 2.6.6. Example]). The value of p describes the behavior of

solutions near the vertex, and the term  in the range of p is directly related to

the first eigenvalue of (f—; on M.

The aforementioned studies on Lipschitz domains and smooth cones indicate
that, in order to develop a general framework for the L,-solvability of the Pois-
son equation in various non-smooth domains, we need to adopt a weight system
associated with the Laplace operator and the geometric features of each domain.
Furthermore, this weight system enables us to describe the boundary behavior of
solutions.

There are many other notable studies for various non-smooth domains. Subsec-
tion 1.2 summarizes prior works relevant to several types of non-smooth domains
and introduces our result in each situation. Before introducing our result, we leave
some comments on one of the primary methods of this paper.

Remark on the localization argument. One of our primary methods is the
localization argument developed by Krylov [34]. Krylov investigated the Poisson
equation in the half space Ri, and one of the main results is as follows: If % <p<

1+1—17, then for any u € Cgo(Ri) and fo, f1, ..., fq such that Au = f0+2i21 D;f;,
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we have
o™ ullp + lp" " Dully S llp™"ullp + 19> folls + > llo" " fill, (1.5)
i>1
S o follp + D o™ fillp, (1.6)

i>1

where p(z) := d(z, 0R%) is the boundary distance function on R4 . Here, the param-
eter u describes the boundary behaviors of solutions and their derivatives (consider
the case of = 1). The range % <pu<l+ % is sharp as mentioned in [34, Remark
4.3]. From a technical point of view, this range follows from the proof of (1.6) in
which the weighted Hardy inequalities for Ry and its sharp constants play crucial
roles. On the other hand, to derive estimate (1.5), the author applied a localization
argument based on the Poisson equation’s results in the whole space R%. We note
that this argument is applicable to any domain 0 and any p € R, not just to Ri
and specific i, as shown in [30].

While Krylov [34] dealt with only the half space because of estimate (1.6), the
work of Kim [28] reveals a connection between the approach in [34] and the classical
Hardy inequality (1.2) for non-smooth domains. Kim [28] studied stochastic par-
abolic equations in non-smooth domains, obtaining (1.5) and (1.6) type estimates
for bounded domains €2 admitting the Hardy inequality, instead of Ri. However,
it should be noted that in [28, Theorem 2.12], the range of u for the solvability is
restricted to around %, and this range is not specified; briefly speaking, the bound-
ary behavior of solutions is not adequately described sufficiently well (cf. Krylov’s
work on R‘i mentioned above).

Overview of the main result. Following [28], we concentrate on the class of
domains admitting the Hardy inequality. This concentration stems from the fact
that the Hardy inequality holds on various non-smooth domains (see (1.3)).

A key distinguishing feature of the present paper from earlier studies is the uti-
lization of superharmonic functions. We employ superharmonic functions in con-
junction with the Hardy inequality. This combination allows us to effectively cap-
ture the boundary behavior of solutions (see (1.7) or Theorem 2.7). Furthermore,
we introduce the concepts of Harnack functions and reqular Harnack functions, ex-
tending the localization argument used in [34] to a broader class of weight functions.
Consequently, as weight functions, we utilize superharmonic Harnack functions 1,
which are locally integrable functions that satisfy the following conditions:

(1) A¢ <0 in the sense of distribution.
(2) % > 0 and that there exists a constant N > 0 such that

esssup ¥ < N essinf ¢ forall z€Q,
B(z,p(z)/2) B(z,p(z)/2)
where p(z) := dist(z, Q).
Our main result (Theorem 3.14) contains the following estimate:

Let © admit the Hardy inequality (1.2) and 1) be a superharmonic Harnack

function on €. For any 1 < p < oo and —1—17 <p<1l-— %, it holds that

for any w € C°(2) and fo, fi1, ..., fa such that Au = fo + 2121 D; f;, we
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have

[ p™2 Pl + [~ p =P+ Dully S 1o~ ™ P 2 follp + D 1907074 fillp -
i>1

(1.7)

Here, the superharmonic Harnack function ¢ describes the boundary behavior of so-

lutions; by applying a Sobolev-Holder embedding theorem, we also derive pointwise
estimates for solutions (see Theorem 1.8 and Proposition 3.13).

Our main result does not specify a particular superharmonic Harnack function
1. The flexibility in choosing v is the primary advantage of our theorem, enabling
applications in a wide range of non-smooth domains. We offer a non-trivial gen-
eral example of v related to the Green functions in Example 3.17. Additionally,
throughout Sections 4 and 5, we explore the construction of suitable v for various
geometric domain conditions. The domain conditions we investigate include the
following;:

(1) Domains satisfying the exterior cone condition, and planar domains satis-
fying the exterior line segment condition;

(2) Convex domains;

(3) Domains satisfying the totally vanishing exterior Reifenberg condition;

(4) Domains ) satisfying the volume density condition (1.3);

(5) Domains 2 C R? for which the Aikawa dimension of Q€ is less than d — 2.

For a domain 2 under each condition above, we construct suitable superharmonic
functions v such that ¢ ~ d(-,09)* for some a € R. Notably, the range of « is
different for each domain condition. We sequentially introduce simplified versions
of our results for the aforementioned conditions in Subsubsections 1.2.1 - 1.2.5,
together with earlier works for each domain condition.

Finally, we mention that the approach presented in this paper is applicable not
only to the Poisson equation but also to linear evolution equations based on the
Laplace operator, such as the classical heat or time-fractional heat equations and
the stochastic heat equation. The localization argument in Section 3 and the super-
harmonic functions in Sections 4 and 5 can readily be employed for these equations.
Applications to the mentioned three equations are considered future work.

Since the table of contents is provided at the beginning of the paper, we omit
the summary of the organization of this paper.

1.2. Summary of applications to various domain conditions. This subsec-
tion considers a domain Q C R, d > 2. We denote p(x) := d(z,92), and introduce
weighted Sobolev spaces. For p € (1,00), § € R, and n € {0, 1,2, ...}, we denote

n n 1/p
HfHW;fe(Q) = Z Hkakf”Lp,e(Q) = Z </ }P(x)kaf(fEHpP(I)e dfl?) )
k=0 k=0 N/

vy o =06 2 10 fallty e+ £ = 3 D

|| <n [a|<n
For n € Z, W' »(Q) denotes the set of all f € D'(Q) such that ||f||W£€(Q) < 0.
Remark 1.1. The spaces W}'p(€2) appears only in this subsection. However, this

space has the equivalent relation, W[, (2) = H'p, ;(Q2) (see Lemma 3.12), where
Hp . 4 1s a function space introduced in Subsections 3.2.



6 J. SEO

For convenience, we define the following statement:

Statement 1.2 (Q,p,0). Let A > 0. For any n € Z, if f € W]'4(Q), then the

equation Au — \u = f has a unique solution w in W52, (). Moreover, we have

p,0+2p
[ullwrizg) + Mlullwy, ., @ < Nllfllwg,.,, @ - (1.8)

where N is independent of f, u, and .

1.2.1. (Subsection 5.1) Domains with exterior cone condition. For § €
[0,7/2) and R > 0, 2 is said to satisfy the exterior (d, R)-cone condition if for
every p € 0fQ, there exists a unit vector e, € R? such that

{reR?: (x—p) e, >|r—p|lcosd , |z —p| < R} CQ°;

when 0 = 0, this condition is often called the exterior R-line segment condition.
Examples of this condition are given in Example 5.2 and illustrated in Figure 5.1.
Given § > 0, we denote
d—2 d—2
A = (

2A
-5 Y(F)

where As > 0 is the first eigenvalue for Dirichlet spherical Laplacian on
{o=(01,...,04) €S*! : 0y > —cosd}.

When d = 2 and 6 = 0, we set A\s = 1/2. We provide information on As in (5.4) and
Proposition 5.3. Note that As > 0 for all 6 > 0, and if d = 2, then \; = ﬁ > %
for all § > 0.

Our result also covers some unbounded domains, but here, we only introduce the
result regarding bounded domains.

Theorem 1.3 (see Theorem 5.6). Let 6 € (0,7) if d > 3, and § € [0,7) if d =
2. Suppose that Q@ C R is a bounded domain satisfying the (8, R)-exterior cone
condition for some R > 0. Then, for any p € (1,00) and 6 € R satisfying

—)xg(p—l)—2<6‘<)\§—2,

Statement 1.2 (Q,p,0) holds. In addition, then N in (1.8) depends only on d, p, n,
0, §, diam(Q)/R.

The exterior cone condition is more general than the Lipschitz boundary condi-
tion. It should be noted that, however, Theorem 5.6 and the work of Jerison and
Kenig [23, Theorems 1.1, 1.3] (on Lipschitz domains) cannot be directly compared
because they address different aspects of the Poisson equation in non-smooth do-
mains. While Theorem 5.6 covers a broader domain class than [23], if our focus
is restricted only to Lipschitz domains, the results in [23] are more general than
Theorem 5.6 in terms of unweighted estimates for higher regularity. To compare
[23] with Theorem 5.6, we refer the reader to the following remark on the relations
between the function spaces H, ,, ,(€2) (see Remark 1.1) and the Sobolev spaces
presented in [23]:

Remark 1.4. Let Q be a bounded Lipschitz domain. We refer to the function space
L2(Q) and LE , as introduced in [23, Section 2], where p € (1, 00) is the integrability
parameter, and s € R is the regularity parameter. For clarity, we use the notation
LP(€) to denote the space L? . It is noted that for k € No, we have L} (Q) = W]f Q).
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The space L?(Q) is defined by the closure of C2°(Q) in L?(Q2), and L” , (Q) is defined

by the dual space of Iozi/(pfl)(Q).

It is directly follows from the definition that Hgﬁd(ﬂ) = L{(Q) = L,y(Q). For
k € N, it is implied by the weighted Hardy inequality for Lipschitz domains (see,
e.g., [38]) and the boundedness of Q that ||u||H;’j,d—kp(Q) ~ [lullrqy for all u €
C2(92). Since C(2) is dense in both of H;fﬁdfkp(Q) and LQ(Q), separately (see
Lemma 3.10.(1) with ¥ = 1), Hﬁdikp(Q) coincides with Li(Q) The interpolation
properties for LP(€) and H) 4(Q) (see [23, Corollary 2.10] and [40, Proposition 2.4],
respectively) implies that H; ; () = LE(R) for all s > 0. By considering these

dual spaces (see Lemma 3.10.(2)), we also have H 3. () = L” (Q) for all s > 0.

1.2.2. (Subsection 5.2) Convex domain.

Theorem 1.5 (see Theorem 5.10). Let d > 2 and 1 < p < co. Suppose that Q is a
convex domain (not necessarily bounded). For any p € (1,00) and 0 € R satisfying

-p—-1l<l< -1,

Statement 1.2 (Q,p,0) holds. In addition, N in (1.8) depends only on d, p, n, 0.
In particular, N is independent of €.

Adolfsson [1] and Fromm [19] have established the solvability of the Poisson
equation in bounded convex domains. Regarding unweighted estimates for higher
regularity, their results is more general than Theorem 5.10. However, Theorem 5.10
deals with convex domains that are not necessarily bounded, and this theorem
also provides solvability results in weighted Sobolev spaces. When comparing these
results with Theorem 5.10, it is helpful to note Remark 1.4 and that bounded convex
domains are Lipschitz domains (see, e.g., [20, Corollary 1.2.2.3]).

Combining the results of Theorem 5.10 with [20, Theorem 3.2.1.2] may yield

results similar to [19, Corollary 1]. However, we do not pursue this direction in this
paper.
1.2.3. (Subsection 5.3) Totally vanishing exterior Reifenberg condition.
This subsubsection introduces the totally vanishing exterior Reifenberg condition
(abbreviated to ‘(TVER)’), which is a generalization of the concept of bounded
vanishing Reifenberg domains introduced below (5.10).

To clarify the main point of (TVER) presented in Definition 5.11.(3), we provide
a simplified version of this concept in Definition 1.6. Note that (TVER) in Definition
1.6 is a sufficient condition for the totally vanishing exterior Reifenberg condition in
Definition 5.11.(3). In Figure 5.3, we describe the difference between the vanishing
Reifenberg condition, (TVER) in Definition 1.6, and the totally vanishing exterior
Reifenberg condition in Definition 5.11.(3).

Definition 1.6. We say that Q) satisfies the totally vanishing exterior Reifenberg
condition (abbreviate to ‘(TVERY)’) if for any ¢ € (0, 1), there exist Ry 5, Roo,s > 0
satisfying the following: For every p € 0Q and r > 0 with » < Ry s or 7 > R s,
there exists a unit vector e, , € R? such that

QN By(p) C{zx € By(p) : (x—p)-ep,r <or}. (1.9)

As shown in Example 5.13, (TVER) is fulfilled by bounded domains of the fol-
lowing types: the vanishing Reifenberg domains, C'-domains, domains with the
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exterior ball condition, and finite intersections of them. Furthermore, several un-
bounded domains also satisfy (TVER) (see Proposition 5.14).

Theorem 1.7 (see Theorem 5.18). Suppose that Q0 satisfies (TVER). For any
p € (1,00) and 0 € R satisfying

-p—-1l<l< -1,

Statement 1.2 (Q,p,0) holds. In addition, N in (1.8) depends only on d, p, n, 0,

and {Ro,é/ROOﬁ}ée(O,l] ’

The Poisson equation in bounded vanishing Reifenberg domains has been in-
vestigated in the literature, such as the works of Byun and Wang [11], Choi and
Kim [13], and Dong and Kim [17]. These studies focus on the elliptic equations with
variable coefficients, and provide weighted L,-estimates for Muckenhoupt A,-weight
functions. However, these studies mostly dealt with bounded vanishing Reifenberg
domains. Differing from these, Theorem 1.7 considers domains satisfying (TVER),
thereby including bounded vanishing Reifenberg domains.

1.2.4. (Subsection 4.1) Domains with fat exterior. Consider a domain 2
satisfying the capacity density condition:

. Cap (Q° N By(p), B2, (p))
pTe>aéz Cap (B, (p), Ba2r(p))

where Cap(K,U) denotes the La-capacity of K relative to U (for the definition,
see (4.11)). Condition (1.10) has been studied in the literature, including [4, 5, 6,
26, 31, 39]. It is worth noting that the volume density condition (1.3) is a sufficient
condition for (1.10) (see Remark 4.11).

In Subsection 4.1, we consider another condition equivalent to condition (1.10),
called the local harmonic measure decay condition. To clarify, we introduce some
corollaries instead of the main result (Theorem 4.13).

>e >0, (1.10)

Theorem 1.8 (see Corollary 4.15 with Lemma 4.10). Let Q be a bounded domain
satisfy (1.10). There exists oy > 0 depending only on d, Ny, and €y (in (1.10))

such that for any « € (0, ap], the following holds: Let X\ > 0, and fo, f1, ..., fa be
measurable functions such that |fo| < p= 27 and |f1|, ..., |fa] < p~ 1. For any
8 < «, the equation
Au—/\u:fo—FZDifi in Q@ ; u=0 on 0Q (1.11)
i>1

has a unique solution u in C%#(Q). In addition, we have
sup p~ul + [ulloos oy < Nsup (572501 fol + 37 p7 2 £l
Q Q =1

where N depends only on d, |9, € (in (1.10)), a, S.

Remark 1.9 (see Remark 4.8). Theorem 1.8 still holds for bounded domains
satisfying the following, instead of (1.10):

For any F' € C(09), the Laplace equation
Au=0 in Q ; u=F on 090
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has a (unique) classical solution u € C(Q). Additionally, there is a; € (0,1)
such that [[ul|co.e1 (@) < N||F|co.«1(aq), where N is a constant independent
of v and F.

Under this revised assumption, g in Theorem 1.8 can be chosen as «; in the revised
assumption.

