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SOBOLEV SPACE THEORY FOR POISSON’S EQUATION IN

NON-SMOOTH DOMAINS VIA SUPERHARMONIC FUNCTIONS

AND HARDY’S INEQUALITY

JINSOL SEO

Abstract. We introduce a general Lp-solvability result for the Poisson equa-

tion in non-smooth domains Ω ⊂ Rd, with the zero Dirichlet boundary con-
dition. Our sole assumption for the domain Ω is the Hardy inequality: There
exists a constant N > 0 such that

∫

Ω

∣

∣

∣

f(x)

d(x, ∂Ω)

∣

∣

∣

2

dx ≤ N

∫

Ω

|∇f |2 dx for any f ∈ C∞

c (Ω) .

To describe the boundary behavior of solutions in a general framework, we
propose a weight system composed of a superharmonic function and the dis-
tance function to the boundary. Additionally, we explore applications across a
variety of non-smooth domains, including convex domains, domains with ex-
terior cone condition, totally vanishing exterior Reifenberg domains, and do-
mains Ω ⊂ Rd for which the Aikawa dimension of Ωc is less than d− 2. Using
superharmonic functions tailored to the geometric conditions of the domain,
we derive weighted Lp-solvability results for various non-smooth domains and
specific weight ranges that differ for each domain condition. Furthermore, we
provide an application for the Hölder continuity of solutions.
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1. Introduction

The Poisson equation is among the most classical partial differential equations.
Lp-theory for this equation in Rd and C2-domains has been developed long be-
fore, alongside Schauder theory and L2-theory. In particular, there are extensions
in various directions, including variable coefficients [17, 36], nonlocal or nonlinear
operators [21, 22], and non-smooth domains.

Our primary focus is the Poisson equation on non-smooth domains Ω, with the
zero-Dirichlet boundary condition:

∆u = f in Ω ; u = 0 on ∂Ω . (1.1)

Unweighted or weighted Lp-theories for this equation have been developed for vari-
ous types of domains, including C1-domains [27, 29], Reifenberg domains [11], con-
vex domains [1, 19], Lipschitz domains [23], domains with Ahlfors regular bound-
ary [46], domains with point singularities [43, 44], and piecewise smooth domains
[10, 45]. Despite the extensive analyses of the Poisson equation across these do-
mains, a comprehensive theorem for Lp-solvability for various types of non-smooth
domains remains elusive. Moreover, Lp-theory has been primarily developed on
domains with sufficient regularity, such as those mentioned above.

This paper presents a general result on weighted Lp-solvability for (1.1) in non-
smooth domains. We consider domains Ω ( Rd admitting the Hardy inequality:
There exists a constant C0(Ω) > 0 such that

∫

Ω

∣∣∣ f(x)

d(x, ∂Ω)

∣∣∣
2

dx ≤ C0(Ω)

∫

Ω

|∇f(x)|2 dx for all f ∈ C∞
c (Ω) . (1.2)

One of the notable sufficient conditions for (1.2) is the volume density condition:

inf
p∈∂Ω
r>0

∣∣Ωc ∩Br(p)
∣∣

∣∣Br(p)
∣∣ > 0 (1.3)

(see Remark 4.11). We also use a class of superharmonic functions, called superhar-
monic Harnack functions, as a weight function in our Lp-estimate. Consequently,
roughly speaking, we establish that for equation (1.1) in a domain Ω with (1.2), each
superharmonic Harnack function ψ immediately leads to a weighted Lp-solvability
result associated with ψ, for general p ∈ (1,∞), where ψ describes the boundary
behavior of solutions. We apply our result to various types of non-smooth do-
mains, constructing appropriate superharmonic functions. A detailed discussion of
our main result and its applications can be found in the last part of Subsection 1.1
and Subsection 1.2, respectively.

1.1. Historical remarks and overview of the main results.

Historical remarks on the Lp-solvability in non-smooth domains. Studies of
Lp-theory for non-smooth domains have mainly focused on the individual analysis
of specific domain classes. One of the most significant contributions to the study of
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non-smooth domains is the work of Jerison and Kenig [23] for Lipschitz domains.
The authors provided the following results for domains Ω ⊂ Rd, d ≥ 3 (resp. d = 2):

(1) If p ∈ [3/2, 3] (resp. p ∈ [4/3, 4]), then for any bounded Lipschitz domains

Ω, the Poisson equation (1.1) has a unique solution in L̊p1(Ω) whenever
f ∈ Lp−1(Ω).

(2) For each p > 3 (resp. p > 4), there exists a bounded Lipschitz domain Ω

and f ∈ C∞(Ω) such that (1.1) has no solution in L̊p1(Ω).

(for the definition of function spaces L̊p1(Ω) and Lp−1(Ω), see Remark 1.4). The
first result provides a universal range of p that assures the unique solvability in
unweighted Sobolev spaces. However, as shown in the second result, the Poisson
equation is not uniquely solvable in unweighted Sobolev spaces L̊p1(Ω), for general
non-smooth domains Ω and values of p ∈ (1,∞). Given these limitations in un-
weighted Sobolev spaces, we turn our attention to theories in weighted Sobolev
spaces.

Elliptic equations in smooth or polygonal cones have been extensively studied in
the literature, as indicated in monographs [10, 44, 45]. Here,

Ω := {rσ : r > 0 and σ ∈ M} (M ⊂ Sd−1) , (1.4)

is called a smooth cone if M is a smooth subdomain of Sd−1, and Ω is called
a polygonal cone if M is a spherical polygon. For these domains, scholars have
investigated the unique solvability of elliptic equations in specific types of weighted
Lp-Sobolev spaces for general p ∈ (1,∞). The weight system in these spaces is
composed of the distance functions for each vertex and edge of the domain; the
range of weights for the unique solvability is closely related to the eigenvalues of the
spherical Laplacian on M. For example, consider the case of M = { (cos θ, sin θ) :
0 < θ < κ} ⊂ S1, κ ∈ (0, 2π), and Ω ⊂ R2 defined by (1.4). For any p ∈ (1,∞) and
2
p − π

κ < µ < 2
p + π

κ , we have the estimate

∥∥|x|−µu
∥∥
p
+
∥∥|x|−µ+1Du

∥∥
p
+
∥∥|x|−µ+2D2u

∥∥
p
.
∥∥|x|−µ+2∆u

∥∥
p

for u ∈ C∞
c (Ω) (see [45, 2.6.6. Example]). The value of µ describes the behavior of

solutions near the vertex, and the term π
κ in the range of µ is directly related to

the first eigenvalue of d2

dθ2 on M.
The aforementioned studies on Lipschitz domains and smooth cones indicate

that, in order to develop a general framework for the Lp-solvability of the Pois-
son equation in various non-smooth domains, we need to adopt a weight system
associated with the Laplace operator and the geometric features of each domain.
Furthermore, this weight system enables us to describe the boundary behavior of
solutions.

There are many other notable studies for various non-smooth domains. Subsec-
tion 1.2 summarizes prior works relevant to several types of non-smooth domains
and introduces our result in each situation. Before introducing our result, we leave
some comments on one of the primary methods of this paper.

Remark on the localization argument. One of our primary methods is the
localization argument developed by Krylov [34]. Krylov investigated the Poisson
equation in the half space Rd+, and one of the main results is as follows: If 1

p < µ <

1+ 1
p , then for any u ∈ C∞

c (Rd+) and f0, f1, . . . , fd such that ∆u = f0+
∑
i≥1Difi,
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we have

‖ρ−µu‖p + ‖ρ1−µDu‖p . ‖ρ−µu‖p + ‖ρ2−µf0‖p +
∑

i≥1

‖ρ1−µfi‖p (1.5)

. ‖ρ2−µf0‖p +
∑

i≥1

‖ρ1−µfi‖p , (1.6)

where ρ(x) := d(x, ∂Rd+) is the boundary distance function on Rd+. Here, the param-
eter µ describes the boundary behaviors of solutions and their derivatives (consider
the case of µ = 1). The range 1

p < µ < 1 + 1
p is sharp as mentioned in [34, Remark

4.3]. From a technical point of view, this range follows from the proof of (1.6) in
which the weighted Hardy inequalities for R+ and its sharp constants play crucial
roles. On the other hand, to derive estimate (1.5), the author applied a localization
argument based on the Poisson equation’s results in the whole space Rd. We note
that this argument is applicable to any domain Ω and any µ ∈ R, not just to Rd+
and specific µ, as shown in [30].

While Krylov [34] dealt with only the half space because of estimate (1.6), the
work of Kim [28] reveals a connection between the approach in [34] and the classical
Hardy inequality (1.2) for non-smooth domains. Kim [28] studied stochastic par-
abolic equations in non-smooth domains, obtaining (1.5) and (1.6) type estimates
for bounded domains Ω admitting the Hardy inequality, instead of Rd+. However,
it should be noted that in [28, Theorem 2.12], the range of µ for the solvability is
restricted to around 2

p , and this range is not specified; briefly speaking, the bound-

ary behavior of solutions is not adequately described sufficiently well (cf. Krylov’s
work on Rd+ mentioned above).

Overview of the main result. Following [28], we concentrate on the class of
domains admitting the Hardy inequality. This concentration stems from the fact
that the Hardy inequality holds on various non-smooth domains (see (1.3)).

A key distinguishing feature of the present paper from earlier studies is the uti-
lization of superharmonic functions. We employ superharmonic functions in con-
junction with the Hardy inequality. This combination allows us to effectively cap-
ture the boundary behavior of solutions (see (1.7) or Theorem 2.7). Furthermore,
we introduce the concepts of Harnack functions and regular Harnack functions, ex-
tending the localization argument used in [34] to a broader class of weight functions.
Consequently, as weight functions, we utilize superharmonic Harnack functions ψ,
which are locally integrable functions that satisfy the following conditions:

(1) ∆ψ ≤ 0 in the sense of distribution.
(2) ψ > 0 and that there exists a constant N > 0 such that

ess sup
B(x,ρ(x)/2)

ψ ≤ N ess inf
B(x,ρ(x)/2)

ψ for all x ∈ Ω ,

where ρ(x) := dist(x, ∂Ω).

Our main result (Theorem 3.14) contains the following estimate:

Let Ω admit the Hardy inequality (1.2) and ψ be a superharmonic Harnack
function on Ω. For any 1 < p < ∞ and − 1

p < µ < 1 − 1
p , it holds that

for any u ∈ C∞
c (Ω) and f0, f1, . . . , fd such that ∆u = f0 +

∑
i≥1Difi, we
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have

‖ψ−µρ−2/pu‖p + ‖ψ−µρ−2/p+1Du‖p . ‖ψ−µρ−2/p+2f0‖p +
∑

i≥1

‖ψ−µρ−2/p+1fi‖p .

(1.7)

Here, the superharmonic Harnack function ψ describes the boundary behavior of so-
lutions; by applying a Sobolev-Hölder embedding theorem, we also derive pointwise
estimates for solutions (see Theorem 1.8 and Proposition 3.13).

Our main result does not specify a particular superharmonic Harnack function
ψ. The flexibility in choosing ψ is the primary advantage of our theorem, enabling
applications in a wide range of non-smooth domains. We offer a non-trivial gen-
eral example of ψ related to the Green functions in Example 3.17. Additionally,
throughout Sections 4 and 5, we explore the construction of suitable ψ for various
geometric domain conditions. The domain conditions we investigate include the
following:

(1) Domains satisfying the exterior cone condition, and planar domains satis-
fying the exterior line segment condition;

(2) Convex domains;
(3) Domains satisfying the totally vanishing exterior Reifenberg condition;
(4) Domains Ω satisfying the volume density condition (1.3);
(5) Domains Ω ⊂ Rd for which the Aikawa dimension of Ωc is less than d− 2.

For a domain Ω under each condition above, we construct suitable superharmonic
functions ψ such that ψ ≃ d(·, ∂Ω)α for some α ∈ R. Notably, the range of α is
different for each domain condition. We sequentially introduce simplified versions
of our results for the aforementioned conditions in Subsubsections 1.2.1 - 1.2.5,
together with earlier works for each domain condition.

Finally, we mention that the approach presented in this paper is applicable not
only to the Poisson equation but also to linear evolution equations based on the
Laplace operator, such as the classical heat or time-fractional heat equations and
the stochastic heat equation. The localization argument in Section 3 and the super-
harmonic functions in Sections 4 and 5 can readily be employed for these equations.
Applications to the mentioned three equations are considered future work.

Since the table of contents is provided at the beginning of the paper, we omit
the summary of the organization of this paper.

1.2. Summary of applications to various domain conditions. This subsec-
tion considers a domain Ω ⊂ Rd, d ≥ 2. We denote ρ(x) := d(x, ∂Ω), and introduce
weighted Sobolev spaces. For p ∈ (1,∞), θ ∈ R, and n ∈ {0, 1, 2, . . .}, we denote

‖f‖Wn
p,θ(Ω) :=

n∑

k=0

‖ρkDkf‖Lp,θ(Ω) :=

n∑

k=0

(∫

Ω

∣∣ρ(x)kDkf(x)
∣∣pρ(x)θ dx

)1/p

,

‖f‖W−n
p,θ (Ω) := inf

{ ∑

|α|≤n

‖ρ−|α|fα‖Lp,θ(Ω) : f =
∑

|α|≤n

Dαfα

}
.

For n ∈ Z, Wn
p,θ(Ω) denotes the set of all f ∈ D′(Ω) such that ‖f‖Wn

p,θ(Ω) <∞.

Remark 1.1. The spaces Wn
p,θ(Ω) appears only in this subsection. However, this

space has the equivalent relation, Wn
p,θ(Ω) = Hn

p,θ+d(Ω) (see Lemma 3.12), where
Hn
p,θ+d is a function space introduced in Subsections 3.2.
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For convenience, we define the following statement:

Statement 1.2 (Ω, p, θ). Let λ ≥ 0. For any n ∈ Z, if f ∈ Wn
p,θ(Ω), then the

equation ∆u− λu = f has a unique solution u in Wn+2
p,θ+2p(Ω). Moreover, we have

‖u‖Wn+2
p,θ (Ω) + λ‖u‖Wn

p,θ+2p(Ω) ≤ N‖f‖Wn
p,θ+2p(Ω) , (1.8)

where N is independent of f , u, and λ.

1.2.1. (Subsection 5.1) Domains with exterior cone condition. For δ ∈
[0, π/2) and R > 0, Ω is said to satisfy the exterior (δ, R)-cone condition if for
every p ∈ ∂Ω, there exists a unit vector ep ∈ Rd such that

{x ∈ Rd : (x− p) · ep ≥ |x− p| cos δ , |x− p| < R} ⊂ Ωc ;

when δ = 0, this condition is often called the exterior R-line segment condition.
Examples of this condition are given in Example 5.2 and illustrated in Figure 5.1.

Given δ > 0, we denote

λδ := −d− 2

2
+

√(d− 2

2

)2
+ Λδ ,

where Λδ > 0 is the first eigenvalue for Dirichlet spherical Laplacian on

{σ = (σ1, . . . , σd) ∈ Sd−1 : σ1 > − cos δ} .
When d = 2 and δ = 0, we set λδ = 1/2. We provide information on λδ in (5.4) and
Proposition 5.3. Note that λδ > 0 for all δ > 0, and if d = 2, then λδ =

π
2(π−δ) ≥ 1

2

for all δ ≥ 0.
Our result also covers some unbounded domains, but here, we only introduce the

result regarding bounded domains.

Theorem 1.3 (see Theorem 5.6). Let δ ∈ (0, π) if d ≥ 3, and δ ∈ [0, π) if d =
2. Suppose that Ω ⊂ Rd is a bounded domain satisfying the (δ, R)-exterior cone
condition for some R > 0. Then, for any p ∈ (1,∞) and θ ∈ R satisfying

−λδ(p− 1)− 2 < θ < λδ − 2 ,

Statement 1.2 (Ω, p, θ) holds. In addition, then N in (1.8) depends only on d, p, n,
θ, δ, diam(Ω)/R.

The exterior cone condition is more general than the Lipschitz boundary condi-
tion. It should be noted that, however, Theorem 5.6 and the work of Jerison and
Kenig [23, Theorems 1.1, 1.3] (on Lipschitz domains) cannot be directly compared
because they address different aspects of the Poisson equation in non-smooth do-
mains. While Theorem 5.6 covers a broader domain class than [23], if our focus
is restricted only to Lipschitz domains, the results in [23] are more general than
Theorem 5.6 in terms of unweighted estimates for higher regularity. To compare
[23] with Theorem 5.6, we refer the reader to the following remark on the relations
between the function spaces Hγ

p,θ+d(Ω) (see Remark 1.1) and the Sobolev spaces

presented in [23]:

Remark 1.4. Let Ω be a bounded Lipschitz domain. We refer to the function space
Lps(Ω) and L

p
s,o as introduced in [23, Section 2], where p ∈ (1,∞) is the integrability

parameter, and s ∈ R is the regularity parameter. For clarity, we use the notation

L̊ps(Ω) to denote the space L
p
s,o. It is noted that for k ∈ N0, we have L

p
k(Ω) =W k

p (Ω).
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The space L̊pk(Ω) is defined by the closure of C∞
c (Ω) in Lpk(Ω), and L

p
−k(Ω) is defined

by the dual space of L̊
p/(p−1)
k (Ω).

It is directly follows from the definition that H0
p,d(Ω) = Lp0(Ω) = Lp(Ω). For

k ∈ N, it is implied by the weighted Hardy inequality for Lipschitz domains (see,
e.g., [38]) and the boundedness of Ω that ‖u‖Hk

p,d−kp(Ω) ≃ ‖u‖Lp
k(Ω) for all u ∈

C∞
c (Ω). Since C∞

c (Ω) is dense in both of Hk
p,d−kp(Ω) and L̊pk(Ω), separately (see

Lemma 3.10.(1) with Ψ ≡ 1), Hk
p,d−kp(Ω) coincides with L̊

p
k(Ω). The interpolation

properties for L̊ps(Ω) and H
γ
p,θ(Ω) (see [23, Corollary 2.10] and [40, Proposition 2.4],

respectively) implies that Hs
p,d−sp(Ω) = L̊ps(Ω) for all s > 0. By considering these

dual spaces (see Lemma 3.10.(2)), we also have H−s
p,d+sp(Ω) = Lp−s(Ω) for all s > 0.

1.2.2. (Subsection 5.2) Convex domain.