We also provide an unweighted L,,-solvability result for (1.11), where p is close to
2. Although similar results are provided in the literature, as detailed in the above
Corollary 4.16, we present the following theorem to emphasize the applicability of
our main result:

Theorem 1.10 (see Corollary 4.16). Let Q satisfies (1.10), and let

A>0 if Dgq:=supd(xz,00) <oco, and A>0 if Dg=o00.
€N
Then there exists € € (0,1) depending only on d, €y (in (1.10)) such that for any
p € (2 —¢€2+¢€), the following holds: For any fo, f1, ..., fa € Lp(R), equation
(1.11) has a unique solution u in W]D1 (Q) (= the closure of C*(Q) in W) (Q)).
Moreover, we have

IVally + (A2 + DoY) ully Sapeo min (A2, D) llf Iy + D 15

i>1

1.2.5. (Subsection 4.2) Domains with thin exterior. For a closed set £ C R?,
the Aikawa dimension of E, denoted by dim 4 F, is defined as the infimum of > 0
such that
1 / 1

sup — T Id-3
peEQC r>0 TP B(p,r) d(va)d A
with considering 07! = co. We consider a domain 2 for which dim 4(2¢) < d—2. A
relation between the Aikawa dimension, the Hausdorff dimension, and the Assouad
dimension is mentioned in Remark 4.1.

dz < Ag < o0,

Theorem 1.11 (see Theorem 4.19). Let Q C RY, d > 3, satisfy dim 4(Q¢) =: By <
d—2. For any p € (1,00) and 0 € R satisfying

—d+By<0<(p—1)(d— o) —2p,

Statement 1.2 (Q,p,0) holds. In addition, N in (1.8) depends only on d, p, n, 0,
Bo, {As}s>p,-

1.3. Notation.

e We use := to denote a definition.

e The letter N denotes a finite positive constant which may have different
values along the argument while the dependence will be informed; N =
N(a,b,---) means that this N depends only on the parameters inside the
parentheses.

e For a list of parameters L, A <;, B means that A < N(L)B, and A ~; B
means that A <; B and B <y, A.

e aVb:=max{a,b}, a Ab:= min{a,b}.

e For a Lebesgue measurable set E C R%, |E| denotes the Lebesgue measure
of E.
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Ny := NU {0}, RY := {(z},...,2% € R? : z' > 0}, Ry := R., and
S4=t = {& € R? : |z| = 1}. In adition, for p € R? and r > 0, B,(p) :=
B(p,r) :={z € R : |z| <r}, and B, := B,(0).

e A non-empty connected open set is called a domain.
e Forsets B, F C R d(x, E) := inf,cp |r—y| and d(E, F) := inf,cp d(z, F).

For a fixed open set O C R?, we usually denote p(z) := d(x, 00) when there
is no confusion.

For a set E C R, 15 denotes the function defined by 1g(z) =1 for z € E,
and 1g(xz) = 0 for « ¢ E. For a function f defined in E, f1g denotes the
function defined as (f1g)(z) = f(z) if 2 € E, and (flg)(z) =0if v # E.
supp(f) denotes the support of the function f defined as the closure of
{0 : Jlx) £0}.

For an open set O C R, C>°(0) is the the space of infinitely differentiable
functions f for which supp(f) is a compact subset of O. Also, C*°(0O)
denotes the the space of infinitely differentiable functions in O.

For an open set O C R? D’(O) denotes the set of all distributions on
O, which is the dual of C°(2). For f € D'(0O), the expression (f, ),
p € C(0) denote the evaluation of f with the test function ¢.

For any multi-index o = (aq,...,aq4), o € {0} UN, we denote |a| :=
Zle ;. For a function f defined on an open set O C R%, f,: := D;f :=
gj;, and D f(z) :== D§*--- D{" f(x). For the second order derivatives we
denote D;D;f by D;;f. We often use the notation |gf,| for Z?:l lgD; f1,
|gfzz]| for Zijzl lgDy; f|, and |gD™ f| for 2 la=k |9D* f|. We extend these
notations to a sublinear function || - || : D'(Q) — [0, +oo]; for example,

lgfall = S0, llgDif|-

o Af:= Ele D;; f denotes the Laplacian for a function f defined on O.
e For an open set O C R%, C(O) denotes the set of all continuous functions f

in O such that | f|c(o) := supe | f| < 0o. For n € Ng, C"(O) denotes the set
of all strongly n-times continuously differentiable function f on O such that
[ flleno) == Y heo D flo(o) < oo. For a € (0,1], C™*(O) denotes the
set of all f € C"(O) such that || fllcr.e(0) = |fllcn0) + [flemeo) < o0,
where [f]on.a(0) = SUpP,4yec0 W. For any set £ C RY, we
define the space C%(E) in the same way.

Let (A, A, ) be a measure space. For a a measurable function f : A —
[—00,00], esssup f is defined by the infimum of a € [—o0, 0] for which

A

p({z €A : f(x) >a}) =0, and essAinff := —esssup (—f).
A
Let O C R? be an open set. For p € [1,00], L,(O) is the set of all measur-
able functions f on O such that ||f|, :== ( [, [f[? dx)l/p < o0 if p < o0,
and [|f[loc 1= esssup|f| < oo if p = oco. For n € No, W(O) = {f :
A

> jaj<n 1D fllp < oo}, the Sobolev space.

Let O C R? be an open set. For X(0) = L,(O) or C"(0) or C™*(0),
X1oc(O) denotes the set of all function f on O such that f¢ € X(O) for

all ¢ € C°(0). Especially, if f € Lj 10c(€2), then f is said to be locally
integrable in €.
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2. KEY ESTIMATES FOR THE POISSON EQUATION

This section aims to obtain an estimate for the zeroth-order derivatives (the
function itself) of solutions to the Poisson equation (1.1) on a domain admitting the
Hardy inequality (1.2). In the main theorem, Theorem 2.7, superharmonic functions
are used as weight functions. We begin with the definition and elementary properties
of superharmonic functions.

Definition 2.1.

(1) A function ¢ € L1 10c(2) is said to be superharmonic if A¢ < 0 in the sense
of distribution on €, i.e., for any nonnegative ¢ € C$° (),

/nggdxgo.

(2) A function ¢ : Q — (—o0, +00] is called a classical superharmonic function
if the following conditions are satisfied:
(a) ¢ is lower semi-continuous on €.
(b) For any x € Q and r > 0 satisfying B,.(x) C Q,

1
P(z) > m /Br(z) P(y)dy -

(¢) ¢ # +oo on each connected component of €.

Recall that ¢ is said to be harmonic if both ¢ and —¢ are classical superharmonic
functions.

Remark 2.2. Equivalent definitions of classical superharmonic functions are in-
troduced in [7, Definition 3.1.2, Theorem 3.2.2]. Especially, if ¢ is a classical su-
perharmonic function on a neighborhood of every x € Q, then ¢ is a classical
superharmonic function on Q.

Lemma 2.3. A function ¢ : Q — [—00,400] is superharmonic if and only if
there exists a classical superharmonic function ¢g on Q such that ¢ = ¢¢ almost
everywhere on €.

The proof of this lemma can be found in [7, Theorem 4.3.2] and [51, Proposition
30.6] for the ‘if’ part and the ‘only if’ part, respectively.

Lemma 2.4. Let ¢ be a classical superharmonic function on 2.
(1) If ¢ is twice continuously differentiable, then A¢ < 0.
(2) ¢ is locally integrable on .
(8) For any compact set K C Q, ¢ has the minimum value on K.
(4) For e >0, put

¢l (z) = /B o (#1a)(z — ey) - Noe /=11 qy | (2.1)

where Ny := (fBl e~ 1/(=1yP) dy)il. Then for any compact set K C Q and
0 < e < d(K,Q°), the following hold:

(a) ¢'9) is infinitely smooth on RY.

(b) ') is a classical superharmonic function on K°.

(¢c) For any x € K, ¢')(x) / ¢p(x) as e \ 0.
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For this lemma, (1) - (3) follow from Definition 2.1 and Lemma 2.3, and (4) can
be found in [7, Theorem 3.3.3].

Lemma 2.5. Let ¢ be a positive superharonic function on € and denote ¢'©) the
function defined in (2.1).
(1) For any ¢ <1, ¢° is locally integrable in .
(2) If f € L1(Q) and supp(f) is a compact subset of 2, then for any ¢ € R,
1im/Q 1£1(6'9) dz = /Q |flg¢°dz. (2.2)

e—0

(3) If f € Loo(82) and supp(f) is a compact subset of 2, then for any ¢ <1,

lim f(¢><f>)°dx:/f¢0dx.
Q Q

e—0

Proof. (1) Let K be a compact subset of Q. If ¢ € (0, 1], then by Lemma 2.4.(2),

/Kgbcdx§|K|1_c(/K¢dx)c<oo.

In addition, if ¢ < 0, then by Lemma 2.4.(3), max (¢€) = (minK gb)c < 00.

(2) Take a bounded open set U such that supp(f) C U and U C €. Consider
only € € (0,d(supp(f),U®). If ¢ > 0, then due to Lemma 2.4.(4), (2.2) follows from
the monotone convergence theorem. If ¢ < 0, then |f|(¢(5))c < (ming ¢)C|f|, and
therefore (2.2) follows from the Lebesgue dominated convergence theorem.

(3) Since f € Loo(2), (1) of this lemma implies that f¢¢ € Li(€2). The proof is
completed by applying (2) of this lemma for max(f,0) and max(—f,0) instead of
f. O

We present the key lemma of this section.

Lemma 2.6. Let p € (1,00) and ¢ € (—p + 1,1), and suppose that u € C(Q)
satisfies that

supp(u) is a compact subset of ),

2.3
ueCh ({zeQ: ul@) #0}) , and / |ulP~t| D*u|dz < oo, (23)
u#0
and ¢ is a positive superharmonic function on a neighborhood of supp(u).
(1) If ¢ is twice continuously differentiable, then
2
/ [ulP g 2|V ol do < () / P2 Vu|26¢ da (2.4)
Q 1-c QN{u#0}
(2) If (Au)l{yzoy is bounded, then
/ [ulP~2|Vu?¢°de < N (—Au) - ulu|P~?¢¢ dz, (2.5)
QN{u#0} QN{u#0}
where N = N(p,c) > 0.
(3) If the Hardy inequality (1.2) holds for Q, then
[ upesas < julP =2Vl dz, (2.6)
Q QN {uz0}

where N = N(p, c,Co(Q2)) > 0.
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Lemma 2.6 is mainly used for v € C2°(€2). However, we employ condition (2.3)
to establish Lemma 2.8, which is a crucial lemma for the existence of solutions in
the proof of the main theorem (Theorem 3.14). To handle condition (2.3), we prove
the following results in Lemma A.1: If u € C(R?) satisfies (2.3), then |u[P/2~'u €
W3 (RY) and |ulP € W2(RY) with

Di(lul?’* ) = BJul = (D) g+ Di([ul?) = plul? Dl sy

(2.7)
D;; (|u|p) = (p|u|p_2uDiju +p(p — 1)|u|p_2DiuDju) Lius0y} -

Proof of Lemma 2.6. By Lemma 2.3, we may assume that ¢ is a classical superhar-
monic function on a neighborhood of supp(u). In this proof, all of the integrations
by parts are based on (2.7).

(1) Recall that ¢ is twice continuously differentiable on a neighborhood of supp(u).
Integrate by parts to obtain

_ P c—2 2
(1-0) / P62V da
_ /Q PV - V() da (2.8)

:p/ |ulP~%u ¢ H(Vu - Vo) da + / |ulPp“"tA¢ dx
Qn{uz#0} Q

1/2 1/2
<o ([ rvaperan) ([ upeverar)
Qn{u0} Q

where the last inequality follows from the Holder inequality and that A¢ < 0 on
{u # 0}. Since the first term of (2.8) is finite, we obtain (2.4). The proof of (1) is
completed.

Although we do not assume that ¢ is infinitely smooth in (2) and (3), we only
need to consider the case where ¢ is additionally assumed to be smooth on its
domain. This is because if (2.5) and (2.6) hold for ¢(©) instead of ¢, for all sufficiently
small € > 0, then by Lemma 2.5, (2.5) and (2.6) also hold for ¢. Note that if
0<e< d(supp(u), 89), then ¢(¢) is a positive superharmonic function on supp(u)
(see Lemma 2.4). In addition, |u[P~2|Vu[*1(,.0; and |u|Pp~? are integrable (see
Lemma A.1), and —Au - u|ulP~?11,.0; in (2.5) is bounded. Therefore, in the proof
of (2) and (3), we additionally assume that ¢ is infinitely smooth.

(2) Case 1: 0 < ¢ < 1. Integrate by parts to obtain

/ —Au - ululP2¢¢dx = (p — 1)/ |ulP~2|Vu?¢° do — 1/ [ulPA(¢°) dx .
Q QN{u#0} pPJa
Since

A(¢°) = ¢ IAG +c(c = 1)¢° Vo> <0 on supp(u),
(2.5) is obtained.
Case 2: —p+1 < ¢ < 0. Due to integration by parts, the Holder inequality, and
(2.4), we have
/ —Au - ul|u[P2¢¢ dx
Q

—(p—1) /Q 2| Va2 dz + ¢ /Q (V) - (V)ululP 24 da
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>(p-1) / P2 Vul ¢ da
Q

1/2
vel [ vaPetds [ urer Vel as
QN{u#0} Q

-1
ZIL/ lufP~2|Vul26° da
1 — C Q

(3) Note that our assumption of the Hardy inequality (1.2) implies that the
inequality in (1.2) also holds for f € W} () whose support is a compact subset of
Q.

Since ¢ is assumed to be positive and smooth on a neighborhood of supp(u), it
follows from Lemma A.1 that |u[P/?~Tu¢®/? belongs to W, (Q), and

_ c D _ c c c/2—
Y ([ul2 7 ug %) = Sl (Vu) Loy 672 + SlulP 29727V

Therefore, due to the Hardy inequality and (2.4), we have
/ Hu|p/27lu¢c/2}2p72 dz
Q
S0 Cols) [ (JuP V0 g + [P 62T
Q

Spie CO(Q)/ |u|P~2|Vu|?¢° da.
QN {uz£0}

O

Theorem 2.7. Let Q admit the Hardy inequality (1.2). For any p € (1,00), ¢ €
(=p+ 1,1), and positive superharmonic function ¢ on Q, the following holds: If
u € C(Q) satisfies (2.3) and (Au)lyyzoy is bounded, then for any X >0,

/ lulPgcp~2da < N/ |Au — AulP¢p?P 2 dx,
@ Q
where N = N(p, ¢, Co(9)).

Proof. Since A > 0, Lemma 2.6 implies

/ |u|P¢Cp=2 da < N/ (—Au) ~u|u|p_21{u¢0}¢c dx

@ “ (2.9)

= N/ (—Au+ ) - ufulP? 1 z010° dar,
Q

where N = N(p, ¢, Co(2)) > 0. Since ¢°p~2 is locally integrable on 2 (see Lemma
2.5.(1)), the first term in (2.9) is finite. By the Hoélder inequality, the proof is
completed. O

Lemma 2.8 (Existence of a weak solution). Suppose that (1.2) holds for Q). Then
for any A > 0 and f € C(Q), there exists a measurable function u : Q@ — R
satisfying the following:

(1) u € Ly 10c(82).

(2) Au— Au= f in the sense of distribution on Q, i.e., for any ¢ € C(),

/QU(AC—)\C)dx:/Qdex. (2.10)
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(8) For anyp € (1,00), c € (—p+1,1), and positive superharmonic function ¢
on €,
[ hupocs2as < [ igpocras (2.11)
where N = N(p, c,Co(2)) > 0.
Proof. Take infinitely smooth bounded open sets €2,,, n € N, such that
supp(f) C U, D C Qnyr UQn =Q

(see, e.g., [15, Proposition 8.2.1]). For arbitrary h € C2°(Q1) and n € N, by Ry ,h

we denote the classical solution H € C*°(£,,) of the equation
AH — \H = thl on Qn ) H|8Qn =0.

Note that Q, is a compact subset of Q, Ry ,h € C®(Q,), and Ry ,h|oqn, = 0.
Therefore (R;th)lgn is continuous on ) and satisfies (2.3). By Theorem 2.7, for
any p € (1,00), ¢ € (—p+ 1,1) and positive superharmonic functions ¢ on Q, we
have

[ 1(Rnah) o, o024z < N ol@) [ porp 2ae. 212)
Q Q

Note that N in (2.12) is independent of n.

Take F € C2°(§1) such that F' > |f], and put f1 := f — F and fa := —F so that
Ji, f2<0,and f1 — fo = f.

For v, = (R)\qnfl)lgn, the maximum principle implies that 0 < v, < v,41
on Q. We define v(z) := limy_,00 vn(z). By applying the monotone convergence
theorem to (2.12) with (h, ¢,p,¢) := (f1,10,2,0), we obtain that [, [v|*p~2dz <
Jo [f1p? dz, which implies that v € Ly 16c(£).

We next claim that for any ¢ € C°(Q),

/U(AC—)\C) dx:/flg“dx. (2.13)
Q Q

Fix ¢ € C°(Q)), and take large enough N € N such that supp(¢) € Q. Then for
any n > N, the definition of v,, = Ry, f1 implies that (2.13) holds for v, instead
of v. Since 0 < v, < v and v € L1 10¢(?), the Lebesgue dominated convergence
theorem yields (2.13).

By the same argument, w := lim,_, o0 (R;ang)lgn belongs to L1 10c(£2), and
(2.13) holds for (w, f2) instead of (v, f1).

Putu:=v—w =lim, (R,\,nf) 1, (the limit exists almost everywhere on Q).
Then u € L1 10c(92), and u satisfies (2.10). In addition, by applying Fatou’s lemma
to (2.12) with h := f, (2.11) is obtained. O

3. WEIGHTED SOBOLEV SPACES AND SOLVABILITY OF THE POISSON EQUATION

In this section, we focus on the Poisson equation
Au—Adu=f (A>0)
in an open set 2 C R? admitting the Hardy inequality, in terms of the weighted
Sobolev \I!H;(,(Q) introduced in Definition 3.7. It is worth noting that the zero
Dirichlet condition (u[sn = 0) is implicitly considered in WH ,(2), as C°(?) is
dense in WH) ,(2) (see Lemma 3.10).
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The organization of this section is as follows: In Subsection 3.1, we present the
notions of Harnack function and regular Harnack function. Subsection 3.2 intro-
duces the weighted Sobolev space ¥ H ; ¢(€). In Subsection 3.3, we prove the main
theorem of this section (Theorem 3.14), using the results in Section 2 and extending
the localization argument employed in [34] to the version of WH ) ,(€).

3.1. Harnack function and regular Harnack function.

Definition 3.1.

(1) We call a measurable function ¢ : Q@ — Ry a Harnack function, if there
exists a constant C' =: C1(¢)) > 0 such that

esssup ¥ < C essinf 1 forallx e Q.
B(z,p(x)/2) B(z,p(x)/2)
(2) We call a function ¥ € C*°(Q) a regular Harnack function, if ¥ > 0 and

there exists a sequence of constants {C*)} e =: Co (W) such that for each
ke N,

|IDFw| < C® p=kF on Q.

(3) Let 1 be a measurable function and ¥ be a regular Harnack function on
Q). We say that W is a regularization of v, if there exists a constant C' =:
Cs(1), ¥) > 0 such that

Cv < ¥ < CV almost everywhere on (2.

A relation between the notions of Harnack functions and regular Harnack func-
tions is provided in Lemma 3.6.

Remark 3.2. We introduced the notion of the Harnack function to facilitate a local-
ization argument (see Lemma 3.18). Separately, there is an earlier work [52] for the
relation between the boundary behavior of continuous Harnack functions and the
quasihyperbolic distance; note that in [52], the term ‘Harnack function’ is defined as
a continuous Harnack function, distinct from the definition provided in Definition
3.1.

Ezxample 3.3.

(1) For any E C ¢, the function x — d(z, F) is a Harnack function on €.
Additionally, C1(d(-, F)) can be chosen as 3.

(2) Let U € C(0) satisfy ¥ > 0 and A¥ = —AT for some constant A > 0.
We claim that ¥ is a regular Harnack function on €, and Co(¥) can be
chosen to depend only on d. To observe this, for a fixed zy € €2, put

u(t,x) := e‘Ap(wO)%\I/(xo + p(zo)z)

so that us = Au on Rx B;(0). The interior estimates (see, e.g., [35, Theorem
2.3.9]) and the parabolic Harnack inequality imply that for any k € R,

p(0)*| DM (x0)| = [DFu(0,0)] Ska lullpa(—1/2,01x By 20 Sa u(l,0) < ¥(wo).

(3) The multivariate Fad di Bruno’s formula (see, e.g., [14, Theorem 2.1]) im-
plies the following:
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Let U CRYand V C Rbeopensetsand f: U — V andl:V — R be
smooth functions. For any multi-index «,

||

D10 f)] < N(d.a) (y(D’fz) ofl Y f[ |Dﬂkf|> .

k=1 Bi+..+Pr=a i=1
[B:|>1

This inequality implies that for any regular Harnack function ¥ on €2, and
o € R, U7 is also a regular Harnack function on €2, and C2(¥7) can be
chosen to depend only on d, o, Co(0).

(4) If ¥ and ® are regularizations of ¢ and ¢, respectively, then U®, U 4 &,

and qi‘p‘l} are regularizations of ¥¢, max(, ¢), and min(v, ¢), respectively.

Lemma 3.4. A measurable function ¢ : Q@ — Ry is a Harnack function if and
only if there exists r € (0,1) and N, > 0 such that

esssup ¥ < N, essinf ¢ for all z € Q.
B(z,rp(x)) B(z,rp(x))

In this case, C1(v)) and N, depend only on each other and r.
Proof. We only need to prove that for fixed constants rg, r € (0,1) and N > 1, if
if  esssup 1/1<N essinf ¥ VazeQ,

B(z,rop(x)) B(z,rop(z)) (3 1)
then  esssup v < N2K+1 egsinf v Ve, '
B(z,rp(x)) B(z,rp(z))

where K is the smallest integer such that K > m.
If r < ro, then there is nothing to prove. Consider the case r > ro. For z € Q,
we denote B(x) = B(:C rop(z)). For fixed zg € Q and y € B(wo,rp(z0)), put
=(1—-£)zo+ £y, i=1,..., M. One can observe that |z;—1 — z;| < rop(z;),
and therefore x;_1 € B(x;). Thls 1mplies that B(z;—1) N B(x;) # 0, and hence
esssup ) < N ess 1nfz/1 <N essinf P < N ess sup ¢ . (3.2)
B(xs) B(wi) B(zi—1)NB(z:) B(zi-1)
By applying (3.2) for ¢ = 1, ..., K, we obtain that esssupy < N¥ess sup .
B(y) B(z)
Since B(zo,rp(wo)) is contained in a finite union of elements in {B(y) : y €
B(zo,7p(20)) }, we have

esssup ¥ < ]\NfKeSSSupd} = N¥X esssup .
B(zo,mp(z0)) B(z) B(xo,m0p(z0))

The same argument implies that essinf ¢ < N*  essinf 1. Consequently,
B(wo,rop(z0)) B(zo,7p(20))
we have

ess sup 1/1§NK ess sup ¢§]\~]K+1 ess inf 1/)§]\~]2K+1 essinf 1,
B(zo,rp(z0)) B(zg,rop(xo)) B(zo,rop(z0)) B(zo,mp(z0))

where the second inequality is implied by the assumption in (3.1). (I

Remark 3.5. Let ¢ be a Harnack function on €. Since 1 € L 10¢(f2), almost every
point in € is a Lebesgue point of ¥. If x € €2 is a Lebesgue point of ¥, then for any
€ (0,1),

essinf ¢ < ¢(x) < esssup ¢.
Bla,rp(x) Ba,rp(a)
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By Lemma 3.4, we obtain that for almost every = € 2 and for any r € (0,1), there
exists N, > 0 depending only on C;(¢) and r such that

N1 esssup ¢ < h(x) < N, essinf .
B(z,rp(z)) B(x,rp(x))

Lemma 3.6.

(1) If v is a Harnack function, then there exists a regularization of 1. For this
reqularization of v, denoted by J, CQ(’JJ/) and Cg(d),{/)v) can be chosen to
depend only on d and Cy(v).

(2) If U is a reqular Harnack function, then it is also a Harnack function and
C1(¥) can be chosen to depend only on d and Co(P).

This lemma implies that a measurable function is a Harnack function if and only
if it has a regularization.

Proof of Lemma 3.6.
(1) Let ¢ be a Harnack function on . Take ¢ € C°(B;) such that ¢ > 0 and
fBl (dx =1.Fori=1,2, 3 and k € Z, put

—1 i 1 T
U’i,k = {33 SRV 2k < p(I) < 2k+ } and Ck(l’) = WC(W) .
Note that for each 1,
{Uivk}keZ is a locally finite cover of 2, and Z 1y, , < 2i. (3.3)
kezZ

For each k € Z, put
o) = (0l0,) + o) = [ (0l ) W) - )y,
B(a,2k—4)
so that ¥y, € C*°(9).
If x € Uy, then B(z,25*) C B(z, p(x)/2) N Us 1. Therefore we have

> i . .
ez (B<3S,§<13f/2>¢)1[]1”“(w) (34)

If © € Usy, then B(z,2¥%) C B(x, p(x)/2), and if ¢ Usy, then B(x,2874) N

Us i, = 0. Therefore we have

Up(z) < ( ess sup 7/1)1U3,k(33)- (3.5)
B(z,p(x)/2)

By (3.4), (3.5), and Remark 3.5, we obtain that
N_lw(x)lUl,k(‘T) < \Ijk(x) < N¢($)1U3’k($) (36)
for almost every z € 2, where N = N(Cy(¢)). Moreover,

ID*W4()] < [ DChlloo /

B(z,2k—

sw"“( esssup w)lag,m) < o) (@)1, (@)
B(x,p(x)/2)

N ¢1U2,k dy
(3.7)
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for almost every = € Q, where N = N(d, «, C1(¢)). Due to (3.3), (3.6), and (3.7),
we obtain that W := %", ¥} belongs to C*>°(Q), and

U g, ¢ and (D[ <> DTy Shopm Ny (3.8)
kEZ
almost everywhere on 2, where N = N(d,a, C1(¢)). By (3.8), the proof is com-
pleted.
(2) Let z,y € Q satisty |x — y| < p(x)/2. For r € [0,1], put &, = (1 — r)z +ry,
so that z, € B(w,p(z)/2) and p(z,) > p(x) — |x — x| > |z — y|. Then we have

U(e,) < U(xo) + |z — ] / (V) ()| di

< U(zg) + Nolz — y /OT o)1 (2y) dt < W(z) + No /OT V() dt,

where Ny = N(d, C2(¥)) > 0. By Gronwall’s inequality, we obtain
U(y) = W(z1) < eMoW(z0) = ™MW (2).

For any z € Q, if y € B(x, p(x)/3), then |z — y| < min (p(z), p(y))/2. Therefore
we have
e Mo esssup U(y) < U(z) <eMo essinf WU(y),

B(z,p(z)/3) B(z,p(x)/3)
and by Lemma 3.4, the proof is completed. O

3.2. Weighted Sobolev spaces and regular Harnack functions. In this sub-
section, we introduce the weighted Sobolev spaces H;(,(Q) and \I/H;(,(Q). The space
H) 4(€) was first introduced by Krylov [34] for Q = R?, and later generalized by
Lototsky [40] for arbitrary domains 2 C R?. We introduce the weighted Sobolev
spaces \I!H;(,(Q) which is a generalization of the Krylov type weighted Sobolev
spaces through regular Harnack functions W.

We first recall the definition of the Bessel potential space on R%. For p € (1, 00)
and vy €R, H) = HZ’,Y(Rd) denotes the space of Bessel potential with the norm

11y = 10 =AYl 2= [ F 7 [+ 6P F @) |

)

where F is the Fourier transform and F~! is the inverse Fourier transform. If
7 € No, then H) coincides with the Sobolev space

,
W) (RY) := {f e D'(RY) : Z/ |DFfIP da < oo}.
k=0 /R

We next recall H) ,(2) and introduce WH (). It is worth mentioning in ad-
vance that for v € Ny, the space \IIHJQ(Q) coincides with the space

v
{f eD'(Q) : Z/ ‘kakf|p\IJpp9_dd:E < oo} ,
k=0

where p(x) := d(z,0Q) (see Lemma 3.12). In the remainder of this subsection, we
assume that

p€ (l,00), v, 0 €R, ¥ is a regular Harnack function on Q.



20 J. SEO

By p we denote the regularization of p(-) := d( -, 9Q) constructed in Lemma 3.6.(1).
Recall that for each k € Ny, there exists a constant Ny, = N(d, k) > 0 such that

p~n, p and |DFp| < Npp*F on Q.
To define the weighted Sobolev spaces, fix (o € C°(R4) such that

SUPP(CO) - [6717 e] B CO Z 0 5 Z CO (ent) =1 forallt S R+ .

nez
For z € R? and n € Z, put
Co,(my () := Co(e7"p(x)) La(z) (3.9)
so that
ZCO,(H) =1 onQ, supp(Com) C{zeQ: "t < px) e},
ne (3.10)

Comy € CX(RY) , and Do )] < N(d, . )"
Definition 3.7.
(1) By H)(£2) we denote the class of all distributions f € D'(£2) such that
Hf”?{g Zené}H CO n)f HH’Y(Rd
ne

(2) By WH, ,(2) we denote the class of all distributions f € D’(2) such that
f = Vg for some g € H) ,(Q2). The norm in WH ) ,(Q2) is defined by

Ifllwey ) = ||‘I’_1f|\H;9(Q)
We also denote
Lypo(Q) :=H)»(Q) and WL,4(Q) :=VH),(Q).

In the rest of this subsection, we collect properties of H;e(ﬂ) and \I/H;(,(Q). As
WH) () is a variant of H ,(Q), we drive properties of WH ,(2) based on those of
H) 4(€2). Note that we cite the properties of H) ,(©2) from [40] as refined versions.
Specifically, in Lemma 3.8 and the proof of Lemma 3.10.(2), the constants in their

estimates are independent of 2. The validity of these refined estimates is supported
by the proof in [40], with complete details provided in [49, Appendix A.1].

The spaces H,) ,(Q2) and WH ) ,(2) are independent of the choice of (o (see Lemma
3.8.(2) of this paper). Therefore, we ignore the dependence on (5. We denote

I={d,p,v,0} and I'={d,p, 7,0, C2(¥)},
where Co(U) is the sequence of constants in Definition 3.1.(2).
Lemma 3.8 (see [40] or Proposition A.3 in [49]).
(1) For any s <,
11z ) Szs 1 17 000 -
(2) For anyn € C(Ry),
Y e ln(e™ ™) ey Sz 17 W )

neZ
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If n additionally satisfies

then

||f||%;’9(sz) Sz Z eneHn(e_nﬁ(en'))f(en')mj{g :
ne

(8) For any s € R,
”ﬁSfHH;’e(Q) =1.s ||f||H;

(4) For any multi-index k € N,

,0+sp (Q) ’

k
Hf”H;”e(Q) =Tk ; ||le||H;;Lp(Q)- (3-11)
In particular, HDkf”H;,;ikp(Q) Stk ||f||H;’9(gl).
(5) Let k € Ny such that |y| < k. If a € CF _(Q) satisfies
|a|,(€0) = sup Z Pl D% < oo |
laf<k
then
0
lafllm ) Sz lall a7 -
Remark 3.9. Lemma 3.8 also holds if f is replaced by W—!f. Therefore, all of
the assertions in Lemma 3.8, except Lemma 3.8.(4), remain valid when Hy () is
replaced by WH ().
Lemma 3.10.
(1) C2(Q) is dense in WH) ,(Q2).
(2) WH) , is a reflezive Banach space with the dual \Il’al_,je,(Q), where

1 1 0 ¢
_+—/:1 and —+—/:d. (312)
p p p p

Moreover, for any f € D'(), we have
fr9
I lomy @ =z suw o)
P geC(Q),9#£0 ||9||\p—1HPjW9/(Q)
(8) For any k, | € Ny,
I(D*O) D' flly ) Szrak 1S et (g

p,0—(k+1)p

(4) Let @ be a reqular Harnack function on Q, and there exist a constant Ng > 0
such that ¥ < No® on Q. Then

||‘I’fHH;”9(Q) < NH(I)fHH;”e(Q)'

where N = N(Z', Co(®), No).
(5) Let p' € (1,00), v, 0" € R, and V' be a regular Harnack function on Q, if
feVH] () NW'H) (), then there exists { fn}nen C C°(Q) such that

If = Fullwry o) + 11 = fn||q,,H;l/ L@ 0 asm—oo.
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Proof. (1), (2) When ¥ = 1, the results can be found in [40] (or see [49, Proposition
A.2]). Since the map f +— ¥~1f is an isometric isomorphism from UH) () to
H) 4(€2), there is nothing to prove.
(3) Since ¥ and p are regular Harnack functions, we obtain that for any k, m €
No,
DF (0)
7.
By Lemma 3.8.(5) and (3), we have

”(Dk\l/)f”H;,e(Q) Sk llp k‘l/me @ Sk VS, @ - (3.13)
Therefore, we only need to prove that for any [ € N,

[\228 Fley ) Sz ||‘I’f||H;,§ilp(Q) '

Recall that ¥~! is a regular Harnack function, and Ca(¥~!) can be chosen to
depend only on Cq(¥) and d. It follows from Leibniz’s rule, (3.13), and Lemma
3.8.(4) and (1) that

< N(d, k,m,Ca(¥)).

WD (1w f) W @) S ZH‘PDZ "( )'Dn(\llf)HH;”e(Q)

SN ZHD" U)o

n=0

Q) SN H‘I’fHH;;QLP(Q) :

p.0—(—n)p
(4) For any k € Ny,
(oYY < N(d, k, Co(P), C2(®), No) .
Therefore, it follows from Lemma 3.8.(5). that
1l ) = 1927 H@) a7 ) SN 12l () -
(5) It directly follows from Lemma A.3. O

Remark 3.11. Tt follows from Lemma 3.10.(4) that for regular Harnack functions ¥
and @, if N~1® < ¥ < N® for some constant N > 0, then \I!H;(,(Q) coincides with
®H ,(€2). Therefore, applying Lemma 3.8.(3), we obtain that if ¥ is a regularization
of p7 (¢ €R), then WH) o(Q) = H, (D).

Lemma 3.12. Let f € D'(Q).
(1) If v € Ny, then

P Sl AL S
la| <~y
(2) For any k € N,
iy oo 2ot { 3 Wlurge o F= 3 Do} G14)
| <k ’ lee| <k
In particular, if vy = —1, =2, ..., then

Ifllwm @) >z inf{ ST fallvr, o @ s = Dafa}-

la|<—v la|<—v
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Proof. (1) Due to (3.11), we only need to prove the case of v = 0. This case is
proved by the following:

1AL, o =D e /]co ¥ ) ()| de
nez
/ (Zen(e d|<0 n)|p>|f|p\1/ Pdgp ~ —dpe/p97d|f|p‘1/7pd117,
o\, Q

where the last similarity is implied by properties of (o () (see (3.9) and (3.10)).
(2) Repeatedly applying Lemma A.2, we obtain {fa}aj<x C D'(€2) such that

f= Z D%fo  and Z ||fa||\1/m+k‘a‘ @ Sk [ fllwr @) -

la| <k || <k

Therefore we obtain (3.14) where ‘>~z ;’ is replaced by ‘271 .