Theorem 1.5 (see Theorem 5.10). Let d ≥ 2 and 1 < p <∞. Suppose that Ω is a
convex domain (not necessarily bounded). For any p ∈ (1,∞) and θ ∈ R satisfying

−p− 1 < θ < −1 ,

Statement 1.2 (Ω, p, θ) holds. In addition, N in (1.8) depends only on d, p, n, θ.
In particular, N is independent of Ω.

Adolfsson [1] and Fromm [19] have established the solvability of the Poisson
equation in bounded convex domains. Regarding unweighted estimates for higher
regularity, their results is more general than Theorem 5.10. However, Theorem 5.10
deals with convex domains that are not necessarily bounded, and this theorem
also provides solvability results in weighted Sobolev spaces. When comparing these
results with Theorem 5.10, it is helpful to note Remark 1.4 and that bounded convex
domains are Lipschitz domains (see, e.g., [20, Corollary 1.2.2.3]).

Combining the results of Theorem 5.10 with [20, Theorem 3.2.1.2] may yield
results similar to [19, Corollary 1]. However, we do not pursue this direction in this
paper.

1.2.3. (Subsection 5.3) Totally vanishing exterior Reifenberg condition.
This subsubsection introduces the totally vanishing exterior Reifenberg condition
(abbreviated to ‘〈TVER〉’), which is a generalization of the concept of bounded
vanishing Reifenberg domains introduced below (5.10).

To clarify the main point of 〈TVER〉 presented in Definition 5.11.(3), we provide
a simplified version of this concept in Definition 1.6. Note that 〈TVER〉 in Definition
1.6 is a sufficient condition for the totally vanishing exterior Reifenberg condition in
Definition 5.11.(3). In Figure 5.3, we describe the difference between the vanishing
Reifenberg condition, 〈TVER〉 in Definition 1.6, and the totally vanishing exterior
Reifenberg condition in Definition 5.11.(3).

Definition 1.6. We say that Ω satisfies the totally vanishing exterior Reifenberg
condition (abbreviate to ‘〈TVER〉’) if for any δ ∈ (0, 1), there exist R0,δ, R∞,δ > 0
satisfying the following: For every p ∈ ∂Ω and r > 0 with r ≤ R0,δ or r ≥ R∞,δ,
there exists a unit vector ep,r ∈ Rd such that

Ω ∩Br(p) ⊂ {x ∈ Br(p) : (x − p) · ep,r < δr} . (1.9)

As shown in Example 5.13, 〈TVER〉 is fulfilled by bounded domains of the fol-
lowing types: the vanishing Reifenberg domains, C1-domains, domains with the



8 J. SEO

exterior ball condition, and finite intersections of them. Furthermore, several un-
bounded domains also satisfy 〈TVER〉 (see Proposition 5.14).

Theorem 1.7 (see Theorem 5.18). Suppose that Ω satisfies 〈TVER〉. For any
p ∈ (1,∞) and θ ∈ R satisfying

−p− 1 < θ < −1 ,

Statement 1.2 (Ω, p, θ) holds. In addition, N in (1.8) depends only on d, p, n, θ,
and

{
R0,δ/R∞,δ

}
δ∈(0,1]

.

The Poisson equation in bounded vanishing Reifenberg domains has been in-
vestigated in the literature, such as the works of Byun and Wang [11], Choi and
Kim [13], and Dong and Kim [17]. These studies focus on the elliptic equations with
variable coefficients, and provide weighted Lp-estimates for Muckenhoupt Ap-weight
functions. However, these studies mostly dealt with bounded vanishing Reifenberg
domains. Differing from these, Theorem 1.7 considers domains satisfying 〈TVER〉,
thereby including bounded vanishing Reifenberg domains.

1.2.4. (Subsection 4.1) Domains with fat exterior. Consider a domain Ω
satisfying the capacity density condition:

inf
p∈∂Ω
r>0

Cap
(
Ωc ∩Br(p), B2r(p)

)

Cap
(
Br(p), B2r(p)

) ≥ ǫ0 > 0 , (1.10)

where Cap(K,U) denotes the L2-capacity of K relative to U (for the definition,
see (4.11)). Condition (1.10) has been studied in the literature, including [4, 5, 6,
26, 31, 39]. It is worth noting that the volume density condition (1.3) is a sufficient
condition for (1.10) (see Remark 4.11).

In Subsection 4.1, we consider another condition equivalent to condition (1.10),
called the local harmonic measure decay condition. To clarify, we introduce some
corollaries instead of the main result (Theorem 4.13).

Theorem 1.8 (see Corollary 4.15 with Lemma 4.10). Let Ω be a bounded domain
satisfy (1.10). There exists α0 > 0 depending only on d, N0, and ǫ0 (in (1.10))
such that for any α ∈ (0, α0], the following holds: Let λ ≥ 0, and f0, f1, . . . , fd be
measurable functions such that |f0| . ρ−2+α and |f1|, . . . , |fd| . ρ−1+α. For any
β < α, the equation

∆u− λu = f0 +
∑

i≥1

Difi in Ω ; u = 0 on ∂Ω (1.11)

has a unique solution u in C0,β(Ω). In addition, we have

sup
Ω
ρ−β |u|+ ‖u‖C0,β(Ω) ≤ N sup

Ω

(
ρ−2+α|f0|+

∑

i≥1

ρ−1+α|fi|
)
,

where N depends only on d, |Ω|, ǫ0 (in (1.10)), α, β.

Remark 1.9 (see Remark 4.8). Theorem 1.8 still holds for bounded domains Ω
satisfying the following, instead of (1.10):

For any F ∈ C(∂Ω), the Laplace equation

∆u = 0 in Ω ; u = F on ∂Ω
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has a (unique) classical solution u ∈ C(Ω). Additionally, there is α1 ∈ (0, 1)
such that ‖u‖C0,α1(Ω) ≤ N‖F‖C0,α1(∂Ω), where N is a constant independent
of u and F .

Under this revised assumption, α0 in Theorem 1.8 can be chosen as α1 in the revised
assumption.

We also provide an unweighted Lp-solvability result for (1.11), where p is close to
2. Although similar results are provided in the literature, as detailed in the above
Corollary 4.16, we present the following theorem to emphasize the applicability of
our main result:

Theorem 1.10 (see Corollary 4.16). Let Ω satisfies (1.10), and let

λ ≥ 0 if DΩ := sup
x∈Ω

d(x, ∂Ω) <∞ , and λ > 0 if DΩ = ∞ .

Then there exists ǫ ∈ (0, 1) depending only on d, ǫ0 (in (1.10)) such that for any
p ∈ (2 − ǫ, 2 + ǫ), the following holds: For any f0, f1, . . . , fd ∈ Lp(Ω), equation

(1.11) has a unique solution u in W̊ 1
p (Ω) (:= the closure of C∞

c (Ω) in W 1
p (Ω)).

Moreover, we have

‖∇u‖p +
(
λ1/2 +D−1

Ω

)
‖u‖p .d,p,ǫ0 min

(
λ−1/2, DΩ

)
‖f‖p +

∑

i≥1

‖f i‖p .

1.2.5. (Subsection 4.2) Domains with thin exterior. For a closed set E ⊂ Rd,
the Aikawa dimension of E, denoted by dimA E, is defined as the infimum of β ≥ 0
such that

sup
p∈Ωc,r>0

1

rβ

∫

B(p,r)

1

d(x,E)d−β
dx ≤ Aβ <∞ ,

with considering 0−1 = ∞. We consider a domain Ω for which dimA(Ω
c) < d−2. A

relation between the Aikawa dimension, the Hausdorff dimension, and the Assouad
dimension is mentioned in Remark 4.1.

Theorem 1.11 (see Theorem 4.19). Let Ω ⊂ Rd, d ≥ 3, satisfy dimA(Ω
c) =: β0 <

d− 2. For any p ∈ (1,∞) and θ ∈ R satisfying

−d+ β0 < θ < (p− 1)(d− β0)− 2p ,

Statement 1.2 (Ω, p, θ) holds. In addition, N in (1.8) depends only on d, p, n, θ,
β0, {Aβ}β>β0.

1.3. Notation.

• We use := to denote a definition.
• The letter N denotes a finite positive constant which may have different
values along the argument while the dependence will be informed; N =
N(a, b, · · · ) means that this N depends only on the parameters inside the
parentheses.

• For a list of parameters L, A .L B means that A ≤ N(L)B, and A ≃L B
means that A .L B and B .L A.

• a ∨ b := max{a, b}, a ∧ b := min{a, b}.
• For a Lebesgue measurable set E ⊂ Rd, |E| denotes the Lebesgue measure
of E.
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• N0 := N ∪ {0}, Rd+ := {(x1, . . . , xd) ∈ Rd : x1 > 0}, R+ := R1
+, and

Sd−1 :=
{
x ∈ Rd : |x| = 1

}
. In adition, for p ∈ Rd and r > 0, Br(p) :=

B(p, r) :=
{
x ∈ Rd : |x| < r

}
, and Br := Br(0).

• A non-empty connected open set is called a domain.
• For sets E, F ⊂ Rd, d(x,E) := infy∈E |x−y| and d(E,F ) := infx∈E d(x, F ).
For a fixed open set O ⊂ Rd, we usually denote ρ(x) := d(x, ∂O) when there
is no confusion.

• For a set E ⊂ Rd, 1E denotes the function defined by 1E(x) = 1 for x ∈ E,
and 1E(x) = 0 for x /∈ E. For a function f defined in E, f1E denotes the
function defined as

(
f1E

)
(x) = f(x) if x ∈ E, and

(
f1E

)
(x) = 0 if x 6= E.

• supp(f) denotes the support of the function f defined as the closure of
{x : f(x) 6= 0}.

• For an open set O ⊆ Rd, C∞
c (O) is the the space of infinitely differentiable

functions f for which supp(f) is a compact subset of O. Also, C∞(O)
denotes the the space of infinitely differentiable functions in O.

• For an open set O ⊆ Rd, D′(O) denotes the set of all distributions on
O, which is the dual of C∞

c (Ω). For f ∈ D′(O), the expression 〈f, ϕ〉,
ϕ ∈ C∞

c (O) denote the evaluation of f with the test function ϕ.
• For any multi-index α = (α1, . . . , αd), αi ∈ {0} ∪ N, we denote |α| :=∑d

i=1 αi. For a function f defined on an open set O ⊂ Rd, fxi := Dif :=
∂f
∂xi , and D

αf(x) := Dαd

d · · ·Dα1
1 f(x). For the second order derivatives we

denote DjDif by Dijf . We often use the notation |gfx| for
∑d
i=1 |gDif |,

|gfxx| for
∑d

i,j=1 |gDijf |, and
∣∣gDmf

∣∣ for∑|α|=k |gDαf |. We extend these

notations to a sublinear function ‖ · ‖ : D′(Ω) → [0,+∞]; for example,

‖gfx‖ :=
∑d

i=1 ‖gDif‖.
• ∆f :=

∑d
i=1Diif denotes the Laplacian for a function f defined on O.

• For an open set O ⊆ Rd, C(O) denotes the set of all continuous functions f
in O such that |f |C(O) := supO |f | <∞. For n ∈ N0, C

n(O) denotes the set
of all strongly n-times continuously differentiable function f on O such that
‖f‖Cn(O) :=

∑n
k=0 |Dkf |C(O) < ∞ . For α ∈ (0, 1], Cn,α(O) denotes the

set of all f ∈ Cn(O) such that ‖f‖Cn,α(O) := ‖f‖Cn(O) + [f ]Cn,α(O) < ∞,

where [f ]Cn,α(O) := supx 6=y∈O
|Dnf(x)−Dnf(y)|

|x−y|α . For any set E ⊂ Rd, we

define the space C0,α(E) in the same way.
• Let (A,A, µ) be a measure space. For a a measurable function f : A →
[−∞,∞], ess sup

A
f is defined by the infimum of a ∈ [−∞,∞] for which

µ
(
{x ∈ A : f(x) > a}

)
= 0, and ess inf

A
f := −ess sup

A
(−f).

• Let O ⊆ Rd be an open set. For p ∈ [1,∞], Lp(O) is the set of all measur-

able functions f on O such that ‖f‖p :=
( ∫

O |f |p dx
)1/p

< ∞ if p < ∞,
and ‖f‖∞ := ess sup

A
|f | < ∞ if p = ∞. For n ∈ N0, W

n
p (O) := {f :

∑
|α|≤n ‖Dαf‖p <∞}, the Sobolev space.

• Let O ⊆ Rd be an open set. For X(O) = Lp(O) or Cn(O) or Cn,α(O),
Xloc(O) denotes the set of all function f on O such that fζ ∈ X(O) for
all ζ ∈ C∞

c (O). Especially, if f ∈ L1,loc(Ω), then f is said to be locally
integrable in Ω.
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2. Key estimates for the Poisson equation

This section aims to obtain an estimate for the zeroth-order derivatives (the
function itself) of solutions to the Poisson equation (1.1) on a domain admitting the
Hardy inequality (1.2). In the main theorem, Theorem 2.7, superharmonic functions
are used as weight functions. We begin with the definition and elementary properties
of superharmonic functions.

Definition 2.1.

(1) A function φ ∈ L1,loc(Ω) is said to be superharmonic if ∆φ ≤ 0 in the sense
of distribution on Ω, i.e., for any nonnegative ζ ∈ C∞

c (Ω),
∫

Ω

φ∆ζ dx ≤ 0 .

(2) A function φ : Ω → (−∞,+∞] is called a classical superharmonic function
if the following conditions are satisfied:
(a) φ is lower semi-continuous on Ω.
(b) For any x ∈ Ω and r > 0 satisfying Br(x) ⊂ Ω,

φ(x) ≥ 1∣∣Br(x)
∣∣
∫

Br(x)

φ(y) dy .

(c) φ 6≡ +∞ on each connected component of Ω.

Recall that φ is said to be harmonic if both φ and −φ are classical superharmonic
functions.

Remark 2.2. Equivalent definitions of classical superharmonic functions are in-
troduced in [7, Definition 3.1.2, Theorem 3.2.2]. Especially, if φ is a classical su-
perharmonic function on a neighborhood of every x ∈ Ω, then φ is a classical
superharmonic function on Ω.

Lemma 2.3. A function φ : Ω → [−∞,+∞] is superharmonic if and only if
there exists a classical superharmonic function φ0 on Ω such that φ = φ0 almost
everywhere on Ω.

The proof of this lemma can be found in [7, Theorem 4.3.2] and [51, Proposition
30.6] for the ‘if’ part and the ‘only if’ part, respectively.

Lemma 2.4. Let φ be a classical superharmonic function on Ω.

(1) If φ is twice continuously differentiable, then ∆φ ≤ 0.
(2) φ is locally integrable on Ω.
(3) For any compact set K ⊂ Ω, φ has the minimum value on K.
(4) For ǫ > 0, put

φ(ǫ)(x) =

∫

B1(0)

(
φ1Ω

)
(x− ǫy) ·N0 e

−1/(1−|y|2) dy , (2.1)

where N0 :=
( ∫

B1
e−1/(1−|y|2) dy

)−1
. Then for any compact set K ⊂ Ω and

0 < ǫ < d(K,Ωc), the following hold:
(a) φ(ǫ) is infinitely smooth on Rd.
(b) φ(ǫ) is a classical superharmonic function on K◦.
(c) For any x ∈ K, φ(ǫ)(x) ր φ(x) as ǫց 0.
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For this lemma, (1) - (3) follow from Definition 2.1 and Lemma 2.3, and (4) can
be found in [7, Theorem 3.3.3].

Lemma 2.5. Let φ be a positive superharonic function on Ω and denote φ(ǫ) the
function defined in (2.1).

(1) For any c ≤ 1, φc is locally integrable in Ω.
(2) If f ∈ L1(Ω) and supp(f) is a compact subset of Ω, then for any c ∈ R,

lim
ǫ→0

∫

Ω

|f |
(
φ(ǫ)

)c
dx =

∫

Ω

|f |φc dx . (2.2)

(3) If f ∈ L∞(Ω) and supp(f) is a compact subset of Ω, then for any c ≤ 1,

lim
ǫ→0

∫

Ω

f
(
φ(ǫ)

)c
dx =

∫

Ω

fφc dx .

Proof. (1) Let K be a compact subset of Ω. If c ∈ (0, 1], then by Lemma 2.4.(2),
∫

K

φc dx ≤ |K|1−c
( ∫

K

φdx
)c
<∞ .

In addition, if c ≤ 0, then by Lemma 2.4.(3), maxK(φc) =
(
minK φ

)c
<∞.

(2) Take a bounded open set U such that supp(f) ⊂ U and U ⊂ Ω. Consider
only ǫ ∈ (0, d(supp(f), U c). If c ≥ 0, then due to Lemma 2.4.(4), (2.2) follows from

the monotone convergence theorem. If c < 0, then |f |
(
φ(ǫ)

)c ≤
(
minU φ

)c|f |, and
therefore (2.2) follows from the Lebesgue dominated convergence theorem.

(3) Since f ∈ L∞(Ω), (1) of this lemma implies that fφc ∈ L1(Ω). The proof is
completed by applying (2) of this lemma for max(f, 0) and max(−f, 0) instead of
f . �

We present the key lemma of this section.

Lemma 2.6. Let p ∈ (1,∞) and c ∈ (−p + 1, 1), and suppose that u ∈ C(Ω)
satisfies that

supp(u) is a compact subset of Ω ,

u ∈ C2
loc

(
{x ∈ Ω : u(x) 6= 0}

)
, and

∫

{u6=0}

|u|p−1|D2u| dx <∞ ,
(2.3)

and φ is a positive superharmonic function on a neighborhood of supp(u).

(1) If φ is twice continuously differentiable, then
∫

Ω

|u|pφc−2|∇φ|2 dx ≤
( p

1− c

)2 ∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx . (2.4)

(2) If (∆u)1{u6=0} is bounded, then
∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx ≤ N

∫

Ω∩{u6=0}

(−∆u) · u|u|p−2φc dx , (2.5)

where N = N(p, c) > 0.
(3) If the Hardy inequality (1.2) holds for Ω, then

∫

Ω

|u|pφcρ−2 dx ≤ N

∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx , (2.6)

where N = N(p, c,C0(Ω)) > 0.
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Lemma 2.6 is mainly used for u ∈ C∞
c (Ω). However, we employ condition (2.3)

to establish Lemma 2.8, which is a crucial lemma for the existence of solutions in
the proof of the main theorem (Theorem 3.14). To handle condition (2.3), we prove
the following results in Lemma A.1: If u ∈ C(Rd) satisfies (2.3), then |u|p/2−1u ∈
W 1

2 (R
d) and |u|p ∈ W 2

1 (R
d) with

Di(|u|p/2−1u) =
p

2
|u|p/2−1(Diu)1{u6=0} , Di

(
|u|p

)
= p|u|p−2uDiu1{u6=0} ,

Dij

(
|u|p

)
=
(
p|u|p−2uDiju+ p(p− 1)|u|p−2DiuDju

)
1{u6=0} .