For the inverse inequality, let f =}, o, D%fa where fo € H;'g"la‘p(ﬂ) It

follows from Lemma 3.10.(2) and Lemmas _3.10.(3) and 3.8.(1) that for any g €
Ce (),

ol = | S @ nt)
|| <n
St Y (”\I]_lfaHH;j‘Z‘p(Q)”\I]DQQHH,"97H ‘,(Q))
|| <n
NZ’ ( Z H\II 1fa||H'y+n‘ Q) )” gHH,vel Q)
|| <n

where p’ and 6’ are constants in (3.12). By applying Lemma 3.10.(2), we have
1oy o0 Sz 06 { D2 Wallwmrse @i f= Y D*fa)-
|| <n la|<n

Therefore, the proof is completed. O

We end this subsection with a Sobolev-Holder embedding theorem for the spaces
WH) (). For k € Ny, a € (0,1] and § € R, we define the weighted Holder norm

10, = 3 sup i 4+ s [N D W)
i—0 9 z,y€Q |z =yl

Proposition 3.13. Let k € Ny, a € (0,1].
(1) For any § € R,

\S lf’ka—N Zsup‘\l/ p(x)* D f(x))|
= 01
+ sup <\Ill(x)p5+k+a( ) sup }Dkf(zf) — Dkf(y)’)
e ’lj‘u w‘<p(z |x_y|o¢ )

where N = N(d, k,«, 6, Ca(T)).
(2) If a € (0,1) and k + a < —d/p, then for any f € VH ,(2),

(0/p)
O Ska Ifllw ey, -
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Proof. (1) This result follows from the direct calculation and the definition of reg-
ular Harnack functions. Therefore, we leave the proof to the reader.

(2) We only need to prove for ¥ = 1, and the result for this case is stated in [40,
Theorem 4.3]. We give proof for the convenience of the reader.

For f € H " 0(£2), the Sobolev embedding theorem implies

17 Go.cm) (@ e < N (Fo,m) (@ ) [y < 00, (3.15)

where N = N(d,p,7,k,d). Hence f belongs to CF (). For x € €, take ng € Z

such that e™~! < p(z) < e™. If |z —y| < p(2), then e =2 < p(y) < e™ot2
Take constants A and B depending only on d such that A=!p < p < Ap, and

Z\n|§B Co(e”t) =1 for all ﬁ <t < Ae?. Then we have

Z CO,(n) =1 on U, = {y Cem0—2 < ply) < en0+2}'

In—no|<B

Due to B(z, p(z)/2) C U, and (3.15), we have

k
Z ( 9/p+z ]D fla ’) + p(x)G/p-‘rk-‘ra sup |Dkf(33) — Dkf(y)‘

=0 yily—a| <25 |z — y|*

et (3 D))

s |D’“(f(e"°-))(:v)—D’“(f(e"O-))(y)|>
e m0y€EUn, |‘T - y|a
< D @ P(fom) e ) ne
|[n—no|<B
1/p
s (S lsomie ;)
nez

where N = N(d,p,~,0,k,d). By (1) of this proposition, the proof is completed. O

3.3. Solvability of the Poisson equation. The goal of this subsection is to prove
the following theorem:

Theorem 3.14. Let Q) be an open set admitting the Hardy inequality (1.2) and ¢
be a superharmonic Harnack function on ), with its reqularization V. Then for any

€ (1,00), p € (=1/p,1 —1/p), and v € R, the following assertion holds: For any
)\ >0 and f € UHHY Q), the equation

Au—du=f (3.16)

p,d+2p— 2(

has a unique solution u in \I/“H’Yd 5(2). Moreover, we have
||U||\1/qu;32(Q) + /\||u||\I/HH;d+2p72(Q < N fllwnwr

where N = N(dvpa Vs Ky CO(Q)a CQ(\I/)a C3(¢7 \IJ))

Recall that Co(f2) is the constant in (1.2), and C3(¥) and Cs(¢), ) are the
constants in Definition 3.1.

> (3.17)

p,d+2p— 2(
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In Theorem 3.14, one can take ¥» = ¥ = 1. Another example of v is introduced
in Example 3.17, which is associated with the Green function and valid for any
domain admitting the Hardy inequality.

Remark 3.15. In Theorem 3.14, the spaces \IJ”H;ZE2(Q) and WHH) (o0 5(Q) do
not depend on the specific choice of ¥ among regularizations of ¢ (see Remark
3.11). If we take U as ¢ which is the regularization of 1 provided in Lemma 3.6.(1),
then Theorem 3.14 can be reformulated in terms of 1. Indeed, CQ({/;) and Cs (1, {/;)
depend only on d and C;(v), and therefore the constant N in (3.17) depends only
ond, p, v, u, Co(Q), and C1(¢). Additionally, for the case v € Z, equivalent norms
of J“H;ZEQ(Q) and J“H;dﬂpfz(ﬂ) are provided in Lemma 3.12, and they also

can be reformulated in terms of .

Remark 3.16. If u ¢ (=1/p,1 — 1/p), then Theorem 3.14 does not hold in general,
as pointed out in [34, Remark 4.3]. To observe this, consider the equation

Au=f in Q:=(0,7) (3.18)

and put ¥(x) = ¥(z) =sinz, and v = 0.

Let > 1—1/p, and let f € C°(N) with f <0, so that f € W*L, g10,-2(0).
We assume that there exists a solution u; € \I!”H;dd(ﬂ) of (3.18). Then this u4
belongs to H2 ; ,(€). Let ug be the classical solution of (3.18) with the boundary
condition u(0) = u(m) = 0. Then ug € H_ ; ,(Q). Due to Theorem 3.14, (3.18)
has a unique solution, and therefore uy = u;. However ug ¢ W”H§7d72(ﬂ) for all
1 >1—1/p (observe that ug ~ sinz). It is contradiction. Therefore there exists no
solution u € WHH? ; ,(Q) of (3.18).

If 4 < —1/p, then 0 - 1g and 1lq belong to W*H? ; ,(Q) (see Lemma 3.12).
Therefore (3.18) with f := 0 has at least two solutions in W*H?2 ; ,(€).

Consider the case p = —1/p. For n € N, take ¢, € C°(2) such that

Lz r2) SCo S 1pa o) and |D*¢| < N(k)n”.
By putting u := (,, one can observe that there is no constant N satisfying (3.17).

Example 3.17. Let Q C R? be a domain admitting the Hardy inequality. We denote
Gq : QxQ — [0, +00] the Green function of the Poisson equation (for the definition
and the existence of Gq, see [7, Definition 4.1.3], and [7, Theorems 4.1.2 and 5.3.8]
and [6, Theorem 2], respectively). We claim that for any fixed zg € Q, ¢¢ =
Ga(xo, - ) A1is a superharmonic Harnack function on Q. It is worth noting that ¢
is the smallest positive classical superharmonic function, up to constant multiples
(see [7, Lemma 4.1.8]), i.e., if ¢ is a positive classical superharmonic function on
Q, then there exists Ng = N (¢, Q,z9) > 0 such that ¢g < No¢ on Q.

Note that Gq(zg, -) is a positive classical superharmonic function on €, and
Ga(zo, - ) is harmonic on Q\ {z¢}. This implies that ¢ is a classical superharmonic
function on  (see Lemma 4.5.(1)).

For z € Q, denote B(z) := B(z, p(x)/8). If |z — 0| > p(x)/4, then Go(xo, -) is
harmonic on B(:z:, plx)/ 4). By the Harnack inequality, we have

= G , ANl < inf G , A1l = inf .
supéo = (sup Galeo)) A1 5a (gt Geo)) A1= it 6o
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If [z —xo| < p(x)/4, then p(x) < 3p(xo), which implies that B(z) C B(wo, p(0)/2).
By Lemma 2.4.(3), there exists ey € (0, 1] such that G(zo, -) > € on B(wo, p(z0)/2).
Therefore we have

sup ¢g <1 §eal inf ¢q .
B(z) B(z)

Consequently, ¢¢ is a superharmonic Harnack function on (2.
To prove Theorem 3.14, we need the help of Lemmas 3.18 and 3.19. These lemmas
are based on a localization argument, wherein €2 is an arbitrary domain and W is

an arbitrary regular Harnack function. The proof of Theorem 3.14 is provided after
the proof of Lemma 3.19:

Lemma 3.18 (Higher order estimates). Letp € (1,00), v, s € R, 0 € R, and U be
a reqular. Then there exists a constant N = N(d,p, 8,~,C2(V),s) > 0 such that the
following assertion holds: Let X > 0, and suppose that u, f € D'(Q) satisfy (3.16).
Then

el sy g2y + Allbwy, o) < N (Il @ + 1 llwmg, @) - (319)

p,0+2p p,0+2p

Proof. We denote ® = U~ so that Co(®) depends only on d and Cq(¥).
Step 1. First, we consider the case s > v+ 1. One can certainly assume that

[Pullms ) + 19l a7, ,, @ <00,
for if not, there is nothing to prove. Since
12ull i1 () Sapsy [Pl s 0
(see Lemma 3.8.(1)), we only need to prove for s = v+ 1. Put
vn () = Coe " ple"x)) D" z)u(e"x) .

Since
Z en0 ||vn||;;{;+l(Rd) = ||(I)u||;;{;gl(ﬂ) <0,
nez ’
we have v, € H) ™ (R%). Observe that
Av, —e¥ v, = f, in R?, (3.20)
where

Fu(@) = 2o,y (€"2) (R f) (") — X" Co () (") (PAW) (") + Avy ()
= [€¥"Go,n) (OF +2(Vu - V&) + (Ad)u)
+¢"(C) (2(v5- V(Pu)) + (Aﬁ)(l)u) + () (n)|Vﬁ|2<I>u] (")
(see (3.9) for the definition of (). Make use of Lemmas 3.8.(1) - (3) and 3.10.(3)

to obtain
Ze"‘ngnIIZ;(Rd)
newz
<y ||<I>f||’;1;9+2p(9) +[]2(Vu - V) + (A@)uu’;lgmp(m (3.21)

+ 297 V(®u) + (AR)2ullf, o + VAUl o

SNH(I)fH;;{;HQP(Q) + ”q)u”Z;I;ng < 00,

(2
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where N = N(d, p,,0, C2(¥)). This implies that for any n € Z, f,, € H)(R?).
Due to (3.20) and that v, € H)*'(R?) and f, € H}(R?), we have
Vo= (11— A%, e HIRY) | F,:=(1-A)"2f, € L,(RY),
AV, — (" N+ 1)V, = F, —V,.
It is implied by classical results for the Poisson equation in R? (see, e.g., [35,
Theorem 4.3.8, Theorem 4.3.9]) that
vnl gy +2 ay + €™ Mlvn iy may = Vol rrz ey + N [Vall 1, ey

< NAVallL, ey + (€A +1) Vallz, ey
SapllFn = VallL,®e

< N Fallmy ey + lvallmy eay -
Combine this with (3.21) to obtain that

(@l + N[ u -
p,0+

HYE2 (@) 2p()

S (el gy + €N Nonlf o))

nez

v e (el gy + 17l ey )

nez
SN||(I)UHZ;+91(Q) + ||(I)f||z]){;,e+2p(9) .
Therefore the case s = v+ 1 is proved. Consequently, (3.19) holds for all s > v+ 1.
Step 2. For s < v+ 1, take k € N such that y+1—-%k < s <~vy+4+2—k. Due
to the result in Step 1, (3.19) holds for (v, s) replaced by (v,v+ 1), (v — 1,7), ..\
(v — k,v+1— k). Therefore we have
||‘I’“||H;j[;2(sz + Al ull gy

p,0+2p Q)

) NN||(I)U||H’Y+1(Q + 1@ fll g
SN

p,0+2p

NNH@’LL”H’Y k+1 Q) + ||(I)f||Hp ot2p (Q) .

Since ||(I)U||H;’;k+1(ﬂ) < ||<I>u||H;’9(Q) (see Lemma 3.8.(1)), the proof is completed.

O
Lemma 3.19. Let p € (1,00), 0 € R, and regular Harnack function ¥, and let
A > 0. Suppose that there exists v € R such that the following holds:

For any f € WH) ., (), in TH;gQ(Q) there exists a unique solution u
of equation (3.16). For this solution, we have

@ < Nyl fllwrr

where N, is a constant independent of f and u.

Then for all s € R, the following holds:
For any f € WHy o.,,(), in ‘IJH;:'QQ(Q) there exists a unique solution u
of equation (3.16). For this solution, we have

22y (@ < Nl fllwms

where Ny = N(d, p,v,6,Ca(¥), N,,s).

lellg 52y + Alullons,, ., @) Y@ (3.22)

||u||‘1;HS+2(Q) + >‘||u||\IlHS 2 9rap(Q) (3.23)



28 J. SEO

Proof. To prove the uniqueness of solutions, let us assume that uw € \IJH;"O'2(Q)
satisfies AT — A\u = 0. By Lemma 3.18, @ belongs to \I/H;JgQ(Q). Due to the as-

sumption of this lemma, in WH ;;2(9), the zero distribution is the unique solution
for the equation Au — Au = 0. Consequently, @ is also the zero distribution, and
the uniqueness of solutions is proved. Thus, it remains to show the existence of
solutions and estimate (3.23).

Step 1. We first consider the case s > 7. Let f € WH; ., (©2). Due to
UH; 510,(Q2) C VH) ., (), f belongs to WH) ,,, (), and hence there exists
a solution u € \IIH;JQFQ(Q) of equation (3.16). It follows from Lemma 3.18, (3.22),

and Lemma 3.8.(1) that

”“H\I/H;ff(sz) +A ||“prH;,9+2p(Q) SN H“”po;;?(Q) + Hf”pop
< Nlfllwm

,0+2p (Q)

Y piay@ M lwms @
SNV D lwms, @

where N = N(d, p,0,~,Ca(¥), s). Therefore u belongs to \IJH;:’(f (Q), and the proof
is completed.

Step 2. Consider the case s < «. Since the case s > ~ is proved in Step 1,
by mathematical induction, it is sufficient to show that if this lemma holds for
s = sg + 1, then this also holds for s = sq.

Let us assume that this lemma holds for s = so + 1. For f € WH %, ., (), by
Lemma A.2, there exists fO € WH*,! (Q) and f1, ..., f¢ € WH ! (Q) such

p,0+2p p,0+p
that f = O+ Zle D, f* and

d
||fOH\1/H;0“ @ T ; ||ﬁ_1fl||\I/H;f’9trlQp(Q) <N fllwrz,,, @ - (3.24)

,0+2p

where N = N(d, p, 0, sg, C2(¥)). Due to the assumption that this lemma holds for
s = 8o + 1, there exist v°, --- , v € \I!H;f’dtgz(Q) such that

AV =X =0 and AV —Mi=p"1ft fori=1,...,d,

and
d . .
‘s ("UZ"‘I}H;?9+3(SI) +tA H”lepH;?;j%(n))
d
< Nsotr < ||f0H\I/H;?9++12p(Q) + ; ||571f1H\1/H;?9§12p(Q) ) (3.25)
SN Nsow1llfllwmse, , )

where the last inequality follows from (3.24). Put v = v° + 2?21 D;(pv'), and
observe that

d
Av—v=f+> Di(A(p') — pAv').
i=1
By Lemmas 3.8 and 3.10.(3), we have

1Di (AG) = P80 ) g 0, (@
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<n A — ﬁAvi||\I/HSU+2 Q)
p,0+p
< |(D*p)v|,, - Dp)Dv'
< [[(D*p)v H\I/Hp?efp(ﬂ) +||(Dp) Dv ||\IJH;S’9+fp(Q)
SN ||UZ||\I/H;?9+3(Q) < 0,

where N = N(d, p, 0, sg, C2(¥)). Due to the assumption that this lemma holds for
s = 89 + 1, there exists w € ‘IJH;?;“?’(Q) such that

d
Aw — ) w = ZDi (A(pv") — pAV") (= Av— v — f).
i=1

This w satisfies

p,0+2p

d
||w||\IIH;f’9+3(Q) + /\”wH\pH;?efzp(Q) < Nso+1 Z [Di (A(pv") = pA") || oo (@)
=1

d
SNNSoJrl Zl ||1)Z||\I,H;?9+3(Q) . (326)
Put u=v—w=10"4+ 3% Di(pv') — w. Then u satisfies Au— Au = f. Moreover,
by (3.25) and (3.26), we obtain (3.23) for s = s;. O

Proof of Theorem 3.14. By Lemma 3.19, we only need to prove for v = 0.
A priori estimates. Let u € WFH?2 | ,(Q) and Au — Mu € WF Ly, gy2,2(9).
By Lemma 3.18, we obtain

||u||\IMH§,d72(Q) +AMullwrr, 4o, o) (3.27)
/SNHU’H\I’“LP,GL72(Q) + ”Au - Au||\II“Lp,d+2p72(Q) <00, '

where N = N(d, p, i, C2(¥)). Due to (3.27) and Lemma 3.10.(5), whether A = 0 or
A > 0, there exists u,, € C2°(€2) such that

Tim (= wnllwnrz, @) + M= tnllwer, s @) =0.

This implies that

lim ||(A—\)(u— =0.

m u”)H‘IWLp,def?(Q)

Since ¥ is a regularization of the superharmonic Harnack function v, Theorem 2.7
and Lemma 3.12 imply

lunllwer, o o) 2N/|un|p¢_“pp_2d;v
Q

<N / | Ay, — Ay [Py~ HP p?P~2 da (3.28)
Q

=N [[Aup — Minllwnr, 40, 202 5

where N = N(d, p, i, Co(Q2), C2(¥), C3(1p, ¥)). By letting n — oo, we obtain (3.28)
for u instead of w,. By combining this with (3.27), we have
lullwer , @) + Mullwrr, iapa@
SN llullwrr, 4o + 18U = Mullwrr, 4po, a2 (3.29)

SN ||A’U, - >‘u||‘I’“Lp,d+2p—2(Q) .
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Note that estimate (3.29) also implies the uniqueness of solutions.

Existence of solutions. Let f € WFL, g10,-2(9). Since C°(Q) is dense in
UHL, grop—2(82), there exists f,, € C°(R) such that f, — f in UHL, 410, 2(9).
Lemmas 2.8 and 3.12 yield that for each n € N, there exists u, € \If“Lf))d_Q(Q)
such that Au, — Au,, = f,. Due to Lemma 3.18, u,, € \I/“Hid_z(Q). Since f, — f
in W* L, gyop—2(9), it follows from (3.29) that

Hun - umH\IWHgyde(Q) < Nan - fm||\I/HLp,d+2p—2 =0

as n, m — 0o. Therefore there exists u € \I!”H§7d_2(ﬂ) such that u,, converges to u
in \IJ“H§7d_2(Q). Since u, and f, converge to u and f in the sense of distribution,
respectively (see Lemma 3.10.(2)), u is a solution of equation (3.16). O

We end this subsection with a global uniqueness of solutions.

Theorem 3.20 (Global uniqueness). Suppose that (1.2) holds for , and that
for each © = 1,2, U, is a regularization of a superharmonic Harnack function,

pi € (1,00), 7: €R, and p; € (—1/pi, 1 —1/p;). Let f € ﬂizl’? \I/fiH;;7d+2pi_2(Q),
and let for eachi =1, 2, ul) € Wk H;;ZiQ(Q) be solutions of the equation Au = f.
Then v =4 in D'(Q).

Proof. By Lemma 3.10.(5), there exist {f,} C C(Q) such that f, — f in

Nic12 Y H)! 410y, 2(Q). By Lemmas 2.8 and 3.12, for each n € N, there ex-
ists up, € N;—1.0 ¥4 Lp, a—2(Q) such that Au, — Au,, = f,. Lemma 3.18 yields that

Un € N2y 2 \I/éLIH;;;i2(Q) Since
(A - A)(u" - u(l)) = (A - )\)(un - U(Q)) = fn - fv

For each i = 1, 2, Theorem 3.14 implies that u, — u(? in \I!TH;“Z%Q(Q), and by
Lemma 3.10.(2), this convergences also holds in D’(Q). Therefore u(?) = u(? =
limy, - 00wy, in D'(Q). O

4. APPLICATION I - DOMAIN WITH FAT EXTERIOR OR THIN EXTERIOR

In this section, we introduce applications of the results in Sections 3 to domains
satisfying fat exterior or thin exterior conditions. The notions of the fat exterior
and thin exterior are closely related to the geometry of a domain €2, namely the
Hausdorff dimension and the Aikawa dimension of Q°¢.

For a set £ C R?, the Hausdorff dimension of E is defined by

dimy(E) :=inf {\ >0 : HL(E) =0},
where
HA(E) = inf{er tEC U B(z;,r;) where z; € E and r; > 0}.
ieN iEN
The Aikawa dimension of E, denoted by dim4(F), is defined by the infimum of

B > 0 for which

1 1 da <
sup — ———dzr < 0,
pEE,r>0 rh B, (p) d(l’, E)d_B

with considering % = +00.

Remark 4.1.
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(1) While the Aikawa dimension is defined in terms of integration, it is equiv-
alent to a dimension defined in terms of a covering property, the so-called
Assouad dimension.

(2) For any E C R?, dimy(FE) < dim4(E), and the equality does not hold in
general (see [37, Section 2.2]). However, if E is Alfors regular, for example,
if E has a self-similar property such as Cantor set or Koch snowflake set,
then dimy (F) = dim4(E); see [37, Lemma 2.1] and [42, Theorem 4.14].

Koskela and Zhong [33] established the dimensional dichotomy results for do-
mains admitting the Hardy inequality, using the Hausdorff and Minkowski dimen-
sion. Their result can be expressed through the Hausdorff and Aikawa dimension,
as shown in [37, Theorem 5.3].

Proposition 4.2 (Theorem 5.3 of [37]). Suppose a domain @ C RY admits the
Hardy inequality. Then there is a constant € > 0 such that for each p € 0 and
r > 0, either

dimy (Q°NB(p,4r)) >d—2+¢ or dimg (Q°NB(p,r)) <d—2—¢.

We refer the reader to [31, 53] for a deeper discussion of the dimensional di-
chotomy.

In virtue of Proposition 4.2, we consider domains Q C R? which satisfy one of
the following situations:

(1) (Fat exterior) There exists € € (0,1) and ¢ > 0 such that
HITZT(Q°N B(p,r)) > cr®?Te forallpedQ, r>0. (4.1)
(2) (Thin exterior) dim_4(Q°) < d — 2.
These two conditions have been studied extensively; we discuss previous works on
these conditions, specifically those related to the Hardy inequality, in Subsections
4.1 and 4.2.
In this section and Section 5, for various domains Q C R?, we construct su-
perharmonic functions equivalent to the function d( -, 9Q)%, for some «. This type

of superharmonic function ensures the validity of the following statement for all
p € (1,00) and suitable 6 (see Lemma 4.4):

Statement 4.3 (Q,p,0). For any A >0 and vy € R, if f € H;

012p(82), then the
equation

Au—du=f (4.2)
has a unique solution u in H;gQ(Q). Moreover, we have
HUHH%?(Q) + Mullaz,,, @ < Nllfllmr, L@ (4.3)

where N1 is a constant independent of u, f, and \.

Lemma 4.4. Let Q@ admit the Hardy inequality (1.2), and suppose that for a fized
a € R\ {0}, there exists a superharmonic function i and a constant M > 0 such
that

M~ <op < Mp“. (4.4)
Then Statement 4.3 (Q,p,0) holds for all p € (1,00) and 6 € R with
d—2—-(p—-la<f< d—-2+a if a>0;
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d—2+a <0<d-2-(p—1a if a<0.
Moreover, Ny in (4.3) depends only d, p, 7, 68, Co(Q), @ and M (in (4.4)).

Proof. Observe that 1 is a superharmonic Harnack function, and ¥ := p® is a
regularization of 1. For this ¥, the constants Co(¥) and C3(¥, 1) can be chosen to
depend only on d, @ and M. In addition, Lemmas 3.8.(3) implies that for any p €
(1,00) and v, 6 € R, there exists N = N(d, p, v, a, u, M) such that HfHWH;e(Q) ~N
HfHH; (@ for all f € D'(Q2). Therefore the proof is completed by épplying
Theorem 3.14 with U := 5. O

We collect basic properties of classical superharmonic functions, which are used
in this section and Section 5.

Lemma 4.5. Let Q be an open set in R?.

(1) Let ¢1, ¢2 be classical superharmonic functions on Q. Then ¢1 A ¢ is also
a classical superharmonic function on €.

(2) Let {po} be a family of positive classical superharmonic functions on €.
Then ¢ :=inf,, ¢, is a superharmonic function on Q.

(3) Let Q1 and Q2 be open sets in R? and ¢; be a classical superharmonic
function on Q;, for i =1, 2. Suppose that

Hminf ¢o(x) > ¢1(x1) for all 1 € Q1 NOINg;
r—x1,EN

liminf ¢1(x) > ¢a(x2) for all o € Q2N OQ; .

x—xo,xEN]

Then the function

(251 ($) S Ql \QQ
o(z) =< ¢1(x) A da(2) x € Q1 N
¢2(I) T € QQ \ Ql

is also a classical superharmonic function on €.

For the proof of Lemma 4.5, (1) follows from the definition of classical superhar-
monic functions, (2) can be found in [7, Theorem 3.7.5], and (3) is implied by [7,
Corollary 3.2.4].

4.1. Domain with fat exterior : Harmonic measure decay property. This
subsection begins by introducing a relation among the condition (4.1), classical
potential theory, and the Hardy inequality (see Lemma 4.10 and Remark 4.11).

We first recall notions in classical potential theory. For a bounded open set
U C R% d > 2, and a bounded Borel function f on U, the Perron-Wiener-Brelot
solution (abbreviated to ‘PWB solution’) of the equation

Au=0 inU ; wu=F on dU (4.5)
is defined by
u(x) := inf {¢(x) : ¢ is a superharmonic function on U and

liminf ¢(y) > F(z) forall zeoU}y. 40
y—z,yelU

This u is harmonic on U. However, lim,_,, u(y) = F(z) does not hold, in general,
for z € OU and F € C(9U). For basic properties of PWB solutions, we refer the
reader to [7].
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For a Borel set E C 9U, w(-,U, E) denotes the PWB solution u of equation
(4.5) with F := 1p. This w is called the harmonic measure of E over U.

We fix an arbitrary open set @ C R? (not necessarily bounded), d > 2. For
p € 0N and r > 0, we denote

w(-,p,r) = w( , QN B.(p),2N (?Br(p))

(see Figure 4.1 below); note that Q N 9B, (p) is a relatively open subset of (2 N
B,(p))

FIGURE 4.1. u :=w(-,p,7)

For convenience, based on Lemma 4.6, we consider w(-,p,r) to be continuous
on QN B(p,r) with w(z,p,r) =1 for x € QN IB(p,r).

Lemma 4.6.
(1) w(-,p,r) is harmonic on QN By(p) with values in [0, 1].
(2) For any xo € QN IB,(p), w(z,p,r) = 1 as x — xg with x € QN B(p).
(8) For any 0 < r < R and No > 0, if w(-,p,R) < Ny on QN OB,.(p), then
w(-,p, R) < Now(-,p,r) on QN B,(p).

Proof. (1) and (2) are the basic properties of w(-,p,r) which can be found in [7,
Chapter 6]. Therefore we only prove (3).

For convenience, denote Ur := QN Br(p) and U, := QN B,.(p), and consider
w(-,p, R) := lonapg(p) on OUR. It follows from [7, Theorem 6.3.6] that w(x, p, R)|u,
is the PWB solution of (4.5) for U := U, and F := w(-,p, R)|sv,. One can observe
that

U, \ (2N 0B, (p)) C (8Q) N Br(p) C dUR,
which implies that w(z, p, R) = lgnapp (x) = 0 for z € U, \ (2N IB,(p)). Since
w(z,p, R) < Ng on QN IB,(p), we have w(-,p, R)|ov, < Nolaonas, (p)- Due to the
definition of PWB solution (4.6), w(-,p, R) < Now(-,p,r) on U, := QN B.(p). O

Definition 4.7. A domain € is said to satisfy the local harmonic measure de-

cay property with exponent o > 0 (abbreviated to ‘LHMD(«)’), if there exists a

constant M, > 0 depending only on 2 and « such that

[z —pl
r

w(z,p,r) < M, ( ) for all x € QN B(p,r) (4.7

whenever p € 92 and r > 0.

Remark 4.8. The notion of LHMD is closely related to the Holder continuity of the
PWB solutions. Let Q be a bounded domain. For F' € C(99), by HqoF we denote
the PWB solution u of equation (4.6) with U := Q. HqF is called the classical
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solution if lim,_,, HoF'(y) = F(z) for all z € 0. Aikawa [4, Theorem 2, Theorem
3] provides the following results: Let 0 < a < 1.

(1) If HoF is the classical solution for any F' € C'(99), and

HqF||co.a
wp MH0Ploveey s
recoso0),Frz0 |IFlcoe(an)
then 2 satisfies LHMD(«).
(2) Conversely, if Q satisfies LHMD(f) for some 8 > «, then HoF is the
classical solution for any F' € C(2), and (4.8) holds.

Lemma 4.9. Let Q be a bounded domain, and suppose that for a constant o > 0,
there exist constants ro, M € (0,00) such that
= (lz—=pl\"
w(x,p,r) <M | —— forall € QN B(p,r) (4.9)

r

whenever p € 0 and 0 < r < ro. Then Q satisfies LHMD(«), where M, in (4.9)
depends only on a, M and diam(Q)/rg.

Proof. Let p € 9Q. If r > diam(Q2), then Q N dB(p,r) = 0, which implies that
w(-,p,7) = 0. In addition, due to the assumption of this lemma, we do not need
to pay attention to the case of r < ry. Therefore, we only consider the case of
ro < r < diam(Q).

For ro < r < diam(Q), it follows from Lemmas 4.6.(1) and (3) that w(z,p,r) <1
in general, and w(z,p,r) < w(z,p,ro) if | — p| < 9. Due to (4.9) and that ro <
r < diam(Q2), we have

w(z,p,r) < max (M, 1) (dlam(Q)) <|x —p|) forall ze€wnB(p,r).

To T

The proof is completed. ([

We finally introduce the relation between (4.1) and the local harmonic measure
decay property.

Lemma 4.10. Let Q be a domain in RY.

(1) The following conditions are equivalent:
(a) There exists € > 0 such that the fat exterior condition (4.1) holds.
(b) There exists o > 0 such that LHMD(«) holds.
(c) There exists eg > 0 such that

Caup(Qc N B(p,r), B(p, 27”))

pealslll,r>0 Cap(B(p, T); B(pa 2T>) - ( )

Here, Cap(K, B) is the capacity of a compact set K C B relative to
an open ball B, defined as follows:

Cap(K,B) :=inf {|Vf|3: feC>(B), f>1onK}. (4.11)

In particular, constants (c,€) in (4.1), (o, My) in (4.7), and € in (4.10)
depend only on each other and d.

(2) If (4.10) holds, then Q admits the Hardy inequality (1.2), where Cy(2)
depends only on d and €q.
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For this lemma, the equivalence between conditions (a) and (c) is established by
Lewis [39, Theorem 1] and Aikawa [3, Theorem B] (see, e.g., [31, Theorem 7.22]
for a simplified version). Additionally, the equivalence between (b) and (c), and
Lemma 4.10.(2) is provided by Ancona [6, Lemma 3, Theorem 1].

Remark 4.11.
(1) (4.10) is called the capacity density condition. For domains € in R?, (4.10)
holds if and only if  admits the Hardy inequality (1.2) (see Ancona [6,
Theorem 2]).
(2) A well-known sufficient condition to satisfy (4.10) is the volume density
condition:
[©2°0 B(p, 7|

— >0
veotir>0 [Blp,r)|

(see, e.g., [31, Example 6.18]). For a deeper discussion of the capacity den-
sity condition, we refer the reader to [31, 32, 39] and the references given
therein.

Based on this discussion, we consider domains satisfying LHMD(«) for some
a > 0, instead of (4.1). This condition is implied by geometric conditions introduced
in Section 5, and the value of « reflects each geometric condition; see Theorem 5.5.
In the rest of this subsection, we construct appropriate superharmonic functions
related to o (see Lemma 4.4). The results in this subsection are crucially used in
Section 5.

Theorem 4.12. Let Q satisfy LHMD(«), a > 0. Then for any 8 € (0,c), there
exists a superharmonic function ¢ on § such that

N7'p(x)’ < ¢(x) < Np(x)P
for all x € Q, where N = N(«, 8, M,) > 0.

Before proving Theorem 4.12, we look at the following corollaries:

Theorem 4.13. Let Q C R? satisfy LHMD(a), a > 0. For any p € (1,00) and
0 € R satisfying

d—2—-(p—la<bf<d—-2+a, (4.12)

Statement 4.3 (2, p,0) holds. In addition, Ny (in (4.3)) depends only on d, p, v, 0,
a, M.

Remark 4.14. The Poisson equation (4.2) is not explicitly equipped with specific
boundary conditions. Nonetheless, one can interpret Theorem 4.13 to include the
zero-Dirichlet boundary condition, u|so = 0. This interpretation is supported by

the fact that C2°(Q2) is dense in H), ,,(Q), and for f € C°(Q), the solution u
implied by Theorem 4.13 satisfies that u € H;JGFQ(Q) for any p € (1,00), 0 in (4.12),
and v € R (see Theorem 3.20). In addition, by taking appropriate p, 8, and v > 0, it

follows from Proposition 3.13 that this u is continuous on Q and u — 0 as p(z) — 0.