(2.7)

Proof of Lemma 2.6. By Lemma 2.3, we may assume that φ is a classical superhar-
monic function on a neighborhood of supp(u). In this proof, all of the integrations
by parts are based on (2.7).

(1) Recall that φ is twice continuously differentiable on a neighborhood of supp(u).
Integrate by parts to obtain

(1 − c)

∫

Ω

|u|pφc−2|∇φ|2 dx

= −
∫

Ω

|u|p∇φ · ∇(φc−1) dx (2.8)

= p

∫

Ω∩{u6=0}

|u|p−2uφc−1(∇u · ∇φ) dx +

∫

Ω

|u|pφc−1∆φ dx

≤ p
(∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx
)1/2(∫

Ω

|u|pφc−2|∇φ|2 dx
)1/2

,

where the last inequality follows from the Hölder inequality and that ∆φ ≤ 0 on
{u 6= 0}. Since the first term of (2.8) is finite, we obtain (2.4). The proof of (1) is
completed.

Although we do not assume that φ is infinitely smooth in (2) and (3), we only
need to consider the case where φ is additionally assumed to be smooth on its
domain. This is because if (2.5) and (2.6) hold for φ(ǫ) instead of φ, for all sufficiently
small ǫ > 0, then by Lemma 2.5, (2.5) and (2.6) also hold for φ. Note that if
0 < ǫ < d

(
supp(u), ∂Ω

)
, then φ(ǫ) is a positive superharmonic function on supp(u)

(see Lemma 2.4). In addition, |u|p−2|∇u|21{u6=0} and |u|pρ−2 are integrable (see

Lemma A.1), and −∆u · u|u|p−21{u6=0} in (2.5) is bounded. Therefore, in the proof
of (2) and (3), we additionally assume that φ is infinitely smooth.

(2) Case 1: 0 ≤ c < 1. Integrate by parts to obtain
∫

Ω

−∆u · u|u|p−2φc dx =(p− 1)

∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx− 1

p

∫

Ω

|u|p∆(φc) dx .

Since

∆(φc) = c φc−1∆φ + c(c− 1)φc−2|∇φ|2 ≤ 0 on supp(u) ,

(2.5) is obtained.
Case 2: −p+1 < c < 0. Due to integration by parts, the Hölder inequality, and

(2.4), we have
∫

Ω

−∆u · u|u|p−2φc dx

=(p− 1)

∫

Ω

|u|p−2|∇u|2φc dx+ c

∫

Ω

(∇u) · (∇φ)u|u|p−2φc−1 dx
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≥ (p− 1)

∫

Ω

|u|p−2|∇u|2φc dx

+ c

(∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx ·
∫

Ω

|u|pφc−2|∇φ|2 dx
)1/2

≥ p+ c− 1

1− c

∫

Ω

|u|p−2|∇u|2φc dx .

(3) Note that our assumption of the Hardy inequality (1.2) implies that the
inequality in (1.2) also holds for f ∈ W 1

2 (Ω) whose support is a compact subset of
Ω.

Since φ is assumed to be positive and smooth on a neighborhood of supp(u), it

follows from Lemma A.1 that |u|p/2−1uφc/2 belongs to W̊ 1
2 (Ω), and

∇
(
|u|p/2−1uφc/2

)
=
p

2
|u|p/2−1(∇u)1{u6=0}φ

c/2 +
c

2
|u|p/2φc/2−1∇φ .

Therefore, due to the Hardy inequality and (2.4), we have
∫

Ω

∣∣|u|p/2−1uφc/2
∣∣2ρ−2 dx

.p,cC0(Ω)

∫

Ω

(
|u|p−2|∇u|2φc1{u6=0} + |u|pφc−2|∇φ|2

)
dx

.p,cC0(Ω)

∫

Ω∩{u6=0}

|u|p−2|∇u|2φc dx.

�

Theorem 2.7. Let Ω admit the Hardy inequality (1.2). For any p ∈ (1,∞), c ∈
(−p + 1, 1), and positive superharmonic function φ on Ω, the following holds: If
u ∈ C(Ω) satisfies (2.3) and (∆u)1{u6=0} is bounded, then for any λ ≥ 0,

∫

Ω

|u|pφcρ−2 dx ≤ N

∫

Ω

|∆u− λu|pφcρ2p−2 dx ,

where N = N(p, c,C0(Ω)).

Proof. Since λ ≥ 0, Lemma 2.6 implies
∫

Ω

|u|pφcρ−2 dx ≤ N

∫

Ω

(−∆u) · u|u|p−21{u6=0}φ
c dx

≤ N

∫

Ω

(−∆u+ λu) · u|u|p−21{u6=0}φ
c dx ,

(2.9)

where N = N(p, c,C0(Ω)) > 0. Since φcρ−2 is locally integrable on Ω (see Lemma
2.5.(1)), the first term in (2.9) is finite. By the Hölder inequality, the proof is
completed. �

Lemma 2.8 (Existence of a weak solution). Suppose that (1.2) holds for Ω. Then
for any λ ≥ 0 and f ∈ C∞

c (Ω), there exists a measurable function u : Ω → R

satisfying the following:

(1) u ∈ L1,loc(Ω).
(2) ∆u− λu = f in the sense of distribution on Ω, i.e., for any ζ ∈ C∞

c (Ω),
∫

Ω

u
(
∆ζ − λζ

)
dx =

∫

Ω

fζ dx . (2.10)
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(3) For any p ∈ (1,∞), c ∈ (−p+1, 1), and positive superharmonic function φ
on Ω, ∫

Ω

|u|pφcρ−2 dx ≤ N

∫

Ω

|f |pφcρ2p−2 dx (2.11)

where N = N(p, c,C0(Ω)) > 0.

Proof. Take infinitely smooth bounded open sets Ωn, n ∈ N, such that

supp(f) ⊂ Ω1 , Ωn ⊂ Ωn+1 ,
⋃

n

Ωn = Ω

(see, e.g., [15, Proposition 8.2.1]). For arbitrary h ∈ C∞
c (Ω1) and n ∈ N, by Rλ,nh

we denote the classical solution H ∈ C∞(Ωn) of the equation

∆H − λH = h1Ω1 on Ωn ; H |∂Ωn ≡ 0 .

Note that Ωn is a compact subset of Ω, Rλ,nh ∈ C∞(Ωn), and Rλ,nh|∂Ωn ≡ 0.
Therefore

(
Rλ,nh

)
1Ωn is continuous on Ω and satisfies (2.3). By Theorem 2.7, for

any p ∈ (1,∞), c ∈ (−p + 1, 1) and positive superharmonic functions φ on Ω, we
have ∫

Ω

∣∣(Rλ,nh
)
1Ωn

∣∣pφcρ−2 dx ≤ N(p, c,C0(Ω))

∫

Ω

|h|pφcρ2p−2 dx . (2.12)

Note that N in (2.12) is independent of n.
Take F ∈ C∞

c (Ω1) such that F ≥ |f |, and put f1 := f −F and f2 := −F so that
f1, f2 ≤ 0, and f1 − f2 = f .

For vn :=
(
Rλ,nf1

)
1Ωn , the maximum principle implies that 0 ≤ vn ≤ vn+1

on Ω. We define v(x) := limn→∞ vn(x). By applying the monotone convergence
theorem to (2.12) with (h, φ, p, c) := (f1, 1Ω, 2, 0), we obtain that

∫
Ω
|v|2ρ−2 dx .∫

Ω |f1|2ρ2 dx, which implies that v ∈ L1,loc(Ω).
We next claim that for any ζ ∈ C∞

c (Ω),
∫

Ω

v
(
∆ζ − λζ

)
dx =

∫

Ω

f1ζ dx . (2.13)

Fix ζ ∈ C∞
c (Ω), and take large enough N ∈ N such that supp(ζ) ⊂ ΩN . Then for

any n ≥ N , the definition of vn = Rλ,nf1 implies that (2.13) holds for vn instead
of v. Since 0 ≤ vn ≤ v and v ∈ L1,loc(Ω), the Lebesgue dominated convergence
theorem yields (2.13).

By the same argument, w := limn→∞

(
Rλ,nf2

)
1Ωn belongs to L1,loc(Ω), and

(2.13) holds for (w, f2) instead of (v, f1).
Put u := v−w = limn→∞

(
Rλ,nf

)
1Ωn (the limit exists almost everywhere on Ω).

Then u ∈ L1,loc(Ω), and u satisfies (2.10). In addition, by applying Fatou’s lemma
to (2.12) with h := f , (2.11) is obtained. �

3. Weighted Sobolev spaces and solvability of the Poisson equation

In this section, we focus on the Poisson equation

∆u− λu = f (λ ≥ 0)

in an open set Ω ⊂ Rd admitting the Hardy inequality, in terms of the weighted
Sobolev ΨHγ

p,θ(Ω) introduced in Definition 3.7. It is worth noting that the zero

Dirichlet condition (u|∂Ω = 0) is implicitly considered in ΨHγ
p,θ(Ω), as C

∞
c (Ω) is

dense in ΨHγ
p,θ(Ω) (see Lemma 3.10).
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The organization of this section is as follows: In Subsection 3.1, we present the
notions of Harnack function and regular Harnack function. Subsection 3.2 intro-
duces the weighted Sobolev space ΨHγ

p,θ(Ω). In Subsection 3.3, we prove the main

theorem of this section (Theorem 3.14), using the results in Section 2 and extending
the localization argument employed in [34] to the version of ΨHγ

p,θ(Ω).

3.1. Harnack function and regular Harnack function.

Definition 3.1.

(1) We call a measurable function ψ : Ω → R+ a Harnack function, if there
exists a constant C =: C1(ψ) > 0 such that

ess sup
B(x,ρ(x)/2)

ψ ≤ C ess inf
B(x,ρ(x)/2)

ψ for all x ∈ Ω .

(2) We call a function Ψ ∈ C∞(Ω) a regular Harnack function, if Ψ > 0 and
there exists a sequence of constants {C(k)}k∈N =: C2(Ψ) such that for each
k ∈ N,

|DkΨ| ≤ C(k) ρ−kΨ on Ω .

(3) Let ψ be a measurable function and Ψ be a regular Harnack function on
Ω. We say that Ψ is a regularization of ψ, if there exists a constant C =:
C3(ψ,Ψ) > 0 such that

C−1Ψ ≤ ψ ≤ C Ψ almost everywhere on Ω.

A relation between the notions of Harnack functions and regular Harnack func-
tions is provided in Lemma 3.6.

Remark 3.2. We introduced the notion of the Harnack function to facilitate a local-
ization argument (see Lemma 3.18). Separately, there is an earlier work [52] for the
relation between the boundary behavior of continuous Harnack functions and the
quasihyperbolic distance; note that in [52], the term ‘Harnack function’ is defined as
a continuous Harnack function, distinct from the definition provided in Definition
3.1.

Example 3.3.

(1) For any E ⊂ Ωc, the function x 7→ d(x,E) is a Harnack function on Ω.
Additionally, C1

(
d( · , E)

)
can be chosen as 3.

(2) Let Ψ ∈ C∞(Ω) satisfy Ψ > 0 and ∆Ψ = −ΛΨ for some constant Λ ≥ 0.
We claim that Ψ is a regular Harnack function on Ω, and C2(Ψ) can be
chosen to depend only on d. To observe this, for a fixed x0 ∈ Ω, put

u(t, x) := e−Λρ(x0)
2tΨ
(
x0 + ρ(x0)x

)

so that ut = ∆u on R×B1(0). The interior estimates (see, e.g., [35, Theorem
2.3.9]) and the parabolic Harnack inequality imply that for any k ∈ R,

ρ(x0)
k|DkΨ(x0)| = |Dk

xu(0, 0)| .k,d ‖u‖L2((−1/4,0]×B1/2(0)) .d u(1, 0) ≤ Ψ(x0) .

(3) The multivariate Faá di Bruno’s formula (see, e.g., [14, Theorem 2.1]) im-
plies the following:
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Let U ⊂ Rd and V ⊂ R be open sets and f : U → V and l : V → R be
smooth functions. For any multi-index α,

∣∣Dα(l ◦ f)
∣∣ ≤ N(d, α)

|α|∑

k=1

(∣∣(Dkl
)
◦ f
∣∣ ∑

β1+...+βk=α
|βi|≥1

k∏

i=1

|Dβkf |
)
.

This inequality implies that for any regular Harnack function Ψ on Ω, and
σ ∈ R, Ψσ is also a regular Harnack function on Ω, and C2(Ψ

σ) can be
chosen to depend only on d, σ, C2(Ψ).

(4) If Ψ and Φ are regularizations of ψ and φ, respectively, then ΨΦ, Ψ + Φ,
and ΦΨ

Φ+Ψ are regularizations of ψφ, max(ψ, φ), and min(ψ, φ), respectively.

Lemma 3.4. A measurable function ψ : Ω → R+ is a Harnack function if and
only if there exists r ∈ (0, 1) and Nr > 0 such that

ess sup
B(x,rρ(x))

ψ ≤ Nr ess inf
B(x,rρ(x))

ψ for all x ∈ Ω.

In this case, C1(ψ) and Nr depend only on each other and r.

Proof. We only need to prove that for fixed constants r0, r ∈ (0, 1) and Ñ ≥ 1, if

if ess sup
B(x,r0ρ(x))

ψ ≤ Ñ ess inf
B(x,r0ρ(x))

ψ ∀ x ∈ Ω ,

then ess sup
B(x,rρ(x))

ψ ≤ Ñ2K+1 ess inf
B(x,rρ(x))

ψ ∀ x ∈ Ω ,
(3.1)

where K is the smallest integer such that K ≥ r
(1−r)r0

.

If r ≤ r0, then there is nothing to prove. Consider the case r > r0. For x ∈ Ω,
we denote B(x) = B

(
x, r0ρ(x)

)
. For fixed x0 ∈ Ω and y ∈ B

(
x0, rρ(x0)

)
, put

xi := (1 − i
K )x0 +

i
K y, i = 1, . . . , M . One can observe that |xi−1 − xi| ≤ r0ρ(xi),

and therefore xi−1 ∈ B(xi). This implies that B(xi−1) ∩B(xi) 6= ∅, and hence

ess sup
B(xi)

ψ ≤ Ñ ess inf
B(xi)

ψ ≤ Ñ ess inf
B(xi−1)∩B(xi)

ψ ≤ Ñ ess sup
B(xi−1)

ψ . (3.2)

By applying (3.2) for i = 1, . . . , K, we obtain that ess sup
B(y)

ψ ≤ Ñkess sup
B(x)

ψ .

Since B(x0, rρ(x0)) is contained in a finite union of elements in
{
B(y) : y ∈

B(x0, rρ(x0))
}
, we have

ess sup
B(x0,rρ(x0))

ψ ≤ ÑKess sup
B(x)

ψ = ÑK ess sup
B(x0,r0ρ(x0))

ψ .

The same argument implies that ess inf
B(x0,r0ρ(x0))

ψ ≤ Ñk ess inf
B(x0,rρ(x0))

ψ. Consequently,

we have

ess sup
B(x0,rρ(x0))

ψ ≤ ÑK ess sup
B(x0,r0ρ(x0))

ψ ≤ ÑK+1 ess inf
B(x0,r0ρ(x0))

ψ ≤ Ñ2K+1 ess inf
B(x0,rρ(x0))

ψ ,

where the second inequality is implied by the assumption in (3.1). �

Remark 3.5. Let ψ be a Harnack function on Ω. Since ψ ∈ L1,loc(Ω), almost every
point in Ω is a Lebesgue point of ψ. If x ∈ Ω is a Lebesgue point of ψ, then for any
r ∈ (0, 1),

ess inf
B(x,rρ(x))

ψ ≤ ψ(x) ≤ ess sup
B(x,rρ(x))

ψ .
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By Lemma 3.4, we obtain that for almost every x ∈ Ω and for any r ∈ (0, 1), there
exists Nr > 0 depending only on C1(ψ) and r such that

N−1
r ess sup

B(x,rρ(x))

ψ ≤ ψ(x) ≤ Nr ess inf
B(x,rρ(x))

ψ .

Lemma 3.6.

(1) If ψ is a Harnack function, then there exists a regularization of ψ. For this

regularization of ψ, denoted by ψ̃, C2(ψ̃) and C3(ψ, ψ̃) can be chosen to
depend only on d and C1(ψ).

(2) If Ψ is a regular Harnack function, then it is also a Harnack function and
C1(Ψ) can be chosen to depend only on d and C2(Ψ).

This lemma implies that a measurable function is a Harnack function if and only
if it has a regularization.

Proof of Lemma 3.6.
(1) Let ψ be a Harnack function on Ω. Take ζ ∈ C∞

c (B1) such that ζ ≥ 0 and∫
B1
ζdx = 1. For i = 1, 2, 3 and k ∈ Z, put

Ui,k = {x ∈ Ω : 2k−i < ρ(x) < 2k+i} and ζk(x) =
1

2(k−4)d
ζ
( x

2k−4

)
.

Note that for each i,

{
Ui,k

}
k∈Z

is a locally finite cover of Ω, and
∑

k∈Z

1Ui,k
≤ 2i . (3.3)

For each k ∈ Z, put

Ψk(x) :=
(
ψ1U2,k

)
∗ ζk(x) :=

∫

B(x,2k−4)

(
ψ1U2,k

)
(y)ζk(x− y) dy ,

so that Ψk ∈ C∞(Ω).
If x ∈ U1,k, then B(x, 2k−4) ⊂ B(x, ρ(x)/2) ∩ U2,k. Therefore we have

Ψk ≥
(

ess inf
B(x,ρ(x)/2)

ψ
)
1U1,k

(x) . (3.4)

If x ∈ U3,k, then B(x, 2k−4) ⊂ B(x, ρ(x)/2), and if x /∈ U3,k, then B(x, 2k−4) ∩
U2,k = ∅. Therefore we have

Ψk(x) ≤
(

ess sup
B(x,ρ(x)/2)

ψ
)
1U3,k

(x) . (3.5)

By (3.4), (3.5), and Remark 3.5, we obtain that

N−1ψ(x)1U1,k
(x) ≤ Ψk(x) ≤ Nψ(x)1U3,k

(x) (3.6)

for almost every x ∈ Ω, where N = N(C1(ψ)). Moreover,

|DαΨk(x)| ≤ ‖Dαζk‖∞
∫

B(x,2k−4)

ψ1U2,k
dy

≤ 2−|α|k

(
ess sup

B(x,ρ(x)/2)

ψ

)
1U3,k

(x) .N ρ(x)−|α|ψ(x)1U3,k
(x)

(3.7)
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for almost every x ∈ Ω, where N = N(d, α,C1(ψ)). Due to (3.3), (3.6), and (3.7),
we obtain that Ψ :=

∑
k∈Z

Ψk belongs to C∞(Ω), and

Ψ ≃C1(ψ) ψ and |DαΨ| ≤
∑

k∈Z

|DαΨk| .N ρ−|α|ψ (3.8)

almost everywhere on Ω, where N = N(d, α,C1(ψ)). By (3.8), the proof is com-
pleted.