Proof of Theorem 4.13. Take 8 € (0, «) such that
d—2—-(p-1)8<0<d-2+p.

It follows from Theorem 4.12 that there exists a superharmonic function ¢ such
that ¢ ~y p®, where N = N(a, 3, M,). Lemma 4.10 yields that Q admits the
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Hardy inequality (1.2), where Cq(£2) can be chosen to depend only on d, o and M,
(in (4.7)). Therefore, the proof is completed by Lemma 4.4. O

Proof of Theorem 4.12. The following construction is a combination of [6, Theorem
1] and [25, Lemma 2.1]. Recall that M, is the constant in (4.7), and 8 < a. Take
ro € (0,1) small enough to satisfy M,r§ < rg, and take n € (0, 1) small enough to
satisfy

(1= n)Mar§ +n <75 .

For w(zx,p,r), we shall need only the following properties (see Lemma 4.6 and
Definition 4.7):

w(-,p,r) is a classical superharmonic function on QN B(p,r);
w(,p,r)=1on QNIB(p,r);
0 <w(,p,r) < Myrg on QN B(p,ror) .
For p € 002 and k € Z, put
Gp,k(x) = 16" (1 =) w(x,p, ) +1).
Then ¢,k is a classical superharmonic function on QN B(p, 7“75),

Op ke < rék+1)ﬂ on QN B(p,ret),
p.k :rgﬁ on QNAB(p,rk),
17-7“’55 < Pp.k Srlgﬁ on QN B(p,ry).
For p € 00 and z € 2, we denote
$p(w) = inf{gpi(z) + |z —p| <rf}.
If we prove the following:
¢p is a classical superharmonic function on €2 ; (4.13)
nle —pl” < ¢p(e) < g le —pl?, (4.14)

then ¢ := ir})fQ ¢p is superharmonic on 2 (see Lemma 4.5.(2)) and satisfies
pe

np(x)’ < ¢x) <y’ pl)” .
Therefore the proof is completed.
- (4.13) : We only need to prove that for each ko € Z, ¢, is a classical superhar-
monic function on Uy, := {z € Q : r°*2 < |z — p| < rf°} (see Remark 2.2). For
z € Uy, put

Uy ke (;C) _ ¢P7ko(‘r) if T§0+1 < |‘T _p| < Tlgo
. Bpko (T) A bpoa (@) if 1522 < |z —p| <rgott

Since ¢pry < Gprot1 o0 QN IB(p, a0 Lemma 4.5.(4) implies that v,k is a
classical superharmonic function on Uy,. Observe that

Op(x) = Vp o () ANnf{pp k(z) : k < ko —1}.
Moreover, if nrgﬁ > rlg“ﬁ then

k k
Upoko (€) < bpoio (2) < 76°° < g’ < (@)
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Therefore
Op(x) = vp o () ANnf{dpi(z) : Kk <ky—1 and 777“56 < TIOC”B},

which implies that on Uy,, ¢, is the minimum of finitely many classical superhar-
monic functions. Consequently, by Lemma 4.5.(1), ¢, is a classical superharmonic
function on Uk, .

- (4.14) : Let o € Q satisfy rio™ < |z —p| < 75, ko € Z. Since

Dp.io () < TIOC”B , and ¢, k(z) > nrg’g > nrg"ﬁ for all k <k,
we obtain that nré“ﬁ < gp(x) < rlg“ﬁ. This implies (4.14). O
We end this subsection providing two corollaries of Theorem 4.13.

Corollary 4.15. Let Q satisfy LHMD(«), « € (0,1], and there exists M > 0 such
that [, p(x)™ dz < co. Consider the equation

d
Au—)\u:fo—i—ZDifi m Q ; u=0 on 90, (4.15)
i=1

where fo, f1, ..., fa are measurable functions on Q0 such that
[fol S P72 Al 4+ fal S p7e

Then for any 0 < B < «a, equation (4.15) has a unique solution u in C%5(Q). In
addition, we have

sgpp_BIUI + [uleo.s (@) S sup (p2_a|fo| o Ol pl_“lfdl) =: Np,
(4.16)

where N depends only on d, a, My, B, and fQ p(x)M.

Proof. We first mention that the assumption [, p(#)* dz < oo implies that the
function p is bounded; moreover, lim|;| o p(z) = 0. This implies that if LHS in
(4.16) is finite, then u € C*#(Q).

- Uniqueness of solutions. If  is bounded, then the uniqueness of solu-
tions directly follows from the maximum principle. Consider the case of when €
is unbounded, and let u € C%P(Q) satisfies (4.15) for fo = ... = f4 = 0. Since
lim|;| o p(z) = 0, the conditions for v implies that lim|,|_. u(x) = 0. Combining
this with the Maximum principle, we have

sup|u| = lim sup |u|= lim sup J|u|=0.
Q R—o0QnBg R—00 9(QnBR)
Therefore, the uniqueness of solutions is proved.
- Existence of solutions and (4.16). For 8 € (0,a), put p := 94 5o that

a—p
B<1— % and 0 := —pf satisfies (4.12). Observe that

d
F|P < /( 2—f Py 1-p ip) _dd(E
Pl o Sras [, (10208 + 215 )

< ()" [ pla) do < o,
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where the last inequality follows from that p(a— 8) = d+ M. Theorem 4.13 provide
a solution u € H} 4(Q) of equation (4.15) with

1/p
S IIFIE - sv ([ oMdn) N
”U”H;,S(Q) Sw | ||Hp,é+2p(9) SN /Qp x F,

where N = N(d, o, My, 3). Proposition 3.13 implies |u|é_ﬁ’3) Sd.as |l ), and
) P,

therefore we obtain (4.16). By the comment at the first in this proof, we have

u € C%P(Q). O

The following corollary is an unweighted L,-solvability result when p is close to
2. It is worth noting that similar results for various equations are introduced in the
literature, such as [26], utilizing the reverse Holder inequality. The reason to provide
Corollary 4.16 is that its proof is independent of the reverse Hdolder inequality;
instead, this proof relies on the weighted solvability result (Theorem 4.13). This
theorem also provides the L, estimate unaffected by dilation (see (4.18)).

We denote Wpl(Q) the closure of C2°(€) in W, (€2).

Corollary 4.16. Let Q) satisfy (4.10) and
A>0 if Do<oo and A>0 if Dg=o0, (4.17)

where do = sup,cq d(z,00). Then there exists € € (0,1) depending only on d,
eo (in (4.10)) such that for any p € (2 —€,2 + €), the following holds: For any
1O ..., f1€ Ly(Q), equation (4.15) has a unique solution u in WZ} (Q). Moreover,
we have

d
IVully + (A2 + DY) [ully Sapeo min (A2, Do) 17, + S If - (4.18)
i=1
Proof. We first note the following two results for the capacity density condition
(4.10):

(a) By Lemma 4.10.(1), there exists a € (0,1) such that 2 satisfies LHMD(q).
Due to Theorem 4.13, Statement 4.3 (€2, p, d—p) holds for p € (2—a1,24ay),
and Ny (in (4.3)) depends only on d, p, v, €.

(b) It is implied by [39, Theorem 1, Theorem 2] (or see [32, Theorem 3.7,
Corollary 3.11]) that there exists s € (0,1) depending only on d and €
such that for any p > 2 — aq,

/Q ‘%’pdx < N(d,p,€o) /Q [VulPde VYV ueCX(Q). (4.19)

Put 0 < € < min(ay, az) and consider p € (2 —€,2 + ¢).

Step 1. Uniqueness of solutions. Since Statement 4.3 (2,p,d — p) holds,
it suffices to show that Wpl(Q) C H,, ,(Q). For any u € Wpl(Q), there exists
{un}nen C CZ° such that u, — u in W} (). One can choose this {u,} to converge
to u almost everywhere on 2. Consider (4.19) for u,, € C(f), and apply Fatou’s
lemma, to obtain that (4.19) holds for u € VVp1 (€2). This implies that u € H, ; ().

Step 2. Existence of solutions and estimate (4.18). In this Step, we use
Lemma 3.12.(1), Dy Hlullp < [lp~ ullp, and |[pfl, < Dall f]lp, without mentioning.
Additionally, we also use the fact that

1/2 1/2
Il o Spa Il oyllellyes o). (4.20)
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which follows from that

> e (Co,myu) (e™) [
neL

Spd ;endn (Go.my) (€)1 11 (Go,gye) (") 54

1/2 1/2
< (Z en(d_p) || (CO,(n)u) (en)l|§){g+1> <Z en(d+p) || (Coﬁ(n)u) (en)”ZI){gl> .

nez ne”z

To prove the existence of solutions, it is enough to find a solution in Ly, 4(€2) N
H) ;. ,(Q). Indeed, L, 4(Q)NH, ;_ () is continuouly embedded in W}, and C2°(2)
is dense in Ly, 4(Q) N H, ;_,(Q) (see Lemma 3.10.(5)).

Without loss of generality, we assume that A = 0 or A = 1 by dilation. Note that
€o in (4.10) is invariant even if €2 is replaced by rQ = {rz : = € Q}, for any r > 0.

Step 2.1) Consider the case A = 1. Since Statement 4.3 (2, p, d— p) holds, there
exists v € Hg)d_p(Q) such that Av —v = p~1f% and

1fOHLp,d+p(Q) ~pd 1l - (4.21)

lollzz , @) +10lL, ahn) Sdp.co o
Due to (4.20) and (4.21), we have
[0llL, arn@ + 10l m2 @) Sap 0la2, @) + 1101, 0@ Sdp.co 1 (4.22)

Put

,d—p

d
Fi= 12— A(Gv) + pv = _2[21)1- (UD@} T uAp,

i=1
and observe that

HfHH;;er(Q) Sap IWllL, w0 Sdp HU”H;A(Q) Sd.p.eo HfOHp )

where the first and third inequalities follow from Lemma 3.12.(2) and (4.22), re-
spectively. Since Statement 4.3 (Q, p,d — p) holds, there exists w € H;dfp(Q) such
that

d
Aw—w:ZDifi—l—f
i=1
and
d

d
||w||H;’d7p(Q) + ||w||H;’;+p(Q) Sd,p,eo Zl ||JM||Lp,d(Q) + ||fHH;;+p(Q) S ; ||JM||;D-
(4.23)
Therefore, by (4.20) and (4.23), we have

lwli, ae) +llwlla, @ Saplwla, @ +lwlp @) Sdpe > 17, -
i>0

(4.24)
Put u = vp + w. Then u is a solution of equation (4.15) and satisfies

luallp + (1 + Do) lully Sap lull, ae) + lulla:, @ (4.25)

Saplwll, o + ol , @+ 10z, 0@ + 10l 0 Sdoc D11,

p,d—p
i>0
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where the last inequality follows from (4.22) and (4.24); note that (4.25) also implies
that u € L, o(Q) N H, 4, (Q).
Step 2.2) Consider the case Dg < 0o, and observe that

HfO+ZDz‘fi . Sapl ol an + D1 F L, a2
i>1 Hy a5 () i>1
8 . = (4.26)
< Dollfll,+ DI lp < o
i>1

Since Statement 4.3 (€2, p,d — p) holds, there exists u € H;)d_p(ﬂ) such that
A Ni=f'+> Dif,

i>1
and
s, oy + Ml S I+ Dif s - (427)
i>1
By (4.20), (4.26), and (4.27), we obtain that
IVl 0 + D ]z, 0 + A2l 1, ) (4.28)
San g0+ N, o) S Dol ot 317

Due to (4.28), we have @ € L, a() N H} ;_ ().

Step 2.3) The existence of solutions is proved in Steps 2.1 and 2.2, for all A and
Dq satisfying (4.17). For the cases where Do = oo and A = 1, and Dg < oo and
A = 0, estimate (4.18) is proved in (4.25) and (4.28), respectively. Therefore, we
only need prove estimate (4.18) in the remaining case where Dg < oo and A = 1.
Since u in Step 2.1 and @ in Step 2.2 are the same (due to the result in Step 1),
(4.18) follows from (4.25) and (4.28). O

4.2. Domain with thin exterior : Aikawa dimension. The notion of the
Aikawa dimension was first introduced by Aikawa [2]. We recall the definition of
the Aikawa dimension. For a set £ C R%, the Aikawa dimension of E, denoted by
dim 4(E), is defined by

dim 4(F) = inf {ﬂ >0: sup

1 / 1 du < }
") 7 1na—3 Y o0
pEE, r>0 rﬂ B, (p) d(qu)d A

with considering % = 00.
In this subsection, we assume that d > 3, and ) satisfies

Bo i =dimyq Q° < d—2.
Theorem 4.17. For a constant 8 < d — 2, if there exists a constant Ag such that

sup — _—
peQC, r>0 Tﬁ B, (p) d(ya Qc)diﬁ

then the function

dy < Ag < 0, (4.29)

6@)i= [ o= sl () dy
R
is a superharmonic function on R® with —A¢ = N(d)p"”ﬁ. Moreover, we have

N~"p(x)~ 2P < g(x) < Np(a)4+2+7 (4.30)
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for all x € Q, where N = N(d, 5, Ag).
Before proving Theorem 4.17, we first look at the corollaries of this theorem.

Corollary 4.18. The Hardy inequality (1.2) holds on ), where Co() depends only
on d, Bo, {As}s>p,-

Actually, this corollary follows from the more general result [2, Theorem 3], and
its proof is based on Muckenhoupt’s A, weight theory. Considering only Corollary
4.18, this result can be proved differently, as the following:

Proof of Corollary 4.18. We first note the following inequality provided in [8, Lemma
3.5.1): If f € C°(R?) and s > 0 is a smooth superharmonic function on a neigh-
borhood of supp(f), then

/ _As|f|2da:§/ |Vf?dz forall fe C®(R?) (4.31)
Rd Rd

S

(the proof of this inequality is based on integrating ’V =/ S)Vs}2 and performing
integration by parts). Take any § € (8p, d—2), and let ¢ be the function in Theorem
4.17, so that

—A¢p>Nip26>0 (4.32)
where N1 = N(d, 8, Ag) > 0. Fix f € C°(Q). For 0 < € < d(supp(f), 99), let ¢(°)
be the mollification of ¢ in (2.1). Observe that

~A($9) = N7 (p20) ) 2 N7+ 7209 on RY,
where Nj is in (4.32). By appling the monotone convergence theorem to (4.31) with
5 = ¢()(see Lemma 2.5.(2)), we obtain (1.2) with Co(Q2) = Nj. O
Theorem 4.19. For any p € (1,00) and 6 € R satisfying
Bo <8< (d—2—Po)p+Po,

Statement 4.3 (Q,p,0) holds. In addition, Ny in (4.3) depends only on d, p, v, 0,
Bo, {As}s>p0-

Remark 4.20. Theorem 4.19 deals with the Poisson equation in £ C Rd, d > 3.
Moreover, this theorem can also be interpreted as establishing the solvability of the
Poisson equation Au — Au = f in R?, particularly when f blows up near a set E
with dim 4(E) < d — 2. In other words, if u € H 4() and f € Ly 042,(Q) satisfy
equation (4.2), then

/ u(Ap — \¢)dx = / fodz forall ¢ e CP(R?);
Rd Rd
we leave the proof to the reader, with a comment to utilize the test functions
e ¢Z\n|§k Co,(n) € C°(Q), where (o () is the function in (3.9).
Proof of Theorem 4.19. Takd 8 € (Bo,d — 2) satisfying
<< (d—2-B)p+8.

By Corollary 4.18 and Theorem 4.17, 2 admits the Hardy inequality (1.2), and there
exists a superharmonic function ¢ satisfying ¢ ~ p~9+2+8. Therefore by Lemma
4.4, the proof is completed. O
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Proof of Theorem 4.17. We first prove (4.30). For a fixed x € RY, put

I :/ |z —y|"p(y)" Py for j=0,1,...,
Ej

where Ey := B(z,27'p(z)) and E; := B(z,2/ 'p(z)) \ B(z,2972p(x)) for j =

1,2,.... Then ¢(z) = > oy, I;- If y € Ep then ip(x) < p(y) < 2p(x), which

implies

Iy ~ap P($)7d+ﬁ/ |z — y| " dy g p(a) I (4.33)
B(a,p(2)/2)
For I;, j > 1, take p, € 99 such that |z — py| = p(x), and observe that
. —d+2 _ ; —d+2+43
LSa@o@) " [ g ay < N@pw) L s
B(pa,27p(2))

where N = N(d, 8, Ag). (4.33) and (4.34) imply (4.30).
To prove that —A¢ = N(d) ¢ in the sense of distribution, recall that

A (o = y7*?) = N(d)do(a ~ )

in the sense of distribution, where dg(+) is the Dirac delta distribution. Due to (4.29)
and ¢ ~ p~42+8_ 4 is locally integrable in R?. Therefore we obtain that for any
¢ € C=(R?), by the Fubini theorem,

Rd Qb(ﬂf)( - AC)(I) dox = /Rd ( » |33 _ y|7d+2(—A<)(I) dx) p(y)fdJrB dy

= N(d) g C(y)p(y) P dy.

5. APPLICATION II - VARIOUS DOMAINS WITH FAT EXTERIOR

This section presents results for the exterior cone condition, convex domains, the
exterior Reifenberg condition, and Lipschitz cones. These domains and conditions
imply the fat exterior condition.

Throughout this section, we consider a domain Q C R¢, d > 2.

5.1. Exterior cone condition and exterior line segment condition.

Definition 5.1 (Exterior cone condition). For § € [0,5) and R € (0, 00|, a domain
Q) C R? is said to satisfy the exterior (6, R)-cone condition if for every p € 05,
there exists a unit vector e, € R? such that

{z € Br(p) : (x—p)-ep>|z—p|lcosd} C N°. (5.1)

Note that the left hand side of (5.1) is the result of translating and rotating the

set
{z =(21,...,24) € Br(0) : 21 > |z|cosd}.

The exterior (0, R)-cone condition can be called the exterior R-line segment
condition, since if § = 0, then LHS in (5.1) equals {p + re, : r € [0,R)}. For
examples of the exterior cone condition and exterior line segment condition, see
Figure 5.1 below.
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) !

~ - -

A. Lipschitz boundary B. Exterior C. Exterior oco-line
condition (%,00)-cone condition segment condition

(doesn’t satisfy Lipschitz ~ (doesn’t satisfy (J, R)-cone
boundary condition) condition, Vd, R > 0)

FiGure 5.1. Examples for exterior cone condition

Ezample 5.2. Suppose that there exists K, R € (0, 00] such that for any p € 99,
there exists a function f, € C(R?~!) such that

lfo(y) — fo(2) < Kly — 2| forall o,z eR¥! | and (5.2)
QN Brp) ={y= (' va) € RV X Rt yg> fo(y)) and |yl < R}, (5.3)
where (v, ya) = (y1,- - ,ya4) in (5.3) is an orthonormal coordinate system centered

at p. Then Q satisfies the exterior (J, R)-cone condition, where § = arctan(1/K) €
[0,7/2).
In addition, if f € C(RY™1) satisfies (5.2) for f instead of f,, then the domain
{(@,2,) eERTIXR ¢z, > f(2))}

satisfies the exterior (d, c0)-cone condition, where § = arctan(1/K).

For § € (0,7), let Es := {0 € 9B1(0) : 01 > —cosd} (see Figure 5.2 below).
By Aj, we denote the first Dirichlet eigenvalue of the spherical Laplacian on Ej.
Alternatively, As is expressed by

O IRC D
Febs [T f @R (sint)d-2de

Ag (5.4)

where F;_s is the set of all non-zero Lipschitz continuous function f : [0,7—4¢] — R
such that f(m — 6) =0 (see [18]). We also define

s = _$+ (%)2%\5,

and when d = 2, we define \g = %

The following quantitative information of As and As is provided in [9]:
Proposition 5.3. Let § € (0, ).
(1) If d =2 then s = /A5 = 2(:_5) > %
(2) Ifd=14 then \s = =1+ T+ A5 = 2.
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\

FIGURE 5.2. Ej

(8) Ford >3,

As > (/Ow_é(sin t)_d+2(/0t(sin r)d=2 dr) dt)

Moreover, Ayjp =d—1, lim As = 0, and lim As; = +o0.
50 5

Note that when d = 3, A5 > 1|log sin 3| L.
Remark 5.4. For each § > 0, there is a function F € C(Ej) N C*°(E;s) such that
F>0 and AsF+AsF=0 in BEs ; F=0 on Es\FE;s

(see, e.g., [18, Section 5]), where Ag is the spherical Laplacian. Due to

d—1 1
A =Dy + =D, + —Agi
T T

(the representation of the Laplacian operator on R? by the spherical coordinate),
the function vs(x) := || F(z/|z|) is harmonic in
Us :={y € B1(0) : y1 > —|y|cosd},
and vanishes on OUs N B1(0).
With the help of As, we state the main results of this subsection.
Theorem 5.5. Let
6e0,7/2) if d=2 ; §€(0,7/2) if d>3,
and let Q C R? satisfy the exterior (8, R)-cone condition, where
R e (0,00 if Q is bounded, and R=o0 if Q is unbounded.

Then Q satisfies LHMD();s), where My, in (4.7) depends only on d, §, and addi-
tionally diam(Q)/R if 2 is bounded.

Before proving Theorem 5.5, we present a corollary that directly follows from
Theorems 5.5 and 4.13.

Theorem 5.6. Let p € (1,00). Under the same assumption of Theorem 5.5, if
0 € R satisfies

2-—(p—-1DAs<0—d< =2+,
then Statement 4.3 (Q,p,0) holds. In addition, Ny in (4.3) depends only on d, p,
0, v, d, and additionally diam(Q2)/R if Q is bounded.
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To prove Theorem 5.5, we use the boundary Harnack principle on Lipschitz
domains.

Lemma 5.7 (see Theorem 1 of [54]). Let D be a bounded Lipschitz domain, A be a
relatively open subset of 0D, and U be a subdomain of D with OU N 0D C A.Then
there exists N = N (D, A,U) > 0 such that if u,v are positive harmonic funtion on
D, and vanish on E, then

u(@) _  uzo)

v(x) — v(zo)
Proof of Theorem 5.5. By Lemma 4.9, it is sufficient to prove that there exists a
constant M > 0 such that

for any xp,z€U.

jz —p|\
w(z,p,r) <M | —— for all z € QN B(p,r)

r
whenever p € 9 and r € (0, R). For any p € 01, there exists a unit vector e, € R?
such that
Cp:={yeBgr(p) : (y—p)-ep,>|y—plcosd} C N°.
Since
QN B,(p) C Br(p) \Cp and QN IB,(p) C IBr(p) \ Cyp,

we have
w(z,p,r) < w(z, Br(p) \ Cp, 0Br(p) \ Cp ), (5.5)
by directly applying the definition of w(-,p,r) (see (4.6)). Consider a rotation map
T such that T'(e,) = (—1,0,...,0), and put To(z) = r~*T(z — p). Then
w(z, By (p)\ Cp, 0B, (p) \ Cp ) = w(To(z),Us, Es), (5.6)
where
Us={y € B1(0) : y1 > —|y|cosd} and FEs = {y € dB1(0) : y1 > —|y|cosd}.
Due to (5.5) and (5.6), it is sufficient to show that there exists a constant M > 0
depending only on d and ¢ such that
w(z, Us, Es) < M|z|*  for all = € Us, (5.7)
Case 1: § > 0. Put v(z) = |2|* Fy(z/|x|) where Fy is the first Dirichlet eigen-
function of spherical laplacian on E; C 9B;(0), with supg, Fo = 1 (see Remark
5.4). Note that Us is a bounded Lipschitz domain, and w( -, Us, Fs) and v are pos-
itive harmonic functions on Us, and vanish on OUs N B;. By applying Lemma 5.7
for D = Us, A= (0Us) N B1(0), and U = Us N By /2(0), we obtain that there exists
a constant No = No(d,d) > 0 such that
w(z,Us, Es) < Nov(z) < No|z|* for a € Us N By 2(0).
Therefore (5.7) is obtained, where Mo = max (Ng, 2*).
Case 2: § = 0 and d = 2. We consider R? as C. Note
Up={re? : r€(0,1),0 € (—m,m)}, Eo={e? :0¢e (—m,m)}.

Observe that a function s is a classical superharmonic function on Uy if and only
if s(z?) is a classical superharmonic function on By(0) NR3 (use Lemma 2.4). It is
implied by the definition of PWB solutions (see (4.6)) that

w(2?, Uy, Eg) = w(z, B1(0) NR%,0B,(0) NRY).
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Since the map z = (z1,22) — 21 is harmonic on B;(0) NR%, by Lemma 5.7 with
D = B;(0) NIR%, we obtain that

w(z, B1(0)NRE, (0B1(0)) NRY) < N|z| for z € By/»(0) NRE, (5.8)

where N depends on nothing. Therefore the proof is completed. ([l

5.2. Convex domains. Recall that a set E C R? is said to be convez if (1 —t)x +
ty € E for any z, y € F and t € [0,1].

Lemma 5.8. For an open set  C RY, Q is convex if and only if for any p € 09,
there exists a unit vector e, € RY such that

Qc{z: (x—p) e <0} =:U,. (5.9)

Proof. Let  be a convex domain, and fix p € 9. Since the set {p} is convex and
disjoint from 2, the hyperplane separation theorem (see, e.g., [48, Theorem 3.4.(a)])
implies that there exists a unit vector e, € R? such that (5.9) holds. Conversely,
suppose that for any p € 91, there exists a unit vector e, satisfying (5.9). Then
E = mpGBQ Up is convex, Q C E, and E N 9N = 0. These imply E = ; if not,
E N 9 # B which is a contradiction. Therefore our claim is proven. O

Theorem 5.9. Let Q C RY be a convex domain. Then Q satisfies LHMD(1) where
M in (4.7) depends only on d.

Proof. The argument to obtain (5.8) also implies that for any d € N,
w(z, B1(0) NRYL, (9B1(0)) NRE) < N(d)|z| for all x € By(0)NRY.

By translation, dilation, and rotation, we obtain that for a convex domain 2 and
p € 09,

|z — pl
T

w(z,p,r) <w(z, By(p) NUp, (8Br(p)) NUp) < N(d)

for all z € B, (p)N§Y, where U, is the set on the right-hand side of (5.9). Therefore,
the proof is completed. O

This result also implies that the Hardy inequality (1.2) holds on 2, where Cy(2)
depends only on d (see Lemma 4.10); it is worth noting that Marcus, Mizel, and
Pinchover [41, Theorem 11] provided that for a convex domain §2, (1.2) holds where
Co(2) =4, and Cy(§2) cannot be chosen less than 4.

By combining Theorems 4.13 and 5.9, we obtain the following result:

Theorem 5.10. Let Q C R? be a convex domain. For any p € (1,00) and § € R
with

—-p—1l<f—-d< -1,

Statement 4.3 (Q,p,0) holds. In addition, Ny in (4.3) depends only on d, p, v, 6.
In particular, Q is not necessarily bounded, and Ni is independent of 2.
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5.3. Exterior Reifenberg condition. The notion of the vanishing Reifenberg
condition was introduced by Reifenberg [47] and has been extensively studied in
the literature (see, e.g., [11, 12, 24, 50] and Subsubsection 1.2.3 of this paper). The
following definition can be found in [11, 24]: For § € (0,1) and R > 0, a domain
Q C R? is said to satisfy the (4, R)-Reifenberg condition, if for every p € 9§ and
r € (0, R], there exists a unit vector e, , € R? such that

QNB.(p) C{x € By(p) : (x—p)-ep, <Or} and
QN B.(p) D{x € By(p) : (x—p)-ep,>—0r}.

In addition, € is said to satisfy the wanishing Reifenberg condition if for any
§ € (0,1), there exists Rs > 0 such that 2 satisfies the (J, Rs)-Reifenberg condi-
tion. Note that the vanishing Reifenberg condition is weaker than the C'-boundary
condition (see Example 5.13.(2) and (3)).

In this subsection, we present the totally vanishing exterior Reifenberg condition,
which is a generalization of the vanishing Reifenberg condition. We also obtain a
result for the Poisson equation on domains satisfying the totally vanishing exterior
Reifenberg condition (see Theorem 5.18).

(5.10)

Definition 5.11 (Exterior Reifenberg condition).
(1) By ERgq we denote the set of all (4, R) € [0, 1] x Ry satisfying the following:
For each p € 02, and each connected component QZ()Z))R of QN B(p, R), there

exists a unit vector e](;;)R € R4 such that
O C{x € Br(p) : (x—p)- el < IR} (5.11)

By §(R) := 0q(R) we denote the infimum of § such that (§, R) € ERq.

(2) For ¢ € [0, 1], we say that (2 satisfies the totally §-exterior Reifenberg condi-
tion (abbreviate to ‘(TER);’), if there exist constants 0 < Ry < Rs < 00
such that

da(R) <6 whenever R< Ry or R> Rw . (5.12)

(3) We say that  satisfies the totally vanishing exterior Reifenberg condition
(abbreviate to ‘{(TVER)’), if Q satisfies (TER)s for all § € (0,1]. In other
word,

lim 551(R) = lim 551(R) =0.
R—0 R—oo

The main theorem in this subsection concerns domains satisfying (TER)s for
sufficiently small § > 0. However, our main interest is the condition (TVER). For
a comparison between the Refenberg condition and (TVER), see Figure 5.3 and
Example 5.13 below.

Lemma 5.12. For any R >0, (§(R), R) € ERq.

Proof. Take a sequence {0, }nen such that (d,,, R) € ERq and §,, — 6(R) as n —
oo. Since (6, R) € ERg, for any p € 002 and any connected component of € N
B(p, R), denoted by €, g, there exists a unit vector e,, such that

Q,rC{z€Br(p) : (x—p) e, <IR}. (5.13)

Since {en}nen C 9B(0,1), there exists a subsequence {ey, }ren such that e, :=
limg 00 €p, exists in OB(0, 1). It is impliled by (5.13) that

Q,r C{x e Bgr(p) : (x—p) e, <3(R)R}.
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./ ! .

Totally vanishing exterior =~ Totally vanishing exterior
Reifenberg condition Reifenberg condition
(Definition 1.6) (Definition 5.11)

Vanishing
Reifenberg condition

FI1GURE 5.3. Totally vanishing exterior Reifenberg condition

Therefore (§(R), R) € ERq. O

Ezxample 5.13.

(1) If Q satisfies the (4, Ry)-Reifenberg condition, then §(R) < 6 for all R < Ry,
indeed the first line of (5.10) implies (5.11) with e,(f,)r = e, . Moreover, if
is bounded, then Proposition 5.14 implies §(R) < diam(€2)/R. Therefore, if
2 is a bounded domain satisfying the vanishing Reifenberg condition, then
) also satisfies (TVER).

(2) By A (R?71), we denote the little Zygmund class, which is the set of all
f € C(R4™1) such that

| e+ h) = 27(@) + f(z = h)
A5, oo i

=0.

For f € A\(R41), put
Q={(z,zq) R xR : 24 > f(z')}.

Then, as mentioned in [12, Example 1.4.3] (see also [16, Theorem 6.3]),
satisfies the vanishing Reifenberg condition, which implies limg_,¢ do(R) =
0. Moreover, since A := ||f|lcge-1) < oo, Proposition 5.14 implies that

d(R) < Mgdﬁ. Therefore Q satisfies (TVER).
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(3) Suppose that 2 is bounded, and for any p € 99 there exists R > 0 and
f € A(R41) such that

QN B(p,R) = {y: v yn) ERIXR : ly| < R and y, > f(y')},

where (v, yn) = (Y1, ..,Yn) is an orthonormal coordinate system centered
at p. Then € satisfies the vanishing Reifenberg condition, and therefore 2
satisfies (TVER).

(4) Let £ satisfy the exterior Ry-ball condition, i.e., there exists Ry > 0 such
that for any p € 09, there exists ¢ € RY satisfying |[p — ¢| = Ro and
B(gq, Ry) C Q°. Then §(R) < %, and therefore limp_,0 6(R) = 0.

(5) If a domain  is an intersection of domains satisfying the totally vanishing

Reifenberg condition, then (2 satisfies (TVER).
All of the following examples are valid even if (TVER) is defined by (1.9) instead
of (5.11).

A sufficient condition for limpg—_, o 0o (R) = 0 is that do(R) < 1/R. We provide
an equivalent condition for Q to satisfy dq(R) < 1/R.

Proposition 5.14.

sup Réq(R) = sup d(p,d(Qen.))
R>0 pedn

where Q. n. is the convex hull of Q, i.e.,
Qen. ={(1 -tz +ty:2,y€Q, t€[0,1]}.

Remark 5.15. It follows from the definition of dq(R) that Rdiq(R) increases as
R — oo. Therefore if dq(rg) > 0 for some rg > 0, then dq(R) 2 1/R as R — oo.
As a result, due to Proposition (5.14), an equivalent condition for §(R) to have
minimal nontrivial decay (i.c., do(R) ~ 1/R) is that sup,cyq d(p, 0(Qe.n.)) < 0o.