(2) Let x, y ∈ Ω satisfy |x − y| < ρ(x)/2. For r ∈ [0, 1], put xr = (1 − r)x + ry,
so that xr ∈ B

(
x, ρ(x)/2

)
and ρ(xr) ≥ ρ(x) − |x− xr| ≥ |x− y|. Then we have

Ψ(xr) ≤ Ψ(x0) + |x− y|
∫ r

0

∣∣(∇Ψ)(xt)
∣∣ dt

≤ Ψ(x0) +N0|x− y|
∫ r

0

ρ(xt)
−1Ψ(xt) dt ≤ Ψ(x0) +N0

∫ r

0

Ψ(xt) dt ,

where N0 = N(d,C2(Ψ)) > 0. By Grönwall’s inequality, we obtain

Ψ(y) = Ψ(x1) ≤ eN0Ψ(x0) = eN0Ψ(x).

For any x ∈ Ω, if y ∈ B(x, ρ(x)/3), then |x− y| < min
(
ρ(x), ρ(y)

)
/2. Therefore

we have

e−N0 ess sup
B(x,ρ(x)/3)

Ψ(y) ≤ Ψ(x) ≤ eN0 ess inf
B(x,ρ(x)/3)

Ψ(y) ,

and by Lemma 3.4, the proof is completed. �

3.2. Weighted Sobolev spaces and regular Harnack functions. In this sub-
section, we introduce the weighted Sobolev spacesHγ

p,θ(Ω) and ΨHγ
p,θ(Ω). The space

Hγ
p,θ(Ω) was first introduced by Krylov [34] for Ω = Rd+, and later generalized by

Lototsky [40] for arbitrary domains Ω ( Rd. We introduce the weighted Sobolev
spaces ΨHγ

p,θ(Ω) which is a generalization of the Krylov type weighted Sobolev
spaces through regular Harnack functions Ψ.

We first recall the definition of the Bessel potential space on Rd. For p ∈ (1,∞)
and γ ∈ R, Hγ

p = Hγ
p (R

d) denotes the space of Bessel potential with the norm

‖f‖Hγ
p
:=
∥∥(1 −∆)γ/2f

∥∥
Lp(Rd)

:=
∥∥∥F−1

[
(1 + |ξ|2)γ/2F(f)(ξ)

]∥∥∥
p
,

where F is the Fourier transform and F−1 is the inverse Fourier transform. If
γ ∈ N0, then H

γ
p coincides with the Sobolev space

W γ
p (R

d) :=

{
f ∈ D′(Rd) :

γ∑

k=0

∫

Rd

|Dkf |p dx <∞
}
.

We next recall Hγ
p,θ(Ω) and introduce ΨHγ

p,θ(Ω). It is worth mentioning in ad-

vance that for γ ∈ N0, the space ΨHγ
p,θ(Ω) coincides with the space

{
f ∈ D′(Ω) :

γ∑

k=0

∫

Ω

∣∣ρkDkf
∣∣pΨpρθ−d dx <∞

}
,

where ρ(x) := d(x, ∂Ω) (see Lemma 3.12). In the remainder of this subsection, we
assume that

p ∈ (1,∞) , γ, θ ∈ R , Ψ is a regular Harnack function on Ω .
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By ρ̃ we denote the regularization of ρ( · ) := d( · , ∂Ω) constructed in Lemma 3.6.(1).
Recall that for each k ∈ N0, there exists a constant Nk = N(d, k) > 0 such that

ρ̃ ≃N0 ρ and |Dkρ̃ | ≤ Nkρ
1−k on Ω .

To define the weighted Sobolev spaces, fix ζ0 ∈ C∞
c (R+) such that

supp(ζ0) ⊂ [e−1, e] , ζ0 ≥ 0 ,
∑

n∈Z

ζ0(e
nt) = 1 for all t ∈ R+ .

For x ∈ Rd and n ∈ Z, put

ζ0,(n)(x) := ζ0
(
e−nρ̃(x)

)
1Ω(x) , (3.9)

so that
∑

n∈Z

ζ0,(n) ≡ 1 on Ω , supp(ζ0,(n)) ⊂ {x ∈ Ω : en−1 ≤ ρ̃(x) ≤ en+1} ,

ζ0,(n) ∈ C∞(Rd) , and |Dαζ0,(n)| ≤ N(d, α, ζ) e−n|α| .

(3.10)

Definition 3.7.

(1) By Hγ
p (Ω) we denote the class of all distributions f ∈ D′(Ω) such that

‖f‖p
Hγ

p,θ(Ω)
:=
∑

n∈Z

enθ
∥∥(ζ0,(n)f

)
(en·)

∥∥p
Hγ

p (Rd)
<∞ .

(2) By ΨHγ
p,θ(Ω) we denote the class of all distributions f ∈ D′(Ω) such that

f = Ψg for some g ∈ Hγ
p,θ(Ω). The norm in ΨHγ

p,θ(Ω) is defined by

‖f‖ΨHγ
p,θ(Ω) := ‖Ψ−1f‖Hγ

p,θ(Ω) .

We also denote

Lp,θ(Ω) := H0
p,θ(Ω) and ΨLp,θ(Ω) := ΨH0

p,θ(Ω) .

In the rest of this subsection, we collect properties of Hγ
p,θ(Ω) and ΨHγ

p,θ(Ω). As

ΨHγ
p,θ(Ω) is a variant of Hγ

p,θ(Ω), we drive properties of ΨH
γ
p,θ(Ω) based on those of

Hγ
p,θ(Ω). Note that we cite the properties of Hγ

p,θ(Ω) from [40] as refined versions.

Specifically, in Lemma 3.8 and the proof of Lemma 3.10.(2), the constants in their
estimates are independent of Ω. The validity of these refined estimates is supported
by the proof in [40], with complete details provided in [49, Appendix A.1].

The spacesHγ
p,θ(Ω) and ΨHγ

p,θ(Ω) are independent of the choice of ζ0 (see Lemma

3.8.(2) of this paper). Therefore, we ignore the dependence on ζ0. We denote

I = {d, p, γ, θ} and I ′ = {d, p, γ, θ, C2(Ψ)} ,
where C2(Ψ) is the sequence of constants in Definition 3.1.(2).

Lemma 3.8 (see [40] or Proposition A.3 in [49]).

(1) For any s < γ,

‖f‖Hs
p,θ(Ω) .I,s ‖f‖Hγ

p,θ(Ω) .

(2) For any η ∈ C∞
c (R+),

∑

n∈Z

enθ‖η
(
e−nρ̃(en·)

)
f(en·)‖p

Hγ
p
.I,η ‖f‖pHγ

p,θ(Ω)
.
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If η additionally satisfies

inf
t∈R+

[∑

n∈Z

η(ent)

]
> 0 ,

then

‖f‖p
Hγ

p,θ(Ω)
.I,η

∑

n∈Z

enθ
∥∥η
(
e−nρ̃(en·)

)
f(en·)

∥∥p
Hγ

p
.

(3) For any s ∈ R,

‖ρ̃ sf‖Hγ
p,θ(Ω) ≃I,s ‖f‖Hγ

p,θ+sp(Ω) .

(4) For any multi-index k ∈ N,

‖f‖Hγ
p,θ(Ω) ≃I,k

k∑

i=0

‖Dif‖Hγ−k
p,θ+ip(Ω). (3.11)

In particular, ‖Dkf‖Hγ−k
p,θ+kp(Ω) .I,k ‖f‖Hγ

p,θ(Ω).

(5) Let k ∈ N0 such that |γ| ≤ k. If a ∈ Ckloc(Ω) satisfies

|a|(0)k := sup
Ω

∑

|α|≤k

ρ|α||Dαa| <∞ ,

then
‖af‖Hγ

p,θ
(Ω) .I |a|(0)k ‖f‖Hγ

p,θ
(Ω).

Remark 3.9. Lemma 3.8 also holds if f is replaced by Ψ−1f . Therefore, all of
the assertions in Lemma 3.8, except Lemma 3.8.(4), remain valid when H∗

∗,∗(Ω) is
replaced by ΨH∗

∗,∗(Ω).

Lemma 3.10.

(1) C∞
c (Ω) is dense in ΨHγ

p,θ(Ω).

(2) ΨHγ
p,θ is a reflexive Banach space with the dual Ψ−1H−γ

p′,θ′(Ω), where

1

p
+

1

p′
= 1 and

θ

p
+
θ′

p′
= d . (3.12)

Moreover, for any f ∈ D′(Ω), we have

‖f‖ΨHγ
p,θ(Ω) ≃I′ sup

g∈C∞
c (Ω),g 6=0

〈f, g〉
‖g‖Ψ−1H−γ

p′,θ′
(Ω)

.

(3) For any k, l ∈ N0,

‖
(
DkΨ

)
Dlf‖Hγ

p,θ(Ω) ≤I′,l,k ‖Ψf‖Hγ+l
p,θ−(k+l)p

(Ω)

(4) Let Φ be a regular Harnack function on Ω, and there exist a constant N0 > 0
such that Ψ ≤ N0Φ on Ω. Then

‖Ψf‖Hγ
p,θ(Ω) ≤ N‖Φf‖Hγ

p,θ(Ω).

where N = N(I ′,C2(Φ), N0).
(5) Let p′ ∈ (1,∞), γ′, θ′ ∈ R, and Ψ′ be a regular Harnack function on Ω, if

f ∈ ΨHγ
p,θ(Ω)∩Ψ′Hγ′

p′,θ′(Ω), then there exists {fn}n∈N ⊂ C∞
c (Ω) such that

‖f − fn‖ΨHγ
p,θ(Ω) + ‖f − fn‖Ψ′Hγ′

p′,θ′
(Ω)

→ 0 as n→ ∞ .
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Proof. (1), (2) When Ψ ≡ 1, the results can be found in [40] (or see [49, Proposition
A.2]). Since the map f 7→ Ψ−1f is an isometric isomorphism from ΨHγ

p,θ(Ω) to

Hγ
p,θ(Ω), there is nothing to prove.

(3) Since Ψ and ρ̃ are regular Harnack functions, we obtain that for any k, m ∈
N0, ∣∣∣ D

kΨ

ρ̃−kΨ

∣∣∣
(0)

m
≤ N(d, k,m,C2(Ψ)) .

By Lemma 3.8.(5) and (3), we have

‖
(
DkΨ

)
f‖Hγ

p,θ(Ω) .I′,k ‖ρ̃−kΨf‖Hγ
p,θ(Ω) .I′,k ‖Ψf‖Hγ

p,θ−kp(Ω) . (3.13)

Therefore, we only need to prove that for any l ∈ N,

‖ΨDlf‖Hγ
p,θ(Ω) .I′,l ‖Ψf‖Hγ+l

p,θ−lp(Ω) .

Recall that Ψ−1 is a regular Harnack function, and C2(Ψ
−1) can be chosen to

depend only on C2(Ψ) and d. It follows from Leibniz’s rule, (3.13), and Lemma
3.8.(4) and (1) that

‖ΨDl(Ψ−1Ψf)‖Hγ
p,θ(Ω) .d,l

l∑

n=0

‖ΨDl−n(Ψ−1) ·Dn(Ψf)‖Hγ
p,θ(Ω)

.N

l∑

n=0

‖Dn(Ψf)‖Hγ
p,θ−(l−n)p

(Ω) .N ‖Ψf‖Hγ+l
p,θ−lp

(Ω) .

(4) For any k ∈ N0,

|ΨΦ−1|(0)k ≤ N(d, k,C2(Ψ),C2(Φ), N0) .

Therefore, it follows from Lemma 3.8.(5). that

‖Ψf‖Hγ
p,θ(Ω) = ‖ΨΦ−1(Φf)‖Hγ

p,θ(Ω) .N ‖Φf‖Hγ
p,θ(Ω) .

(5) It directly follows from Lemma A.3. �

Remark 3.11. It follows from Lemma 3.10.(4) that for regular Harnack functions Ψ
and Φ, if N−1Φ ≤ Ψ ≤ NΦ for some constant N > 0, then ΨHγ

p,θ(Ω) coincides with

ΦHγ
p,θ(Ω). Therefore, applying Lemma 3.8.(3), we obtain that if Ψ is a regularization

of ρσ (σ ∈ R), then ΨHγ
p,θ(Ω) = Hγ

p,θ−σp(Ω).

Lemma 3.12. Let f ∈ D′(Ω).

(1) If γ ∈ N0, then

‖f‖p
ΨHγ

p,θ(Ω)
≃I′

∑

|α|≤γ

∫

Ω

∣∣ρ|α|Dαf
∣∣pΨ−pρθ−d dx .

(2) For any k ∈ N,

‖f‖ΨHγ
p,θ(Ω) ≃I′,k inf

{ ∑

|α|≤k

‖fα‖ΨHγ+k
p,θ−|α|p

(Ω) : f =
∑

|α|≤k

Dαfα

}
. (3.14)

In particular, if γ = −1, −2, . . ., then

‖f‖ΨHγ
p,θ(Ω) ≃I′ inf

{ ∑

|α|≤−γ

‖fα‖ΨLp,θ−|α|p(Ω) : f =
∑

|α|≤−γ

Dαfα

}
.
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Proof. (1) Due to (3.11), we only need to prove the case of γ = 0. This case is
proved by the following:

‖f‖pΨLp,θ(Ω) :=
∑

n∈Z

enθ
∫

Ω

∣∣(ζ0,(n)Ψ−1f
)
(enx)

∣∣p dx

=

∫

Ω

(∑

n∈Z

en(θ−d)|ζ0,(n)|p
)
|f |pΨ−p dx ≃d,p,θ

∫

Ω

ρθ−d|f |pΨ−p dx ,

where the last similarity is implied by properties of ζ0,(n) (see (3.9) and (3.10)).
(2) Repeatedly applying Lemma A.2, we obtain {fα}|α|≤k ⊂ D′(Ω) such that

f =
∑

|α|≤k

Dαfα and
∑

|α|≤k

‖fα‖ΨHγ+k
p,θ−|α|p

(Ω) .I′,k ‖f‖ΨHγ
p,θ(Ω) .

Therefore we obtain (3.14) where ‘≃I,k’ is replaced by ‘&I,k’.

For the inverse inequality, let f =
∑

|α|≤nD
αfα where fα ∈ Hγ+n

p,θ−|α|p(Ω). It

follows from Lemma 3.10.(2) and Lemmas 3.10.(3) and 3.8.(1) that for any g ∈
C∞
c (Ω),

|〈f, g〉| =
∣∣∣∣
∑

|α|≤n

〈
Ψ−1fα,ΨD

αg〉
∣∣∣∣

.I′,n

∑

|α|≤n

(
‖Ψ−1fα‖Hγ+n

θ−|α|p
(Ω)‖ΨDαg‖H−γ−n

p′,θ′+|α|p′
(Ω)

)

.I′,n

( ∑

|α|≤n

‖Ψ−1fα‖Hγ+n
θ−|α|p

(Ω)

)
‖Ψg‖H−γ

p′,θ′
(Ω) ,

where p′ and θ′ are constants in (3.12). By applying Lemma 3.10.(2), we have

‖f‖ΨHγ
p,θ

(Ω) .I′,n inf
{ ∑

|α|≤n

‖fα‖ΨHγ+n
p,θ−|α|p

(Ω) : f =
∑

|α|≤n

Dαfα

}
.

Therefore, the proof is completed. �

We end this subsection with a Sobolev-Hölder embedding theorem for the spaces
ΨHγ

p,θ(Ω). For k ∈ N0, α ∈ (0, 1] and δ ∈ R, we define the weighted Hölder norm

|f |(δ)k,α :=

k∑

i=0

sup
Ω

∣∣ρδ+iDif
∣∣+ sup

x,y∈Ω

∣∣(ρ̃δ+k+αDkf
)
(x)−

(
ρ̃δ+k+αDkf

)
(y)
∣∣

|x− y|α .

Proposition 3.13. Let k ∈ N0, α ∈ (0, 1].

(1) For any δ ∈ R,

∣∣Ψ−1f
∣∣(δ)
k,α

≃N
k∑

i=0

sup
x∈Ω

∣∣Ψ(x)−1ρ(x)δ+iDif(x)
∣∣

+ sup
x∈Ω

(
Ψ−1(x)ρδ+k+α(x) sup

y:|y−x|< ρ(x)
2

∣∣Dkf(x)−Dkf(y)
∣∣

|x− y|α
)
,

where N = N(d, k, α, δ,C2(Ψ)).
(2) If α ∈ (0, 1) and k + α ≤ γ − d/p, then for any f ∈ ΨHγ

p,θ(Ω),

∣∣Ψ−1f
∣∣(θ/p)
k,α

.I′,k,α ‖f‖ΨHγ
p,θ(Ω) .
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Proof. (1) This result follows from the direct calculation and the definition of reg-
ular Harnack functions. Therefore, we leave the proof to the reader.

(2) We only need to prove for Ψ ≡ 1, and the result for this case is stated in [40,
Theorem 4.3]. We give proof for the convenience of the reader.

For f ∈ Hγ
p,θ(Ω), the Sobolev embedding theorem implies
∥∥(fζ0,(n)

)
(en · )

∥∥
Ck,α ≤ N

∥∥(fζ0,(n)
)
(en · )

∥∥
Hγ

p
<∞ , (3.15)

where N = N(d, p, γ, k, δ). Hence f belongs to Ckloc(Ω). For x ∈ Ω, take n0 ∈ Z

such that en0−1 ≤ ρ(x) ≤ en0 . If |x − y| < ρ(x)
2 , then en0−2 ≤ ρ(y) ≤ en0+2.

Take constants A and B depending only on d such that A−1ρ ≤ ρ̃ ≤ Aρ, and∑
|n|≤B ζ0

(
ent
)
≡ 1 for all 1

Ae2 ≤ t ≤ Ae2. Then we have

∑

|n−n0|≤B

ζ0,(n) ≡ 1 on Un0 :=
{
y : en0−2 ≤ ρ(y) ≤ en0+2

}
.

Due to B(x, ρ(x)/2) ⊂ Un0 and (3.15), we have

k∑

i=0

(
ρ(x)θ/p+i

∣∣Dif(x)
∣∣
)
+ ρ(x)θ/p+k+α sup

y:|y−x|<
ρ(x)
2

∣∣Dkf(x)−Dkf(y)
∣∣

|x− y|α

.N en0θ/p

( k∑

i=0

∣∣Di
(
f(en0 · )

)
(x)
∣∣

+ sup
e−n0y∈Un0

∣∣Dk
(
f(en0 · )

)
(x) −Dk

(
f(en0 · )

)
(y)
∣∣

|x− y|α
)

≤
∑

|n−n0|≤B

en0θ/p
∥∥(fζ0,(n))(en · )

∥∥
Ck,α

.N

(
∑

n∈Z

enθ
∥∥(fζ0,(n))(en · )

∥∥p
Hγ

p

)1/p

,

where N = N(d, p, γ, θ, k, δ). By (1) of this proposition, the proof is completed. �

3.3. Solvability of the Poisson equation. The goal of this subsection is to prove
the following theorem:

Theorem 3.14. Let Ω be an open set admitting the Hardy inequality (1.2) and ψ
be a superharmonic Harnack function on Ω, with its regularization Ψ. Then for any
p ∈ (1,∞), µ ∈ (−1/p, 1− 1/p), and γ ∈ R, the following assertion holds: For any
λ ≥ 0 and f ∈ ΨµHγ

p,d+2p−2(Ω), the equation

∆u− λu = f (3.16)

has a unique solution u in ΨµHγ+2
p,d−2(Ω). Moreover, we have

‖u‖ΨµHγ+2
p,d−2(Ω) + λ‖u‖ΨµHγ

p,d+2p−2(Ω) ≤ N‖f‖ΨµHγ
p,d+2p−2(Ω), (3.17)

where N = N(d, p, γ, µ,C0(Ω),C2(Ψ),C3(ψ,Ψ)).

Recall that C0(Ω) is the constant in (1.2), and C2(Ψ) and C3(ψ,Ψ) are the
constants in Definition 3.1.
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In Theorem 3.14, one can take ψ = Ψ = 1Ω. Another example of ψ is introduced
in Example 3.17, which is associated with the Green function and valid for any
domain admitting the Hardy inequality.

Remark 3.15. In Theorem 3.14, the spaces ΨµHγ+2
p,d−2(Ω) and ΨµHγ

p,d+2p−2(Ω) do

not depend on the specific choice of Ψ among regularizations of ψ (see Remark

3.11). If we take Ψ as ψ̃ which is the regularization of ψ provided in Lemma 3.6.(1),

then Theorem 3.14 can be reformulated in terms of ψ. Indeed, C2(ψ̃) and C3(ψ, ψ̃)
depend only on d and C1(ψ), and therefore the constant N in (3.17) depends only
on d, p, γ, µ, C0(Ω), and C1(ψ). Additionally, for the case γ ∈ Z, equivalent norms

of ψ̃ µHγ+2
p,d−2(Ω) and ψ̃ µHγ

p,d+2p−2(Ω) are provided in Lemma 3.12, and they also
can be reformulated in terms of ψ.

Remark 3.16. If µ /∈ (−1/p, 1− 1/p), then Theorem 3.14 does not hold in general,
as pointed out in [34, Remark 4.3]. To observe this, consider the equation

∆u = f in Ω := (0, π) (3.18)

and put ψ(x) = Ψ(x) = sinx, and γ = 0.
Let µ ≥ 1 − 1/p, and let f ∈ C∞

c (Ω) with f ≤ 0, so that f ∈ ΨµLp,d+2p−2(Ω).
We assume that there exists a solution u1 ∈ ΨµH2

p,d−2(Ω) of (3.18). Then this u1
belongs to H2

p,d−2(Ω). Let u0 be the classical solution of (3.18) with the boundary

condition u(0) = u(π) = 0. Then u0 ∈ H2
p,d−2(Ω). Due to Theorem 3.14, (3.18)

has a unique solution, and therefore u0 ≡ u1. However u0 /∈ ΨµH2
p,d−2(Ω) for all

µ ≥ 1− 1/p (observe that u0 ≃ sinx). It is contradiction. Therefore there exists no
solution u ∈ ΨµH2

p,d−2(Ω) of (3.18).

If µ < −1/p, then 0 · 1Ω and 1Ω belong to ΨµH2
p,d−2(Ω) (see Lemma 3.12).

Therefore (3.18) with f := 0 has at least two solutions in ΨµH2
p,d−2(Ω).

Consider the case µ = −1/p. For n ∈ N, take ζn ∈ C∞
c (Ω) such that

1[ 2
n ,π−

2
n ]

≤ ζn ≤ 1[ 1
n ,π−

1
n ]

and
∣∣Dkζn

∣∣ ≤ N(k)nk .

By putting u := ζn, one can observe that there is no constant N satisfying (3.17).

Example 3.17. Let Ω ⊂ Rd be a domain admitting the Hardy inequality. We denote
GΩ : Ω×Ω → [0,+∞] the Green function of the Poisson equation (for the definition
and the existence of GΩ, see [7, Definition 4.1.3], and [7, Theorems 4.1.2 and 5.3.8]
and [6, Theorem 2], respectively). We claim that for any fixed x0 ∈ Ω, φ0 :=
GΩ(x0, · )∧1 is a superharmonic Harnack function on Ω. It is worth noting that φ0
is the smallest positive classical superharmonic function, up to constant multiples
(see [7, Lemma 4.1.8]), i.e., if φ is a positive classical superharmonic function on
Ω, then there exists N0 = N(φ,Ω, x0) > 0 such that φ0 ≤ N0φ on Ω.

Note that GΩ(x0, · ) is a positive classical superharmonic function on Ω, and
GΩ(x0, · ) is harmonic on Ω\{x0}. This implies that φ0 is a classical superharmonic
function on Ω (see Lemma 4.5.(1)).

For x ∈ Ω, denote B(x) := B
(
x, ρ(x)/8

)
. If |x− x0| > ρ(x)/4, then GΩ(x0, · ) is

harmonic on B
(
x, ρ(x)/4

)
. By the Harnack inequality, we have

sup
B(x)

φ0 =
(

sup
y∈B(x)

GΩ(x0, y)
)
∧ 1 .d

(
inf

y∈B(x)
GΩ(x0, y)

)
∧ 1 = inf

B(x)
φ0 .
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If |x−x0| ≤ ρ(x)/4, then ρ(x) ≤ 4
3ρ(x0), which implies that B(x) ⊂ B

(
x0, ρ(x0)/2

)
.

By Lemma 2.4.(3), there exists ǫ0 ∈ (0, 1] such thatG(x0, · ) ≥ ǫ0 onB
(
x0, ρ(x0)/2

)
.

Therefore we have

sup
B(x)

φ0 ≤ 1 ≤ ǫ−1
0 inf

B(x)
φ0 .

Consequently, φ0 is a superharmonic Harnack function on Ω.

To prove Theorem 3.14, we need the help of Lemmas 3.18 and 3.19. These lemmas
are based on a localization argument, wherein Ω is an arbitrary domain and Ψ is
an arbitrary regular Harnack function. The proof of Theorem 3.14 is provided after
the proof of Lemma 3.19:

Lemma 3.18 (Higher order estimates). Let p ∈ (1,∞), γ, s ∈ R, θ ∈ R, and Ψ be
a regular. Then there exists a constant N = N(d, p, θ, γ, C2(Ψ), s) > 0 such that the
following assertion holds: Let λ ≥ 0, and suppose that u, f ∈ D′(Ω) satisfy (3.16).
Then

‖u‖ΨHγ+2
p,θ (Ω) + λ‖u‖ΨHγ

p,θ+2p(Ω) ≤ N
(
‖u‖ΨHs

p,θ(Ω) + ‖f‖ΨHγ
p,θ+2p(Ω)

)
. (3.19)

Proof. We denote Φ = Ψ−1 so that C2(Φ) depends only on d and C2(Ψ).
Step 1. First, we consider the case s ≥ γ + 1. One can certainly assume that

‖Φu‖Hs
p,θ(Ω) + ‖Φf‖Hγ

p,θ+2p(Ω) <∞ ,

for if not, there is nothing to prove. Since

‖Φu‖Hγ+1
p,θ (Ω) .d,p,s,γ ‖Φu‖Hs

p,θ(Ω)

(see Lemma 3.8.(1)), we only need to prove for s = γ + 1. Put

vn(x) = ζ0
(
e−nρ̃(enx)

)
Φ(enx)u(enx) .

Since ∑

n∈Z

enθ ‖vn‖pHγ+1
p (Rd)

= ‖Φu‖p
Hγ+1

p,θ (Ω)
<∞ ,

we have vn ∈ Hγ+1
p (Rd). Observe that

∆vn − e2nλvn = f̃n in Rd , (3.20)

where

f̃n(x) := e2nζ0,(n)(e
nx)
(
Φf
)
(enx)− e2nζ0,(n)(e

nx)
(
Φ∆u

)
(enx) + ∆vn(x)

=
[
e2nζ0,(n)

(
Φf + 2

(
∇u · ∇Φ

)
+ (∆Φ)u

)

+ en
(
ζ′0
)
(n)

(
2
(
∇ρ̃ · ∇(Φu)

)
+ (∆ρ̃)Φu

)
+
(
ζ′′0
)
(n)

|∇ρ̃|2Φu
]
(enx)

(see (3.9) for the definition of ζ(n)). Make use of Lemmas 3.8.(1) - (3) and 3.10.(3)
to obtain ∑

n∈Z

enθ
∥∥f̃n

∥∥p
Hγ

p (Rd)

.N ‖Φf‖pHγ
p,θ+2p(Ω) +

∥∥2
(
∇u · ∇Φ

)
+ (∆Φ)u

∥∥p
Hγ

p,θ+2p(Ω)
(3.21)

+
∥∥2
(
∇ρ̃ · ∇(Φu)

)
+ (∆ρ̃)Φu

∥∥p
Hγ

p,θ+p(Ω)
+
∥∥|∇ρ̃|2Φu

∥∥p
Hγ

p,θ(Ω)

.N‖Φf‖pHγ
p,θ+2p(Ω)

+ ‖Φu‖p
Hγ+1

p,θ (Ω)
<∞ ,
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where N = N(d, p, γ, θ,C2(Ψ)). This implies that for any n ∈ Z, f̃n ∈ Hγ
p (R

d).

Due to (3.20) and that vn ∈ Hγ+1
p (Rd) and f̃n ∈ Hγ

p (R
d), we have

Vn := (1−∆)γ/2vn ∈ H1
p (R

d) , Fn := (1−∆)γ/2f̃n ∈ Lp(R
d) ,

∆Vn − (e2nλ+ 1)Vn = Fn − Vn .

It is implied by classical results for the Poisson equation in Rd (see, e.g., [35,
Theorem 4.3.8, Theorem 4.3.9]) that

‖vn‖Hγ+2
p (Rd) + e2nλ‖vn‖Hγ

p (Rd) = ‖Vn‖H2
p(R

d) + e2nλ ‖Vn‖Lp(Rd)

≤ ‖∆Vn‖Lp(Rd) + (e2nλ+ 1) ‖Vn‖Lp(Rd)

.d,p‖Fn − Vn‖Lp(Rd)

≤ ‖f̃n‖Hγ
p (Rd) + ‖vn‖Hγ

p (Rd) .

Combine this with (3.21) to obtain that

‖Φu‖p
Hγ+2

p,θ (Ω)
+ λp‖Φu‖p

Hγ
p,θ+2p(Ω)

=
∑

n∈Z

enθ
(
‖vn‖pHγ+2

p (Rd)
+ (e2nλ)p‖vn‖pHγ

p (Rd)

)

.N
∑

n∈Z

enθ
(
‖vn‖pHγ

p (Rd)
+ ‖f̃n‖pHγ

p (Rd)

)

.N‖Φu‖pHγ+1
p,θ (Ω)

+ ‖Φf‖p
Hγ

p,θ+2p(Ω)
.

Therefore the case s = γ+1 is proved. Consequently, (3.19) holds for all s ≥ γ+1.
Step 2. For s < γ + 1, take k ∈ N such that γ + 1 − k ≤ s < γ + 2 − k. Due

to the result in Step 1, (3.19) holds for (γ, s) replaced by (γ, γ + 1), (γ − 1, γ), ...,
(γ − k, γ + 1− k). Therefore we have

‖Φu‖Hγ+2
p,θ (Ω) + λ‖Φu‖Hγ

p,θ+2p(Ω) .N‖Φu‖Hγ+1
p,θ (Ω) + ‖Φf‖Hγ

p,θ+2p(Ω)

.N · · ·

.N‖Φu‖Hγ−k+1
p,θ

(Ω) + ‖Φf‖Hγ
p,θ+2p(Ω) .

Since ‖Φu‖Hγ−k+1
p,θ (Ω) . ‖Φu‖Hs

p,θ(Ω) (see Lemma 3.8.(1)), the proof is completed.

�

Lemma 3.19. Let p ∈ (1,∞), θ ∈ R, and regular Harnack function Ψ, and let
λ ≥ 0. Suppose that there exists γ ∈ R such that the following holds:

For any f ∈ ΨHγ
p,θ+2p(Ω), in ΨHγ+2

p,θ (Ω) there exists a unique solution u

of equation (3.16). For this solution, we have

‖u‖ΨHγ+2
p,θ (Ω) + λ‖u‖ΨHγ

p,θ+2p(Ω) ≤ Nγ‖f‖ΨHγ
p,θ+2p(Ω) , (3.22)

where Nγ is a constant independent of f and u.

Then for all s ∈ R, the following holds:

For any f ∈ ΨHs
p,θ+2p(Ω), in ΨHs+2

p,θ (Ω) there exists a unique solution u

of equation (3.16). For this solution, we have

‖u‖ΨHs+2
p,θ (Ω) + λ‖u‖ΨHs

p,θ+2p(Ω) ≤ Ns‖f‖ΨHs
p,θ+2p(Ω) , (3.23)

where Ns = N(d, p, γ, θ,C2(Ψ), Nγ , s).
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Proof. To prove the uniqueness of solutions, let us assume that u ∈ ΨHs+2
p,θ (Ω)

satisfies ∆u − λu = 0. By Lemma 3.18, u belongs to ΨHγ+2
p,θ (Ω). Due to the as-

sumption of this lemma, in ΨHγ+2
p,θ (Ω), the zero distribution is the unique solution

for the equation ∆u − λu = 0. Consequently, u is also the zero distribution, and
the uniqueness of solutions is proved. Thus, it remains to show the existence of
solutions and estimate (3.23).

Step 1. We first consider the case s > γ. Let f ∈ ΨHs
p,θ+2p(Ω). Due to

ΨHs
p,θ+2p(Ω) ⊂ ΨHγ

p,θ+2p(Ω), f belongs to ΨHγ
p,θ+2p(Ω), and hence there exists

a solution u ∈ ΨHγ+2
p,θ (Ω) of equation (3.16). It follows from Lemma 3.18, (3.22),

and Lemma 3.8.(1) that

‖u‖ΨHs+2
p,θ (Ω) + λ ‖u‖ΨHs

p,θ+2p(Ω) .N ‖u‖ΨHγ+2
p,θ (Ω) + ‖f‖ΨHs

p,θ+2p(Ω)

≤ Nγ‖f‖ΨHγ
p,θ+2p(Ω) + ‖f‖ΨHs

p,θ+2p(Ω)

.N (Nγ + 1) ‖f‖ΨHs
p,θ+2p(Ω) ,

where N = N(d, p, θ, γ,C2(Ψ), s). Therefore u belongs to ΨHs+2
p,θ (Ω), and the proof

is completed.
Step 2. Consider the case s < γ. Since the case s ≥ γ is proved in Step 1,

by mathematical induction, it is sufficient to show that if this lemma holds for
s = s0 + 1, then this also holds for s = s0.

Let us assume that this lemma holds for s = s0 + 1. For f ∈ ΨHs0
p,θ+2p(Ω), by

Lemma A.2, there exists f0 ∈ ΨHs0+1
p,θ+2p(Ω) and f1, . . . , fd ∈ ΨHs0+1

p,θ+p(Ω) such

that f = f0 +
∑d

i=1Dif
i and

∥∥f0
∥∥
ΨH

s0+1

p,θ+2p(Ω)
+

d∑

i=1

∥∥ρ̃−1f i
∥∥
ΨH

s0+1

p,θ+2p(Ω)
≤ N‖f‖ΨHs0

p,θ+2p(Ω) , (3.24)

where N = N(d, p, θ, s0,C2(Ψ)). Due to the assumption that this lemma holds for

s = s0 + 1, there exist v0, · · · , vd ∈ ΨHs0+3
p,d−2(Ω) such that

∆v0 − λv0 = f0 and ∆vi − λvi = ρ̃−1f i for i = 1, . . . , d ,

and

d∑

i=0

(∥∥vi
∥∥
ΨH

s0+3

p,θ (Ω)
+ λ

∥∥vi
∥∥
ΨH

s0+1

p,θ+2p(Ω)

)

≤ Ns0+1

(∥∥f0
∥∥
ΨH

s0+1

p,θ+2p
(Ω)

+

d∑

i=1

∥∥ρ̃−1f i
∥∥
ΨH

s0+1

p,θ+2p
(Ω)

)
(3.25)

.N Ns0+1‖f‖ΨHs0
p,θ+2p(Ω) ,

where the last inequality follows from (3.24). Put v = v0 +
∑d
i=1Di

(
ρ̃vi
)
, and

observe that

∆v − λv = f +

d∑

i=1

Di

(
∆(ρ̃vi)− ρ̃∆vi

)
.

By Lemmas 3.8 and 3.10.(3), we have
∥∥Di

(
∆(ρ̃vi)− ρ̃∆vi

)∥∥
ΨH

s0+1

p,θ+2p(Ω)
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.N ‖∆(ρ̃vi)− ρ̃∆vi‖
ΨH

s0+2

p,θ+p(Ω)

≤
∥∥(D2ρ̃

)
vi
∥∥
ΨH

s0+2

p,θ+p(Ω)
+
∥∥(Dρ̃

)
Dvi

∥∥
ΨH

s0+2

p,θ+p(Ω)

.N ‖vi‖
ΨH

s0+3

p,θ (Ω)
<∞ ,

where N = N(d, p, θ, s0,C2(Ψ)). Due to the assumption that this lemma holds for
s = s0 + 1, there exists w ∈ ΨHs0+3

p,θ (Ω) such that

∆w − λw =
d∑

i=1

Di

(
∆(ρ̃vi)− ρ̃∆vi

)
(= ∆v − λv − f) .