Proof of Proposition 5.14. We only need to prove that for any Ny > 0,

sup RIg(R) < Ny <= sup d(p, 8(Qc,h,)) <Ng. (5.14)
R>0 pedN

Step 1. We first claim that LHS of (5.14) holds if and only if for any p € 09,
there exists a unit vector e, such that

Qc{zreR?: (x—p)-e, < No}. (5.15)

The ‘if” part is obvious. Therefore, we only need to prove the ‘only if” part. Assume
that LHS of (5.14) holds. Fix p € 9%, and take {€2,, }nen such that €2, is a connceted
component of QN B, (p), and Q1 CQyCQ3C---. Since Qis a domain, 2 is path
connected, which implies

U =0. (5.16)
neN
Since RO(R) < Ny, for each n € N; there exists e, € 9B1(0) such that
Q. C{zeR?: (z—p)-en < No} (5.17)

(see Lemma 5.12). Since 0B1(0) is compact, there exists a subsequence {e,, } which
converges to a certain point, e, € 9B1(0). Due to (5.16) and (5.17), we obtain that
(5.15) holds for this e,,.
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Step 2. Due to (5.14), we only need to prove the following: For p € 99, (5.15)
holds for some e, € 0B1(0) if and only if d(p, 8(chh_)) < Np.
To prove the ‘only if’part, suppose (5.15) and observe that

p €I C Qen. C{xeRd c(x—p)-ep < Not.
Put o :=sup{a >0 : p+ae, € Qcn. }. Then p + ape, € O(Q.n.), and therefore

d(p,0(Qem.)) < ap < No.
To prove the ‘if” part, suppose that there exists ¢ € 9(Q.p.) such that
lp—ql =d(p,0(Qen.)) < No.
Due to Lemma 5.8 and that €21 is a convex domain, there is a unit vector e, such
that
Qen. C{zeRY: (x—q) ¢, <0}.
This implies that for any = € Q C Q..

(x—p)-eg<(g=p)-e<|p—ql <No.
Therefore (5.15) holds for e, := €. O

Remark 5.16. From Step 1 in the proof of Proposition 5.14, one can observe that this
proposition remains valid even if the definition of dg(R) is replaced by the infimum
of § > 0 such that, for any p € 01, there exists a unit vector e, g satisfying (1.9)
for r = R.

Now, we state the main result of this subsection. We temporarily assume Theo-
rem 5.17 (they are proved at the end of this subsection) and prove Theorem 5.18.

Theorem 5.17. For any € € (0,1), there exists 6 > 0 depending only on d, € such
that if Q satisfies (TER)s, then Q0 satisfies LHMD(1 — €) where My_, in (4.7)
depends only on d, €, §, and Ro/R~, where Ry and Roo are constants in (5.12).

Theorem 5.18. For any p € (1,00) and § € R with —p—1 < 0 —d < —1,
there exists 6 > 0 depending only on d, p, € such that if Q satisfies (TER)s, then
Statement 4.3 (,p,0) holds. In addition, Ny in (4.3) depends only on d, p, 7,
0, and Ro/Rs, where Ry and R are constants in (5.12). In particular, if
satisfying (TVER), then Statement 4.3 (2,p,0) holds for all p € (1,00) and 6 € R
with —p—1<6—d< —1.

Proof. Take € € (0, 1) such that
p—1+p-De<f-d<—1—c¢, (5.18)

and put § as the constant in Theorem 5.17 for this €. Consider a domain €2 satisfying
(TER)s. By Theorem 5.17, this Q satisfies LHMD(1 — ¢€). Therefore Theorem 4.13
and (5.18) imply that Statement 4.3 (€2, p, §) holds with Ny = N(d,p,~, 60, Ry/Rs)-

O

Remark 5.19. Kenig and Toro [25, Lemma 2.1] established that if a bounded do-
main satisfies the vanishing Reifenberg condition, then this domain also satisfies
LHMD(1 —¢) for all € € (0, 1).

To prove Theorem 5.17, we need the following lemma:

Lemma 5.20. If (§, R) € ERq, then there exists a continuous function w, g : Q —
(0,1] satisfying the following:
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(1) wp r is a classical superharmonic function on .
(2) wpr=1on{zxecQ: |z—pl >(1-0R}.
(8) wpr < M on QN B(p,0R).
Here, M is a constant depending only on d. In particular, M is independent of 0.

Proof of Lemma 5.20. If § > 1/8, then by putting wy, g = 1 and M = 8, this lemma
is proved. Therefore we only need to consider the case § < 1/8. For a fixed p € 99,

let {QS)R} be the set of all connected components of QN B(p, R). For each i, take
a unit vector el(f;)R satisfying (5.11). Put
g=p+RO+1/4)ly, (5.19)
so that
p—ql =R(@E+1/4) and Q% NB(g, R/4) £ 0 (5.20)
(see Figure 5.4 below).

FIGURE 5.4. ¢ and B(g, R/4) in (5.19), (5.20)

Put W (z) = Fy (4R |z — q|) /Fo(2), where
Fo(t) =log(t) if d=2 ; Fot)=1—-t>% if d>3, (5.21)
so that AW @ =0 on R?\ {¢}. Observe that
0<W(2) < Mo(4R 'z —q| —1) if [&—q| > R/4;
W (z) > 1 it |z —q| = R/2,

where My is a constant depends only on d. Due to (5.20) and that ¢ < %, for

s QZ()Z))R,

R R
if [z—p|<iR, then — < |z —q| < +20R;
3-8)R _ R
if |z—p/ >(1—-0)R, then |x—q|2( 4) 25

Therefore we obtain that
0<W(x) <8Myd if |z—p|<JR;
wWD(z)>1 if |z —p|>(1-0R.
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Put

w, n(z) = WO () Al if:veﬂl(i)R
PR if € Q\ B(p,R).

Then wy, g is continuous on €, and satisfies (2) and (3) of this lemma. (1) of this
lemma follows from (5.21) and Lemma 4.5. O

Proof of Theorem 5.17. Let M > 0 be the constant in Lemma 5.20. For given
e € (0,1), take small enough 6§ € (0,1) such that M§ < §'7¢. We assume that
) satisfies (5.12) for this . By using dilation and Lemma 5.12, without loss of
generality, we assume that (5, R) € ERq whenever R < Ry := Ry/Rso (< 1) or
R>1.

Note that for (0, R) € ERq, due to Lemma 5.20 and the definition of PWB
solutions (4.6), w(-,p,R) < MJ& < §'=€ on Q N dBsgr(p). Therefore, by Lemma
4.6.(3),

w(-,p,R) < 8 “w(-,p,0R) on QN Bsr(p). (5.22)

The proof is completed by establishing (4.7) for o := 1 — € and M;_, depending
only on § and Ry. We prove (4.7) by dividing r and |z — p| into the following five
cases: B

Case 1: r < Ry. Take ng € Ny such that 6" < |z — p| < 6™r. Since
(8,5%r) € ERg for all k > 0, it follows from (5.22) that

1—e
w(z,p,r) < 8" Dw(z, p, 5m0r) < om0(179) < (|x5_p|> .
T

Case 2: |z — p| < Ry < r < 1. By Lemmas 4.6.(1) and (3) and the result in
Case 1, we have

Ix—pl)lff

we,p,r) < we,p, Ro) Sy 5, o — ol < (=

Case 3: }~20 < |z —p| <r < 1. It directly follows that
w(a,p,r) <1< ("Tfp')lé-
R()T

Case 4: [vr —p| < 1 < r. Take ng € Ny such that 6"y < 1 < §"r. Then
(6,0%r) € ERq for all k=0, 1, ..., ng — 1. Therefore we have

w(z,p,r) < 6™ Vw(z, p,6m0r) < 5" w(z,p, 1) Sy 5, 070w —p' e,

where the first inequality follows from (5.22), the second follows from Lemmas
4.6.(1) and (3), and the last follows from the result in Cases 2 and 3. Since §"™ <
1/(dr), we have w(x, p,r) Séﬁo (|a: - p|/r)17€.

Case 5: 1 < |z — p| < r. Take ng € Ny such that 6"y < |z — p| < §"0r. Since
1 < |z — p|, we have (6,6%r) € ERq forall k =0, 1, ..., ng — 1. This implies that

1—e
w(z,p,r) < 5w (z,p,5m0r) < g0l < (|$5_p|> .
T
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APPENDIX A. AUXILIARY RESULTS

Lemma A.1. Let p € (1,00) and u € C(R?) satisfy (2.3).
(1) |ulP/>" u € W3 (RY) and Dy(|ulP/>~ u) = §lul?/>" 1 (Diu)1{uro}-
(2) |ulP € WER?) and
Di([ul?) = plulP"*uD;ul g0y ;

- _ (A1)
Dij(|u|p) = (p|u|p 2uDjju+ p(p — 1)|ulP 2DZ-uDju) Liuzo} -

Proof. This proof is a variant of [34, Lemma 2.17]. Take a sequence of nonnegative
functions {gn tnen € C(R) such that g, = 0 on a neighborhood of 0 for each n € N,
and g, (s) 7 |s[P/2 11540 for all s € R. Put

F,(¢) ::/Ogn(s)ds , Gr(t) ::/0 (gn(s))2ds.

Recall the assumption (2.3), and denote A = sup |u|. Since 0 < g,,(s) < |s|P/?71,
the Lebesgue dominated convergence theorem implies that F,, (t) — % |t|P/2~ 1 and
G,(t) — ﬁ|t|p*2t uniformly for ¢ € [—A, A]. Furthermore, there absolute values

increase as n — oo. Since F,,(u(-)) and Gy (u(-)) vanish on a neighborhood of
{u = 0}, they are supported on a compact subset of {u # 0}, and continuously
differentiable with

2
Di(Fu(u)) = gn(w)Diulguzoy and  D;(Gn(uw)) = (gn(u)) Diuliyzoy -
(1) Integrate by parts to obtain

/ |gn(u)Vu 1{u¢0}|2 dr = —/ G (u)Au 1,20y do
R4 Rd
1
< — |u|p_1|Au|d:1:.
P =1 Jiuzoy
By the monotone convergence theorem, we have |u[P/2~!|Vu| € Ly(R?). We denote
v = %|u|p/2_1u. For any ¢ € C°(R?), we have

—/ v-D;(dr = — lim F,(u) - D;¢dx
R n—oo Rd
= lim gn(w)Diu - (dx = / |u[P/?" Dyu - ¢ dex .
o0 S {uz0} {uz0}
Here, the first and the last equalities follow from the Lebesgue dominated conver-
gence theorem, because |F,(u)| < |v| and |g,(u)Diu| < |u[P/?~1|Vu| € Ly(R?).
Therefore v € W} (R?) and Djv = |ulP/> " Dyu 1,40}
(2) It follows from (1) of this lemma that [ulP € W{(RY) with D;(|ul’) =
plulP2uD;ulyzo. For any ¢ € C2°, we have
1
— |ulP~?uDsu - D;¢ da
P =1 Jiuzroy

= lim Gpn(u)Dsu - D¢ dx

= — lim (|gn(u)|2DiuDju + Gn(u)Diju)Cdx

n—00 R
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1
::—-][ OUVFQLEULEU4—
{u#0} b=

Here, the first and last inequa11t1es follow from the Lebesgue dominated convergence
theorem, because |G (u)] < 25 L |u[P~' and |g, (u)| < |u[?/?~ (recall the assumption

for u, and (1) of this lemma) Therefore |u|P € W2(R?) with (A.1). O

Lemma A.2. There exist linear maps

Ao : WHY , - WHYTHQ) and Ay, ..., Ag: WH) = WHHL (Q)

such that for any f € VH) ,(), f = Aof + Zi:l D;(A;f) and

d

”AOf”q;H;’*él(Q) + Z ”AifH‘I’H;zl,p(Q) < NHfH\I/H;ﬂ(Q) ) (A-2)
=1

where N = N(d,p,~,0,Ca(P)).

Proof. Step 1. We first prove the case ¥ = 1. Consider linear operators from H
to HYt! defined by Lo := (1 = A)~™" and L; := —D;(1 - A)"' fori =1, ..., d.
They satisfy that for any g € H),

d d

Log+ Y DiLig=g and Y |Ligllyy+r Sapa ll9llay - (A.3)
i=1 i=0

We denote (3 (t) = Co(e™1t) + Co(t) + (o(et) and Cr,my () = Cl( oz )) Put
Aof(x Z Ciy(my (@ Lo{ Co,(n) f) (" )} (e™"x)

neZ

_ZZ (DrCiymy) (@) k{((o,(n)f)(en')}(efnir),

k=1neZ

)= Z e" (1 m) (%) Li [(Co,(n)f) (e"-)} (e "x),

neL
fori=1, ..., d. Due to (A.3), we have

Aof + Z DA f = Z (Cl (m)( {(Lo + Z D; L) [(Co,(n)f)(en')” (e ))

nez =1
= Z |:<1,(n)<0,(n)f:| = ZC@,(n)f =f.
nez nez

In addition, we also obtain

H (CO (n) Aof) HHwH + Z e_an Co,(n) A f) HHV“ (A4)
i=1
d
8 D0 D || (CoumCimn) (€)% L[ (Goguny £) (€ €74 ;ﬂ
i=0 |k|<2 ;
d
+ey D H (o.m) D1 (k) (€7) X L [(CO,(nJrk)f) (e"%')} (e_k')‘ ;+1

i=0 |k|<2
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[ CO (n+k)f)( n+k')”H7+l ~d,p,y Z || CO (n+k) )(en+k')||z;1;a

|k|<2 i=0 k| <2

Here, the first and second inequalities follow from that
H CO (n) Cl (n+k) HCm(Rd + enH CO (n) * D¢, (n+k) ) en')Hcm(Rd) < N(d,k,m),

where N(d,k,l) = 0 if |k| > 3 (note (3.10) and that supp(¢1) C [e™2,¢e?]). (A.4)
implies (A.2) for ¥ =1 and A, instead of A;.
Step 2. For f € WH) , (& V™' f € H) ,(Q)), put

d
Aof = Who(U™1f) = > (Dy®) - Ap(U1f) 5 Aif = UA,(T' ).
k=1
fori=1,---, d. Then we have

(AO + i DiAi)f = ‘1’(7\0 + i DZZN\z) (') =r.
i=1 i=1

Moreover, Lemma 3.10.(3) and (A.4) imply that

d
||‘I’_1A0f||H;jél(sz) + ||‘I’_1Aif||H;j;p(sz)
i=1

d
S ||A0(\1171f)||H;$1(Q) + Z HAi(\Ililf)”H;;lip(Q) S ||\1171f||H;,9(Q) .

Therefore, the proof is completed. (|

Lemma A.3. Let n € C°(R?) satisfy n = 1 on B1(0) and supp(n) C Bz(0). For
each i € N, let N(i) € N be a constant satisfying

supp( Y Com) € {z e @ (N()/2) " < ple) < N(0)/2}

In|<i

Let A;, A;j, A j i are linear functionals on D'(Y) defined as

Moo= (X0 Gom )£+ Maaf =GN Aad = () YO,

In|<i

where (Aiyjf)(é) is defined in the same way as in (2.1). Then for any p € (1,00),
7,0 € R, and reqular Harnack function U, the following hold:

(1) For any f € D'(Q), A, jnf € C(Q).
(2) For any f € WH;9(9)7

sup [Aifllwmy @) < Mllfllemy, @

sup ||Ai,jf||\IlH;19(Q) < N2||f||\IIH;19(Q) (A.5)
J

sup 1A g fllwmy @) < Nallfllwn ) »

where N1, Na, N3 are constants independent of f.
(3) For any f € WH) ,(9),

lim Aij kf = Aljf y hm Aljf = Alf y hm Azf = f m \IJH’YG(Q) . (AG)
k—o0 e ’ j—o0 ’ i—00 P,
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Proof. (1) It follows directly from the properties of distributions.
(2), (3) Step 1: A;. Let f € H) ,(Q). From (3.10), one can observe that

”f A, f”q;H’V () NN Z n9|| lfCO n)) HH” < ”f”q;H'r Q)
In|>i—1
where N = N(d, p,~, 0). Therefore we have
sup [Aifllwmy ) < NIfllwrr @ and Jim If = Aifllwm @) =0

Step 2: A; ;. The definition of H;e(ﬂ) implies that for any A > 1, if F € D’'(Q)
or F € D'(R?), and F is supported on {x € Q : A~! < p(z) < A}, then
1E Ny ) =N 1 Fll (A.7)

where N = N(d,p,0,7v, A). For each i € N, U=A;f and U~!A, ;f are supported
on

{zeQ: NG <p(x) <N(®G)}.
Therefore U ~1A; f € HJ. Since WA, f =n(i71)ULA; f, we obtain that

lim || O'Af — 0~ 1A1JfHH'*_O and [|[UTTA, ,]fHHV S |[EA fHHW,

]—)OO

where Ny = N(d,p,~,0,i,m). Due to (A.7), (A.5) and (A.6) for A; ; are proved.
Step 3: A; ;. Put
Kij={reQ: N(i)™" < plx) < N(), || <25},

which is a compact subset of 2, and A; ; f and A, ; 1. f are supported on there. Since
U and U1 belong to C°°(2), we obtain that

||Ai,jf||\I/H;’9(Q) = ||W71Ai,jf||H;,9(Q) ~N ||‘1’71Ai,jf||Hg ~N A fllmy.  (A8)

where N = N(d, p,~,6,14,j,¥); it also holds for A; ; rf and A; ;f — A, ; 1 f, instead
of Ai,jf-
Since A; ;1 f is a mollification of A; ; f, we have

IAigaf ey S 1Aiiflliy and lim JAiyf = Aijaf ||y =0,
where Ny = N(d, p, 0,7, 0,4, j,n). H
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