This w satisfies

‖w‖
ΨH

s0+3

p,θ (Ω)
+ λ‖w‖

ΨH
s0+1

p,θ+2p(Ω)
≤ Ns0+1

d∑

i=1

∥∥Di

(
∆(ρ̃vi)− ρ̃∆vi

)∥∥
ΨH

s0+1

p,θ+2p(Ω)

.NNs0+1

d∑

i=1

‖vi‖
ΨH

s0+3

p,θ (Ω)
. (3.26)

Put u = v −w = v0 +
∑d

i=1Di(ρ̃v
i)−w. Then u satisfies ∆u− λu = f . Moreover,

by (3.25) and (3.26), we obtain (3.23) for s = s0. �

Proof of Theorem 3.14. By Lemma 3.19, we only need to prove for γ = 0.
A priori estimates. Let u ∈ ΨµH2

p,d−2(Ω) and ∆u − λu ∈ ΨµLp,d+2p−2(Ω).
By Lemma 3.18, we obtain

‖u‖ΨµH2
p,d−2(Ω) + λ‖u‖ΨµLp,d+2p−2(Ω)

.N‖u‖ΨµLp,d−2(Ω) + ‖∆u− λu‖ΨµLp,d+2p−2(Ω) <∞ ,
(3.27)

where N = N(d, p, µ,C2(Ψ)). Due to (3.27) and Lemma 3.10.(5), whether λ = 0 or
λ > 0, there exists un ∈ C∞

c (Ω) such that

lim
n→∞

(
‖u− un‖ΨµH2

p,d−2(Ω) + λ‖u− un‖ΨµLp,d+2p−2(Ω)

)
= 0 .

This implies that

lim
n→∞

∥∥(∆− λ
)
(u− un)

∥∥
ΨµLp,d+2p−2(Ω)

= 0 .

Since Ψ is a regularization of the superharmonic Harnack function ψ, Theorem 2.7
and Lemma 3.12 imply

‖un‖ΨµLp,d−2(Ω) ≃N
∫

Ω

|un|pψ−µpρ−2 dx

.N

∫

Ω

|∆un − λun|pψ−µpρ2p−2 dx (3.28)

≃N ‖∆un − λun‖ΨµLp,d+2p−2(Ω) ,

where N = N(d, p, µ,C0(Ω),C2(Ψ),C3(ψ,Ψ)). By letting n→ ∞, we obtain (3.28)
for u instead of un. By combining this with (3.27), we have

‖u‖ΨµH2
p,d−2(Ω) + λ‖u‖ΨµLp,d+2p−2(Ω)

.N ‖u‖ΨµLp,d−2(Ω) + ‖∆u− λu‖ΨµLp,d+2p−2(Ω) (3.29)

.N ‖∆u− λu‖ΨµLp,d+2p−2(Ω) .
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Note that estimate (3.29) also implies the uniqueness of solutions.
Existence of solutions. Let f ∈ ΨµLp,d+2p−2(Ω). Since C

∞
c (Ω) is dense in

ΨµLp,d+2p−2(Ω), there exists fn ∈ C∞
c (Ω) such that fn → f in ΨµLp,d+2p−2(Ω).

Lemmas 2.8 and 3.12 yield that for each n ∈ N, there exists un ∈ ΨµL2
p,d−2(Ω)

such that ∆un − λun = fn. Due to Lemma 3.18, un ∈ ΨµH2
p,d−2(Ω). Since fn → f

in ΨµLp,d+2p−2(Ω), it follows from (3.29) that

‖un − um‖ΨµH2
p,d−2(Ω) ≤ N‖fn − fm‖ΨµLp,d+2p−2

→ 0

as n, m→ ∞. Therefore there exists u ∈ ΨµH2
p,d−2(Ω) such that un converges to u

in ΨµH2
p,d−2(Ω). Since un and fn converge to u and f in the sense of distribution,

respectively (see Lemma 3.10.(2)), u is a solution of equation (3.16). �

We end this subsection with a global uniqueness of solutions.

Theorem 3.20 (Global uniqueness). Suppose that (1.2) holds for Ω, and that
for each i = 1, 2, Ψi is a regularization of a superharmonic Harnack function,
pi ∈ (1,∞), γi ∈ R, and µi ∈ (−1/pi, 1− 1/pi). Let f ∈ ⋂i=1,2 Ψ

µi

i H
γi
pi,d+2pi−2(Ω),

and let for each i = 1, 2, u(i) ∈ Ψµi

i H
γi+2
pi,d−2(Ω) be solutions of the equation ∆u = f .

Then u(1) = u(2) in D′(Ω).

Proof. By Lemma 3.10.(5), there exist {fn} ⊂ C∞
c (Ω) such that fn → f in⋂

i=1,2 Ψ
µi

i H
γi
pi,d+2pi−2(Ω). By Lemmas 2.8 and 3.12, for each n ∈ N, there ex-

ists un ∈ ⋂i=1,2 Ψ
µi

i Lpi,d−2(Ω) such that ∆un−λun = fn. Lemma 3.18 yields that

un ∈ ⋂i=1,2 Ψ
µi

i H
γi+2
pi,d−2(Ω). Since

(∆− λ)
(
un − u(1)

)
= (∆− λ)

(
un − u(2)

)
= fn − f ,

For each i = 1, 2, Theorem 3.14 implies that un → u(i) in Ψµi

i H
γi+2
pi,d−2(Ω), and by

Lemma 3.10.(2), this convergences also holds in D′(Ω). Therefore u(1) = u(2) =
limn→∞ un in D′(Ω). �

4. Application I - Domain with fat exterior or thin exterior

In this section, we introduce applications of the results in Sections 3 to domains
satisfying fat exterior or thin exterior conditions. The notions of the fat exterior
and thin exterior are closely related to the geometry of a domain Ω, namely the
Hausdorff dimension and the Aikawa dimension of Ωc.

For a set E ⊂ Rd, the Hausdorff dimension of E is defined by

dimH(E) := inf
{
λ ≥ 0 : Hλ

∞(E) = 0
}
,

where

Hλ
∞(E) := inf

{∑

i∈N

rλi : E ⊂
⋃

i∈N

B(xi, ri) where xi ∈ E and ri > 0
}
.

The Aikawa dimension of E, denoted by dimA(E), is defined by the infimum of
β ≥ 0 for which

sup
p∈E, r>0

1

rβ

∫

Br(p)

1

d(x,E)d−β
dx <∞ ,

with considering 1
0 = +∞.

Remark 4.1.
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(1) While the Aikawa dimension is defined in terms of integration, it is equiv-
alent to a dimension defined in terms of a covering property, the so-called
Assouad dimension.

(2) For any E ⊂ Rd, dimH(E) ≤ dimA(E), and the equality does not hold in
general (see [37, Section 2.2]). However, if E is Alfors regular, for example,
if E has a self-similar property such as Cantor set or Koch snowflake set,
then dimH(E) = dimA(E); see [37, Lemma 2.1] and [42, Theorem 4.14].

Koskela and Zhong [33] established the dimensional dichotomy results for do-
mains admitting the Hardy inequality, using the Hausdorff and Minkowski dimen-
sion. Their result can be expressed through the Hausdorff and Aikawa dimension,
as shown in [37, Theorem 5.3].

Proposition 4.2 (Theorem 5.3 of [37]). Suppose a domain Ω ⊂ Rd admits the
Hardy inequality. Then there is a constant ǫ > 0 such that for each p ∈ ∂Ω and
r > 0, either

dimH

(
Ωc ∩B(p, 4r)

)
≥ d− 2 + ǫ or dimA

(
Ωc ∩B(p, r)

)
≤ d− 2− ǫ .

We refer the reader to [31, 53] for a deeper discussion of the dimensional di-
chotomy.

In virtue of Proposition 4.2, we consider domains Ω ⊂ Rd which satisfy one of
the following situations:

(1) (Fat exterior) There exists ǫ ∈ (0, 1) and c > 0 such that

Hd−2+ǫ
∞

(
Ωc ∩B(p, r)

)
≥ c rd−2+ǫ for all p ∈ ∂Ω , r > 0 . (4.1)

(2) (Thin exterior) dimA(Ω
c) < d− 2.

These two conditions have been studied extensively; we discuss previous works on
these conditions, specifically those related to the Hardy inequality, in Subsections
4.1 and 4.2.

In this section and Section 5, for various domains Ω ⊂ Rd, we construct su-
perharmonic functions equivalent to the function d( · , ∂Ω)α, for some α. This type
of superharmonic function ensures the validity of the following statement for all
p ∈ (1,∞) and suitable θ (see Lemma 4.4):

Statement 4.3 (Ω, p, θ). For any λ ≥ 0 and γ ∈ R, if f ∈ Hγ
p,θ+2p(Ω), then the

equation

∆u− λu = f (4.2)

has a unique solution u in Hγ+2
p,θ (Ω). Moreover, we have

‖u‖Hγ+2
p,θ (Ω) + λ‖u‖Hγ

p,θ+2p(Ω) ≤ N1‖f‖Hγ
p,θ+2p(Ω) , (4.3)

where N1 is a constant independent of u, f , and λ.

Lemma 4.4. Let Ω admit the Hardy inequality (1.2), and suppose that for a fixed
α ∈ R \ {0}, there exists a superharmonic function ψ and a constant M > 0 such
that

M−1ρα ≤ ψ ≤Mρα . (4.4)

Then Statement 4.3 (Ω, p, θ) holds for all p ∈ (1,∞) and θ ∈ R with

d− 2− (p− 1)α < θ < d− 2 + α if α > 0 ;
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d− 2 + α < θ < d− 2− (p− 1)α if α < 0 .

Moreover, N1 in (4.3) depends only d, p, γ, θ, C0(Ω), α and M (in (4.4)).

Proof. Observe that ψ is a superharmonic Harnack function, and Ψ := ρ̃α is a
regularization of ψ. For this Ψ, the constants C2(Ψ) and C3(Ψ, ψ) can be chosen to
depend only on d, α and M . In addition, Lemmas 3.8.(3) implies that for any p ∈
(1,∞) and γ, θ ∈ R, there existsN = N(d, p, γ, α, µ,M) such that ‖f‖ΨµHγ

p,θ(Ω) ≃N
‖f‖Hγ

p,θ−αµ
(Ω) for all f ∈ D′(Ω). Therefore the proof is completed by applying

Theorem 3.14 with Ψ := ρ̃α. �

We collect basic properties of classical superharmonic functions, which are used
in this section and Section 5.

Lemma 4.5. Let Ω be an open set in Rd.

(1) Let φ1, φ2 be classical superharmonic functions on Ω. Then φ1 ∧ φ2 is also
a classical superharmonic function on Ω.

(2) Let {φα} be a family of positive classical superharmonic functions on Ω.
Then φ := infα φα is a superharmonic function on Ω.

(3) Let Ω1 and Ω2 be open sets in Rd and φi be a classical superharmonic
function on Ωi, for i = 1, 2. Suppose that

lim inf
x→x1,x∈Ω2

φ2(x) ≥ φ1(x1) for all x1 ∈ Ω1 ∩ ∂Ω2 ;

lim inf
x→x2,x∈Ω1

φ1(x) ≥ φ2(x2) for all x2 ∈ Ω2 ∩ ∂Ω1 .

Then the function

φ(x) :=





φ1(x) x ∈ Ω1 \ Ω2

φ1(x) ∧ φ2(x) x ∈ Ω1 ∩ Ω2

φ2(x) x ∈ Ω2 \ Ω1

is also a classical superharmonic function on Ω.

For the proof of Lemma 4.5, (1) follows from the definition of classical superhar-
monic functions, (2) can be found in [7, Theorem 3.7.5], and (3) is implied by [7,
Corollary 3.2.4].

4.1. Domain with fat exterior : Harmonic measure decay property. This
subsection begins by introducing a relation among the condition (4.1), classical
potential theory, and the Hardy inequality (see Lemma 4.10 and Remark 4.11).

We first recall notions in classical potential theory. For a bounded open set
U ⊂ Rd, d ≥ 2, and a bounded Borel function f on ∂U , the Perron-Wiener-Brelot
solution (abbreviated to ‘PWB solution’) of the equation

∆u = 0 in U ; u = F on ∂U (4.5)

is defined by

u(x) := inf
{
φ(x) : φ is a superharmonic function on U and

lim inf
y→z,y∈U

φ(y) ≥ F (z) for all z ∈ ∂U
}
.

(4.6)

This u is harmonic on U . However, limy→z u(y) = F (z) does not hold, in general,
for z ∈ ∂U and F ∈ C(∂U). For basic properties of PWB solutions, we refer the
reader to [7].
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For a Borel set E ⊂ ∂U , w( · , U, E) denotes the PWB solution u of equation
(4.5) with F := 1E. This w is called the harmonic measure of E over U .

We fix an arbitrary open set Ω ⊂ Rd (not necessarily bounded), d ≥ 2. For
p ∈ ∂Ω and r > 0, we denote

w( · , p, r) = w
(
· ,Ω ∩Br(p),Ω ∩ ∂Br(p)

)

(see Figure 4.1 below); note that Ω ∩ ∂Br(p) is a relatively open subset of ∂
(
Ω ∩

Br(p)
)
.

∆u = 0

u = 1

u = 0

Figure 4.1. u := w( · , p, r)

For convenience, based on Lemma 4.6, we consider w( · , p, r) to be continuous
on Ω ∩B(p, r) with w(x, p, r) = 1 for x ∈ Ω ∩ ∂B(p, r).

Lemma 4.6.

(1) w( · , p, r) is harmonic on Ω ∩Br(p) with values in [0, 1].
(2) For any x0 ∈ Ω ∩ ∂Br(p), w(x, p, r) → 1 as x→ x0 with x ∈ Ω ∩Br(p).
(3) For any 0 < r < R and N0 ≥ 0, if w(·, p, R) ≤ N0 on Ω ∩ ∂Br(p), then

w(·, p, R) ≤ N0w(·, p, r) on Ω ∩Br(p).
Proof. (1) and (2) are the basic properties of w( · , p, r) which can be found in [7,
Chapter 6]. Therefore we only prove (3).

For convenience, denote UR := Ω ∩ BR(p) and Ur := Ω ∩ Br(p), and consider
w(·, p, R) := 1Ω∩∂BR(p) on ∂UR. It follows from [7, Theorem 6.3.6] that w(x, p,R)|Ur

is the PWB solution of (4.5) for U := Ur and F := w(·, p, R)|∂Ur . One can observe
that

∂Ur \
(
Ω ∩ ∂Br(p)

)
⊂ (∂Ω) ∩BR(p) ⊂ ∂UR ,

which implies that w(x, p,R) = 1Ω∩∂BR(p)(x) = 0 for x ∈ ∂Ur \
(
Ω∩∂Br(p)

)
. Since

w(x, p,R) ≤ N0 on Ω ∩ ∂Br(p), we have w(·, p, R)|∂Ur ≤ N01Ω∩∂Br(p). Due to the
definition of PWB solution (4.6), w(·, p, R) ≤ N0w(·, p, r) on Ur := Ω ∩Br(p). �

Definition 4.7. A domain Ω is said to satisfy the local harmonic measure de-
cay property with exponent α > 0 (abbreviated to ‘LHMD(α)’), if there exists a
constant Mα > 0 depending only on Ω and α such that

w(x, p, r) ≤Mα

( |x− p|
r

)α
for all x ∈ Ω ∩B(p, r) (4.7)

whenever p ∈ ∂Ω and r > 0.

Remark 4.8. The notion of LHMD is closely related to the Hölder continuity of the
PWB solutions. Let Ω be a bounded domain. For F ∈ C(∂Ω), by HΩF we denote
the PWB solution u of equation (4.6) with U := Ω. HΩF is called the classical
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solution if limy→zHΩF (y) = F (z) for all z ∈ ∂Ω. Aikawa [4, Theorem 2, Theorem
3] provides the following results: Let 0 < α < 1.

(1) If HΩF is the classical solution for any F ∈ C(∂Ω), and

sup
F∈C0,β(∂Ω),F 6≡0

‖HΩF‖C0,α(Ω)

‖F‖C0,α(∂Ω)
<∞ , (4.8)

then Ω satisfies LHMD(α).
(2) Conversely, if Ω satisfies LHMD(β) for some β > α, then HΩF is the

classical solution for any F ∈ C(Ω), and (4.8) holds.

Lemma 4.9. Let Ω be a bounded domain, and suppose that for a constant α > 0,

there exist constants r0, M̃ ∈ (0,∞) such that

w(x, p, r) ≤ M̃

( |x− p|
r

)α
for all x ∈ Ω ∩B(p, r) (4.9)

whenever p ∈ ∂Ω and 0 < r ≤ r0. Then Ω satisfies LHMD(α), where Mα in (4.9)

depends only on α, M̃ and diam(Ω)/r0.

Proof. Let p ∈ ∂Ω. If r > diam(Ω), then Ω ∩ ∂B(p, r) = ∅, which implies that
w( · , p, r) ≡ 0. In addition, due to the assumption of this lemma, we do not need
to pay attention to the case of r ≤ r0. Therefore, we only consider the case of
r0 < r ≤ diam(Ω).

For r0 < r ≤ diam(Ω), it follows from Lemmas 4.6.(1) and (3) that w(x, p, r) ≤ 1
in general, and w(x, p, r) ≤ w(x, p, r0) if |x − p| < r0. Due to (4.9) and that r0 <
r ≤ diam(Ω), we have

w(x, p, r) ≤ max
(
M̃, 1

)(diam(Ω)

r0

)α( |x− p|
r

)α
for all x ∈ ω ∩B(p, r) .

The proof is completed. �

We finally introduce the relation between (4.1) and the local harmonic measure
decay property.

Lemma 4.10. Let Ω be a domain in Rd.

(1) The following conditions are equivalent:
(a) There exists ǫ > 0 such that the fat exterior condition (4.1) holds.
(b) There exists α > 0 such that LHMD(α) holds.
(c) There exists ǫ0 > 0 such that

inf
p∈∂Ω,r>0

Cap
(
Ωc ∩B(p, r), B(p, 2r)

)

Cap
(
B(p, r), B(p, 2r)

) ≥ ǫ0 > 0 . (4.10)

Here, Cap
(
K,B

)
is the capacity of a compact set K ⊂ B relative to

an open ball B, defined as follows:

Cap(K,B) := inf
{
‖∇f‖22 : f ∈ C∞

c (B) , f ≥ 1 on K
}
. (4.11)

In particular, constants (c, ǫ) in (4.1), (α,Mα) in (4.7), and ǫ0 in (4.10)
depend only on each other and d.

(2) If (4.10) holds, then Ω admits the Hardy inequality (1.2), where C0(Ω)
depends only on d and ǫ0.
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For this lemma, the equivalence between conditions (a) and (c) is established by
Lewis [39, Theorem 1] and Aikawa [3, Theorem B] (see, e.g., [31, Theorem 7.22]
for a simplified version). Additionally, the equivalence between (b) and (c), and
Lemma 4.10.(2) is provided by Ancona [6, Lemma 3, Theorem 1].

Remark 4.11.

(1) (4.10) is called the capacity density condition. For domains Ω in R2, (4.10)
holds if and only if Ω admits the Hardy inequality (1.2) (see Ancona [6,
Theorem 2]).

(2) A well-known sufficient condition to satisfy (4.10) is the volume density
condition:

inf
p∈∂Ω,r>0

|Ωc ∩B(p, r)|
|B(p, r)| ≥ ǫ1 > 0 ,

(see, e.g., [31, Example 6.18]). For a deeper discussion of the capacity den-
sity condition, we refer the reader to [31, 32, 39] and the references given
therein.

Based on this discussion, we consider domains satisfying LHMD(α) for some
α > 0, instead of (4.1). This condition is implied by geometric conditions introduced
in Section 5, and the value of α reflects each geometric condition; see Theorem 5.5.
In the rest of this subsection, we construct appropriate superharmonic functions
related to α (see Lemma 4.4). The results in this subsection are crucially used in
Section 5.

Theorem 4.12. Let Ω satisfy LHMD(α), α > 0. Then for any β ∈ (0, α), there
exists a superharmonic function φ on Ω such that

N−1ρ(x)β ≤ φ(x) ≤ Nρ(x)β

for all x ∈ Ω, where N = N(α, β,Mα) > 0.

Before proving Theorem 4.12, we look at the following corollaries:

Theorem 4.13. Let Ω ⊂ Rd satisfy LHMD(α), α > 0. For any p ∈ (1,∞) and
θ ∈ R satisfying

d− 2− (p− 1)α < θ < d− 2 + α , (4.12)

Statement 4.3 (Ω, p, θ) holds. In addition, N1 (in (4.3)) depends only on d, p, γ, θ,
α, Mα.

Remark 4.14. The Poisson equation (4.2) is not explicitly equipped with specific
boundary conditions. Nonetheless, one can interpret Theorem 4.13 to include the
zero-Dirichlet boundary condition, u|∂Ω ≡ 0. This interpretation is supported by
the fact that C∞

c (Ω) is dense in Hγ
p,θ+2p(Ω), and for f ∈ C∞

c (Ω), the solution u

implied by Theorem 4.13 satisfies that u ∈ Hγ+2
p,θ (Ω) for any p ∈ (1,∞), θ in (4.12),

and γ ∈ R (see Theorem 3.20). In addition, by taking appropriate p, θ, and γ > 0, it
follows from Proposition 3.13 that this u is continuous on Ω and u→ 0 as ρ(x) → 0.

Proof of Theorem 4.13. Take β ∈ (0, α) such that

d− 2− (p− 1)β < θ < d− 2 + β.

It follows from Theorem 4.12 that there exists a superharmonic function φ such
that φ ≃N ρβ, where N = N(α, β, Mα). Lemma 4.10 yields that Ω admits the
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Hardy inequality (1.2), where C0(Ω) can be chosen to depend only on d, α and Mα

(in (4.7)). Therefore, the proof is completed by Lemma 4.4. �

Proof of Theorem 4.12. The following construction is a combination of [6, Theorem
1] and [25, Lemma 2.1]. Recall that Mα is the constant in (4.7), and β < α. Take

r0 ∈ (0, 1) small enough to satisfy Mαr
α
0 < rβ0 , and take η ∈ (0, 1) small enough to

satisfy

(1− η)Mαr
α
0 + η ≤ rβ0 .

For w(x, p, r), we shall need only the following properties (see Lemma 4.6 and
Definition 4.7):

w(·, p, r) is a classical superharmonic function on Ω ∩B(p, r) ;

w(·, p, r) = 1 on Ω ∩ ∂B(p, r) ;

0 ≤ w(·, p, r) ≤Mαr
α
0 on Ω ∩B(p, r0r) .

For p ∈ ∂Ω and k ∈ Z, put

φp,k(x) = rkβ0
(
(1− η)w(x, p, rk0 ) + η

)
.

Then φp,k is a classical superharmonic function on Ω ∩B(p, rk0 ),

φp,k ≤ r
(k+1)β
0 on Ω ∩B(p, rk+1

0 ) ,

φp,k = rkβ0 on Ω ∩ ∂B(p, rk0 ) ,

η · rkβ0 ≤ φp,k ≤ rkβ0 on Ω ∩B(p, rk0 ) .

For p ∈ ∂Ω and x ∈ Ω, we denote

φp(x) = inf{φp,k(x) : |x− p| < rk0}.
If we prove the following:

φp is a classical superharmonic function on Ω ; (4.13)

η|x− p|β ≤ φp(x) ≤ r−β0 |x− p|β , (4.14)

then φ := inf
p∈∂Ω

φp is superharmonic on Ω (see Lemma 4.5.(2)) and satisfies

ηρ(x)β ≤ φ(x) ≤ r−β0 ρ(x)β .

Therefore the proof is completed.
- (4.13) : We only need to prove that for each k0 ∈ Z, φp is a classical superhar-

monic function on Uk0 := {x ∈ Ω : rk0+2
0 < |x − p| < rk00 } (see Remark 2.2). For

x ∈ Uk0 , put

vp,k0(x) =

{
φp,k0(x) if rk0+1

0 ≤ |x− p| < rk00
φp,k0(x) ∧ φp,k0+1(x) if rk0+2

0 < |x− p| < rk0+1
0 .

Since φp,k0 ≤ φp,k0+1 on Ω ∩ ∂B(p, rk0+1
0 ), Lemma 4.5.(4) implies that vp,k0 is a

classical superharmonic function on Uk0 . Observe that

φp(x) = vp,k0(x) ∧ inf{φp,k(x) : k ≤ k0 − 1}.
Moreover, if η rkβ0 ≥ rk0β0 then

vp,k0(x) ≤ φp,k0 (x) ≤ rk0β0 ≤ η rkβ0 ≤ φp,k(x) .
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Therefore

φp(x) = vp,k0(x) ∧ inf{φp,k(x) : k ≤ k0 − 1 and η rkβ0 ≤ rk0β0 } ,
which implies that on Uk0 , φp is the minimum of finitely many classical superhar-
monic functions. Consequently, by Lemma 4.5.(1), φp is a classical superharmonic
function on Uk0 .

- (4.14) : Let x ∈ Ω satisfy rk0+1
0 ≤ |x− p| < rk00 , k0 ∈ Z. Since

φp,k0(x) ≤ rk0β0 , and φp,k(x) ≥ ηrkβ0 ≥ ηrk0β0 for all k ≤ k0 ,

we obtain that η rk0β0 ≤ φp(x) ≤ rk0β0 . This implies (4.14). �

We end this subsection providing two corollaries of Theorem 4.13.

Corollary 4.15. Let Ω satisfy LHMD(α), α ∈ (0, 1], and there exists M ≥ 0 such
that

∫
Ω
ρ(x)M dx <∞. Consider the equation

∆u− λu = f0 +
d∑

i=1

Difi in Ω ; u = 0 on ∂Ω , (4.15)

where f0, f1, . . . , fd are measurable functions on Ω such that

|f0| . ρ−2+α , |f1|+ · · ·+ |fd| . ρ−1+α .

Then for any 0 < β < α, equation (4.15) has a unique solution u in C0,β(Ω). In
addition, we have

sup
Ω
ρ−β |u|+ [u]C0,β(Ω) .N sup

Ω

(
ρ2−α|f0|+ ρ1−α|f1|+ · · ·+ ρ1−α|fd|

)
=: NF ,

(4.16)

where N depends only on d, α, Mα, β, and
∫
Ω
ρ(x)M .

Proof. We first mention that the assumption
∫
Ω ρ(x)

M dx < ∞ implies that the
function ρ is bounded; moreover, lim|x|→∞ ρ(x) = 0. This implies that if LHS in

(4.16) is finite, then u ∈ C0,β(Ω).
- Uniqueness of solutions. If Ω is bounded, then the uniqueness of solu-

tions directly follows from the maximum principle. Consider the case of when Ω
is unbounded, and let u ∈ C0,β(Ω) satisfies (4.15) for f0 = . . . = fd ≡ 0. Since
lim|x|→∞ ρ(x) = 0, the conditions for u implies that lim|x|→∞ u(x) = 0. Combining
this with the Maximum principle, we have

sup
Ω

|u| = lim
R→∞

sup
Ω∩BR

|u| = lim
R→∞

sup
∂(Ω∩BR)

|u| = 0 .

Therefore, the uniqueness of solutions is proved.
- Existence of solutions and (4.16). For β ∈ (0, α), put p := d+M

α−β so that

β ≤ 1− d
p and θ := −pβ satisfies (4.12). Observe that

‖F‖p
H−1

p,θ+2p(Ω)
.p,d,β

∫

Ω

(
|ρ2−βf0|p +

d∑

i=1

|ρ1−βfi|p
)
ρ−d dx

≤
(
NF
)p
∫

Ω

ρ(x)M dx <∞ ,
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where the last inequality follows from that p(α−β) = d+M . Theorem 4.13 provide
a solution u ∈ H1

p,θ(Ω) of equation (4.15) with

‖u‖H1
p,θ(Ω) .N ‖F‖p

H−1
p,θ+2p(Ω)

.N

(∫

Ω

ρM dx
)1/p

NF ,

where N = N(d, α,Mα, β). Proposition 3.13 implies |u|(−β)0,β .d,α,β ‖u‖H1
p,θ(Ω), and

therefore we obtain (4.16). By the comment at the first in this proof, we have
u ∈ C0,β(Ω). �

The following corollary is an unweighted Lp-solvability result when p is close to
2. It is worth noting that similar results for various equations are introduced in the
literature, such as [26], utilizing the reverse Hölder inequality. The reason to provide
Corollary 4.16 is that its proof is independent of the reverse Hölder inequality;
instead, this proof relies on the weighted solvability result (Theorem 4.13). This
theorem also provides the Lp estimate unaffected by dilation (see (4.18)).

We denote W̊ 1
p (Ω) the closure of C∞

c (Ω) in W 1
p (Ω).

Corollary 4.16. Let Ω satisfy (4.10) and

λ ≥ 0 if DΩ <∞ and λ > 0 if DΩ = ∞ , (4.17)

where dΩ := supx∈Ω d(x, ∂Ω). Then there exists ǫ ∈ (0, 1) depending only on d,
ǫ0 (in (4.10)) such that for any p ∈ (2 − ǫ, 2 + ǫ), the following holds: For any

f0, . . . , fd ∈ Lp(Ω), equation (4.15) has a unique solution u in W̊ 1
p (Ω). Moreover,

we have

‖∇u‖p +
(
λ1/2 +D−1

Ω

)
‖u‖p .d,p,ǫ0 min

(
λ−1/2, DΩ

)
‖f0‖p +

d∑

i=1

‖f i‖p . (4.18)

Proof. We first note the following two results for the capacity density condition
(4.10):

(a) By Lemma 4.10.(1), there exists α ∈ (0, 1) such that Ω satisfies LHMD(α).
Due to Theorem 4.13, Statement 4.3 (Ω, p, d−p) holds for p ∈ (2−α1, 2+α1),
and N1 (in (4.3)) depends only on d, p, γ, ǫ1.

(b) It is implied by [39, Theorem 1, Theorem 2] (or see [32, Theorem 3.7,
Corollary 3.11]) that there exists α2 ∈ (0, 1) depending only on d and ǫ0
such that for any p > 2− α2,∫

Ω

∣∣∣u(x)
ρ(x)

∣∣∣
p

dx ≤ N(d, p, ǫ0)

∫

Ω

|∇u|p dx ∀ u ∈ C∞
c (Ω) . (4.19)

Put 0 < ǫ < min(α1, α2) and consider p ∈ (2− ǫ, 2 + ǫ).
Step 1. Uniqueness of solutions. Since Statement 4.3 (Ω, p, d − p) holds,

it suffices to show that W̊ 1
p (Ω) ⊂ H1

p,d−p(Ω). For any u ∈ W̊ 1
p (Ω), there exists

{un}n∈N ⊂ C∞
c such that un → u in W 1

p (Ω). One can choose this {un} to converge
to u almost everywhere on Ω. Consider (4.19) for un ∈ C∞

c (Ω), and apply Fatou’s

lemma, to obtain that (4.19) holds for u ∈ W̊ 1
p (Ω). This implies that u ∈ H1

p,d−p(Ω).

Step 2. Existence of solutions and estimate (4.18). In this Step, we use
Lemma 3.12.(1), D−1

Ω ‖u‖p ≤ ‖ρ−1u‖p, and ‖ρf‖p ≤ DΩ‖f‖p, without mentioning.
Additionally, we also use the fact that

‖u‖Hγ
p,d(Ω) .p,d ‖u‖1/2Hγ+1

p,d−p(Ω)
‖u‖1/2

Hγ−1
p,d+p(Ω)

, (4.20)
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which follows from that∑

n∈Z

end‖
(
ζ0,(n)u

)
(en·)‖p

Hγ
p

.p,d
∑

n∈Z

end‖
(
ζ0,(n)u

)
(en·)‖p/2

Hγ+1
p

‖
(
ζ0,(n)u

)
(en·)‖p/2

Hγ−1
p

≤
(
∑

n∈Z

en(d−p)‖
(
ζ0,(n)u

)
(en·)‖p

Hγ+1
p

)1/2(∑

n∈Z

en(d+p)‖
(
ζ0,(n)u

)
(en·)‖p

Hγ−1
p

)1/2

.

To prove the existence of solutions, it is enough to find a solution in Lp,d(Ω) ∩
H1
p,d−p(Ω). Indeed, Lp,d(Ω)∩H1

p,d−p(Ω) is continuouly embedded inW 1
p , and C

∞
c (Ω)

is dense in Lp,d(Ω) ∩H1
p,d−p(Ω) (see Lemma 3.10.(5)).

Without loss of generality, we assume that λ = 0 or λ = 1 by dilation. Note that
ǫ0 in (4.10) is invariant even if Ω is replaced by rΩ = {rx : x ∈ Ω}, for any r > 0.

Step 2.1) Consider the case λ = 1. Since Statement 4.3 (Ω, p, d−p) holds, there
exists v ∈ H2

p,d−p(Ω) such that ∆v − v = ρ̃−1f0 and

‖v‖H2
p,d−p(Ω) + ‖v‖Lp,d+p(Ω) .d,p,ǫ0

∥∥ρ̃−1f0
∥∥
Lp,d+p(Ω)

≃p,d ‖f0‖p . (4.21)

Due to (4.20) and (4.21), we have

‖v‖Lp,d+p(Ω) + ‖v‖H1
p,d(Ω) .d,p ‖v‖H2

p,d−p(Ω) + ‖v‖Lp,d+p(Ω) .d,p,ǫ0 ‖f0‖p . (4.22)

Put

f̃ := f0 −∆(ρ̃v) + ρ̃v = −2
[ d∑

i=1

Di

(
vDiρ̃)

]
+ v∆ρ̃ ,

and observe that∥∥f̃
∥∥
H−1

p,d+p
(Ω)

.d,p ‖v‖Lp,d(Ω) .d,p ‖v‖H1
p,d(Ω) .d,p,ǫ0

∥∥f0
∥∥
p
,

where the first and third inequalities follow from Lemma 3.12.(2) and (4.22), re-
spectively. Since Statement 4.3 (Ω, p, d− p) holds, there exists w ∈ H1

p,d−p(Ω) such
that

∆w − w =

d∑

i=1

Dif
i + f̃

and

‖w‖H1
p,d−p(Ω) + ‖w‖H−1

p,d+p(Ω) .d,p,ǫ0

d∑

i=1

‖f i‖Lp,d(Ω) +
∥∥f̃
∥∥
H−1

p,d+p(Ω)
.

d∑

i=0

‖f i‖p .

(4.23)

Therefore, by (4.20) and (4.23), we have

‖w‖Lp,d(Ω) + ‖w‖H1
p,d−p(Ω) .d,p‖w‖H1

p,d−p(Ω) + ‖w‖H−1
p,d+p

(Ω) .d,p,ǫ0
∑

i≥0

∥∥f i
∥∥
p
.

(4.24)
Put u = vρ̃+ w. Then u is a solution of equation (4.15) and satisfies

‖ux‖p + (1 +D−1
Ω )‖u‖p .d,p ‖u‖Lp,d(Ω) + ‖u‖H1

p,d−p(Ω) (4.25)

.d,p‖w‖Lp,d(Ω) + ‖w‖H1
p,d−p(Ω) + ‖v‖Lp,d+p(Ω) + ‖v‖H1

p,d(Ω) .d,p,ǫ0
∑

i≥0

‖f i‖p ,
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where the last inequality follows from (4.22) and (4.24); note that (4.25) also implies
that u ∈ Lp,d(Ω) ∩H1

p,d−p(Ω).

Step 2.2) Consider the case DΩ <∞, and observe that
∥∥∥f0 +

∑

i≥1

Dif
i
∥∥∥
H−1

p,d+p(Ω)
.d,p‖f0‖Lp,d+p(Ω) +

∑

i≥1

‖f i‖Lp,d(Ω)

≤ DΩ‖f0‖p +
∑

i≥1

‖f i‖p <∞ .
(4.26)

Since Statement 4.3 (Ω, p, d− p) holds, there exists ũ ∈ H1
p,d−p(Ω) such that

∆ũ− λũ = f0 +
∑

i≥1

Dif
i ,

and

‖ũ‖H1
p,d−p(Ω) + λ‖ũ‖H−1

p,d+p(Ω) . ‖f0 +
∑

i≥1

Dif
i‖H−1

p,d+p(Ω) . (4.27)

By (4.20), (4.26), and (4.27), we obtain that

‖∇ũ‖Lp(Ω) +D−1
Ω ‖ũ‖Lp(Ω) + λ1/2‖ũ‖Lp(Ω) (4.28)

.d,p ‖ũ‖H1
p,d−p(Ω) + λ‖ũ‖H−1

p,d+p(Ω) .d,p,ǫ0 DΩ‖f0‖p +
∑

i≥1

‖f i‖p .

Due to (4.28), we have ũ ∈ Lp,d(Ω) ∩H1
p,d−p(Ω).

Step 2.3) The existence of solutions is proved in Steps 2.1 and 2.2, for all λ and
DΩ satisfying (4.17). For the cases where DΩ = ∞ and λ = 1, and DΩ < ∞ and
λ = 0, estimate (4.18) is proved in (4.25) and (4.28), respectively. Therefore, we
only need prove estimate (4.18) in the remaining case where DΩ < ∞ and λ = 1.
Since u in Step 2.1 and ũ in Step 2.2 are the same (due to the result in Step 1),
(4.18) follows from (4.25) and (4.28). �

4.2. Domain with thin exterior : Aikawa dimension. The notion of the
Aikawa dimension was first introduced by Aikawa [2]. We recall the definition of
the Aikawa dimension. For a set E ⊂ Rd, the Aikawa dimension of E, denoted by
dimA(E), is defined by

dimA(E) = inf
{
β ≥ 0 : sup

p∈E, r>0

1

rβ

∫

Br(p)

1

d(y, E)d−β
dy <∞

}

with considering 1
0 = ∞.

In this subsection, we assume that d ≥ 3, and Ω satisfies

β0 := dimA Ωc < d− 2 .

Theorem 4.17. For a constant β < d− 2, if there exists a constant Aβ such that

sup
p∈Ωc, r>0

1

rβ

∫

Br(p)

1

d(y,Ωc)d−β
dy ≤ Aβ <∞ , (4.29)

then the function

φ(x) :=

∫

Rd

|x− y|−d+2ρ(y)−d+β dy

is a superharmonic function on Rd with −∆φ = N(d)ρ−d+β. Moreover, we have

N−1ρ(x)−d+2+β ≤ φ(x) ≤ Nρ(x)−d+2+β (4.30)
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for all x ∈ Ω, where N = N(d, β,Aβ).

Before proving Theorem 4.17, we first look at the corollaries of this theorem.

Corollary 4.18. The Hardy inequality (1.2) holds on Ω, where C0(Ω) depends only
on d, β0, {Aβ}β>β0.

Actually, this corollary follows from the more general result [2, Theorem 3], and
its proof is based on Muckenhoupt’s Ap weight theory. Considering only Corollary
4.18, this result can be proved differently, as the following:

Proof of Corollary 4.18. We first note the following inequality provided in [8, Lemma
3.5.1]: If f ∈ C∞

c (Rd) and s > 0 is a smooth superharmonic function on a neigh-
borhood of supp(f), then

∫

Rd

−∆s

s
|f |2 dx ≤

∫

Rd

|∇f |2 dx for all f ∈ C∞
c (Rd) (4.31)

(the proof of this inequality is based on integrating
∣∣∇f−(f/s)∇s

∣∣2 and performing
integration by parts). Take any β ∈ (β0, d−2), and let φ be the function in Theorem
4.17, so that

−∆φ ≥ N1ρ
−2φ > 0 (4.32)

where N1 = N(d, β,Aβ) > 0. Fix f ∈ C∞
c (Ω). For 0 < ǫ < d

(
supp(f), ∂Ω

)
, let φ(ǫ)

be the mollification of φ in (2.1). Observe that

−∆
(
φ(ǫ)

)
≥ N−1

1

(
ρ−2φ

)(ǫ) ≥ N−1
1 (ρ+ ǫ)−2φ(ǫ) on Rd ,

where N1 is in (4.32). By appling the monotone convergence theorem to (4.31) with
s = φ(ǫ)(see Lemma 2.5.(2)), we obtain (1.2) with C0(Ω) = N1. �

Theorem 4.19. For any p ∈ (1,∞) and θ ∈ R satisfying

β0 < θ < (d− 2− β0)p+ β0 ,

Statement 4.3 (Ω, p, θ) holds. In addition, N1 in (4.3) depends only on d, p, γ, θ,
β0, {Aβ}β>β0.

Remark 4.20. Theorem 4.19 deals with the Poisson equation in Ω ⊂ Rd, d ≥ 3.
Moreover, this theorem can also be interpreted as establishing the solvability of the
Poisson equation ∆u − λu = f in Rd, particularly when f blows up near a set E
with dimA(E) < d − 2. In other words, if u ∈ H2

p,θ(Ω) and f ∈ Lp,θ+2p(Ω) satisfy

equation (4.2), then
∫

Rd

u(∆φ− λφ) dx =

∫

Rd

fφdx for all φ ∈ C∞
c (Rd) ;

we leave the proof to the reader, with a comment to utilize the test functions
φk := φ

∑
|n|≤k ζ0,(n) ∈ C∞

c (Ω), where ζ0,(n) is the function in (3.9).

Proof of Theorem 4.19. Takd β ∈ (β0, d− 2) satisfying

β < θ < (d− 2− β)p+ β .

By Corollary 4.18 and Theorem 4.17, Ω admits the Hardy inequality (1.2), and there
exists a superharmonic function φ satisfying φ ≃ ρ−d+2+β. Therefore by Lemma
4.4, the proof is completed. �
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Proof of Theorem 4.17. We first prove (4.30). For a fixed x ∈ Rd, put

Ij =

∫

Ej

|x− y|−d+2ρ(y)−d+βdy for j = 0, 1, . . . ,

where E0 := B
(
x, 2−1ρ(x)

)
and Ej := B

(
x, 2j−1ρ(x)

)
\ B

(
x, 2j−2ρ(x)

)
for j =

1, 2, . . .. Then φ(x) =
∑

j∈N0
Ij . If y ∈ E0 then 1

2ρ(x) ≤ ρ(y) ≤ 2ρ(x), which
implies

I0 ≃d,β ρ(x)−d+β
∫

B(x,ρ(x)/2)

|x− y|−d+2 dy ≃d ρ(x)−d+2+β . (4.33)

For Ij , j ≥ 1, take px ∈ ∂Ω such that |x− px| = ρ(x), and observe that

Ij .d
(
2jρ(x)

)−d+2
∫

B(px,2jρ(x))

ρ(y)−d+β dy ≤ N
(
2jρ(x)

)−d+2+β
, (4.34)

where N = N(d, β,Aβ). (4.33) and (4.34) imply (4.30).
To prove that −∆φ = N(d)φ in the sense of distribution, recall that

−∆x

(
|x− y|−d+2

)
= N(d) δ0(x− y)

in the sense of distribution, where δ0(·) is the Dirac delta distribution. Due to (4.29)
and φ ≃ ρ−d+2+β, φ is locally integrable in Rd. Therefore we obtain that for any
ζ ∈ C∞

c (Rd), by the Fubini theorem,
∫

Rd

φ(x)
(
−∆ζ)(x) dx =

∫

Rd

( ∫

Rd

|x− y|−d+2(−∆ζ)(x) dx
)
ρ(y)−d+β dy

= N(d)

∫

Rd

ζ(y)ρ(y)−d+β dy .

�

5. Application II - Various domains with fat exterior

This section presents results for the exterior cone condition, convex domains, the
exterior Reifenberg condition, and Lipschitz cones. These domains and conditions
imply the fat exterior condition.

Throughout this section, we consider a domain Ω ( Rd, d ≥ 2.

5.1. Exterior cone condition and exterior line segment condition.

Definition 5.1 (Exterior cone condition). For δ ∈ [0, π2 ) and R ∈ (0,∞], a domain

Ω ⊂ Rd is said to satisfy the exterior (δ, R)-cone condition if for every p ∈ ∂Ω,
there exists a unit vector ep ∈ Rd such that

{x ∈ BR(p) : (x− p) · ep ≥ |x− p| cos δ} ⊂ Ωc . (5.1)

Note that the left hand side of (5.1) is the result of translating and rotating the
set

{x = (x1, . . . , xd) ∈ BR(0) : x1 ≥ |x| cos δ} .
The exterior (0, R)-cone condition can be called the exterior R-line segment

condition, since if δ = 0, then LHS in (5.1) equals {p + rep : r ∈ [0, R)}. For
examples of the exterior cone condition and exterior line segment condition, see
Figure 5.1 below.
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A. Lipschitz boundary
condition

B. Exterior
(π3 ,∞)-cone condition

(doesn’t satisfy Lipschitz
boundary condition)

C. Exterior ∞-line
segment condition

(doesn’t satisfy (δ, R)-cone
condition, ∀ δ, R > 0)

Figure 5.1. Examples for exterior cone condition

Example 5.2. Suppose that there exists K, R ∈ (0,∞] such that for any p ∈ ∂Ω,
there exists a function fp ∈ C(Rd−1) such that

|fp(y′)− fp(z
′)| ≤ K|y′ − z′| for all y′, z′ ∈ Rd−1 , and (5.2)

Ω ∩BR(p) =
{
y = (y′, yd) ∈ Rd−1 × R : yd > fp(y

′) and |y| < R
}
, (5.3)

where (y′, yd) = (y1, · · · , yd) in (5.3) is an orthonormal coordinate system centered
at p. Then Ω satisfies the exterior (δ, R)-cone condition, where δ = arctan(1/K) ∈
[0, π/2).

In addition, if f ∈ C(Rd−1) satisfies (5.2) for f instead of fp, then the domain
{
(x′, xn) ∈ Rd−1 × R : xn > f(x′)

}

satisfies the exterior (δ,∞)-cone condition, where δ = arctan(1/K).

For δ ∈ (0, π), let Eδ := {σ ∈ ∂B1(0) : σ1 > − cos δ} (see Figure 5.2 below).
By Λδ, we denote the first Dirichlet eigenvalue of the spherical Laplacian on Eδ.
Alternatively, Λδ is expressed by

Λδ = inf
f∈Fπ−δ

∫ π−δ
0 |f ′(t)|2(sin t)d−2 dt
∫ π−δ
0

|f(t)|2(sin t)d−2 dt
, (5.4)

where Fπ−δ is the set of all non-zero Lipschitz continuous function f : [0, π−δ] → R

such that f(π − δ) = 0 (see [18]). We also define

λδ := −d− 2

2
+

√(d− 2

2

)2
+ Λδ ,

and when d = 2, we define λ0 = 1
2 .

The following quantitative information of Λδ and λδ is provided in [9]:

Proposition 5.3. Let δ ∈ (0, π).

(1) If d = 2 then λδ =
√
Λδ =

π
2(π−δ) >

1
2 .

(2) If d = 4 then λδ = −1 +
√
1 + Λδ =

δ
π−δ .
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δ

Figure 5.2. Eδ

(3) For d ≥ 3,

Λδ ≥
(∫ π−δ

0

(sin t)−d+2
(∫ t

0

(sin r)d−2 dr
)
dt

)−1

.

Moreover, Λπ/2 = d− 1, lim
δց0

Λδ = 0, and lim
δրπ

Λδ = +∞.

Note that when d = 3, Λδ ≥ 1
2 | log sin δ

2 |−1.

Remark 5.4. For each δ > 0, there is a function F ∈ C
(
Eδ
)
∩ C∞(Eδ) such that

F > 0 and ∆SF + ΛδF = 0 in Eδ ; F = 0 on Eδ \ Eδ
(see, e.g., [18, Section 5]), where ∆S is the spherical Laplacian. Due to

∆ = Drr +
d− 1

r
Dr +

1

r2
∆Sd−1

(the representation of the Laplacian operator on Rd by the spherical coordinate),
the function vδ(x) := |x|λδF (x/|x|) is harmonic in

Uδ :=
{
y ∈ B1(0) : y1 > −|y| cos δ

}
,

and vanishes on ∂Uδ ∩B1(0).

With the help of λδ, we state the main results of this subsection.

Theorem 5.5. Let

δ ∈ [0, π/2) if d = 2 ; δ ∈ (0, π/2) if d ≥ 3 ,

and let Ω ⊂ Rd satisfy the exterior (δ, R)-cone condition, where

R ∈ (0,∞] if Ω is bounded , and R = ∞ if Ω is unbounded.

Then Ω satisfies LHMD(λδ), where Mλδ
in (4.7) depends only on d, δ, and addi-

tionally diam(Ω)/R if Ω is bounded.

Before proving Theorem 5.5, we present a corollary that directly follows from
Theorems 5.5 and 4.13.

Theorem 5.6. Let p ∈ (1,∞). Under the same assumption of Theorem 5.5, if
θ ∈ R satisfies

−2− (p− 1)λδ < θ − d < −2 + λδ ,

then Statement 4.3 (Ω, p, θ) holds. In addition, N1 in (4.3) depends only on d, p,
θ, γ, δ, and additionally diam(Ω)/R if Ω is bounded.
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To prove Theorem 5.5, we use the boundary Harnack principle on Lipschitz
domains.

Lemma 5.7 (see Theorem 1 of [54]). Let D be a bounded Lipschitz domain, A be a
relatively open subset of ∂D, and U be a subdomain of D with ∂U ∩ ∂D ⊂ A.Then
there exists N = N(D,A,U) > 0 such that if u, v are positive harmonic funtion on
D, and vanish on E, then

u(x)

v(x)
≤ N

u(x0)

v(x0)
for any x0, x ∈ U .

Proof of Theorem 5.5. By Lemma 4.9, it is sufficient to prove that there exists a
constant M > 0 such that

w(x, p, r) ≤M

( |x− p|
r

)λδ

for all x ∈ Ω ∩B(p, r)

whenever p ∈ ∂Ω and r ∈ (0, R). For any p ∈ ∂Ω, there exists a unit vector ep ∈ Rd

such that
Cp := {y ∈ BR(p) : (y − p) · ep ≥ |y − p| cos δ} ⊂ Ωc .

Since
Ω ∩Br(p) ⊂ Br(p) \ Cp and Ω ∩ ∂Br(p) ⊂ ∂Br(p) \ Cp ,

we have

w(x, p, r) ≤ w
(
x, Br(p) \ Cp , ∂Br(p) \ Cp

)
, (5.5)

by directly applying the definition of w(·, p, r) (see (4.6)). Consider a rotation map
T such that T (ep) = (−1, 0, . . . , 0), and put T0(x) = r−1T (x− p). Then

w
(
x, Br(p) \ Cp , ∂Br(p) \ Cp

)
= w

(
T0(x), Uδ, Eδ

)
, (5.6)

where

Uδ = {y ∈ B1(0) : y1 > −|y| cos δ} and Eδ = {y ∈ ∂B1(0) : y1 > −|y| cos δ} .
Due to (5.5) and (5.6), it is sufficient to show that there exists a constant M > 0
depending only on d and δ such that

w(x, Uδ, Eδ) ≤M |x|λδ for all x ∈ Uδ , (5.7)

Case 1: δ > 0. Put v(x) = |x|λδF0(x/|x|) where F0 is the first Dirichlet eigen-
function of spherical laplacian on Eδ ⊂ ∂B1(0), with supEδ

F0 = 1 (see Remark
5.4). Note that Uδ is a bounded Lipschitz domain, and w( · , Uδ, Eδ) and v are pos-
itive harmonic functions on Uδ, and vanish on ∂Uδ ∩ B1. By applying Lemma 5.7
for D = Uδ, A = (∂Uδ) ∩B1(0), and U = Uδ ∩B1/2(0), we obtain that there exists
a constant N0 = N0(d, δ) > 0 such that

w(x, Uδ, Eδ) ≤ N0v(x) ≤ N0|x|λδ for x ∈ Uδ ∩B1/2(0).

Therefore (5.7) is obtained, where M0 = max
(
N0, 2

λ0
)
.

Case 2: δ = 0 and d = 2. We consider R2 as C. Note

U0 = {reiθ : r ∈ (0, 1), θ ∈ (−π, π)} , E0 = {eiθ : θ ∈ (−π, π)} .
Observe that a function s is a classical superharmonic function on U0 if and only
if s(z2) is a classical superharmonic function on B1(0)∩R2

+ (use Lemma 2.4). It is
implied by the definition of PWB solutions (see (4.6)) that

w(z2, U0, E0) = w
(
z,B1(0) ∩R2

+, ∂B1(0) ∩ R2
+

)
.
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Since the map z = (z1, z2) 7→ z1 is harmonic on B1(0) ∩ R2
+, by Lemma 5.7 with

D = B1(0) ∩ R2
+, we obtain that

w
(
z,B1(0) ∩ R2

+,
(
∂B1(0)

)
∩R2

+

)
≤ N |z| for z ∈ B1/2(0) ∩ R2

+ , (5.8)

where N depends on nothing. Therefore the proof is completed. �

5.2. Convex domains. Recall that a set E ⊂ Rd is said to be convex if (1− t)x+
ty ∈ E for any x, y ∈ E and t ∈ [0, 1].

Lemma 5.8. For an open set Ω ⊂ Rd, Ω is convex if and only if for any p ∈ ∂Ω,
there exists a unit vector ep ∈ Rd such that

Ω ⊂ {x : (x − p) · ep < 0} =: Up . (5.9)

Proof. Let Ω be a convex domain, and fix p ∈ ∂Ω. Since the set {p} is convex and
disjoint from Ω, the hyperplane separation theorem (see, e.g., [48, Theorem 3.4.(a)])
implies that there exists a unit vector ep ∈ Rd such that (5.9) holds. Conversely,
suppose that for any p ∈ ∂Ω, there exists a unit vector ep satisfying (5.9). Then
E :=

⋂
p∈∂Ω Up is convex, Ω ⊂ E, and E ∩ ∂Ω = ∅. These imply E = Ω; if not,

E ∩ ∂Ω 6= ∅ which is a contradiction. Therefore our claim is proven. �

Theorem 5.9. Let Ω ⊂ Rd be a convex domain. Then Ω satisfies LHMD(1) where
M1 in (4.7) depends only on d.

Proof. The argument to obtain (5.8) also implies that for any d ∈ N,

w
(
x,B1(0) ∩ Rd+, (∂B1(0)) ∩Rd+

)
≤ N(d)|x| for all x ∈ B1(0) ∩ Rd+ .

By translation, dilation, and rotation, we obtain that for a convex domain Ω and
p ∈ ∂Ω,

w(x, p, r) ≤ w(x,Br(p) ∩ Up,
(
∂Br(p)

)
∩ Up) ≤ N(d)

|x− p|
r

for all x ∈ Br(p)∩Ω, where Up is the set on the right-hand side of (5.9). Therefore,
the proof is completed. �

This result also implies that the Hardy inequality (1.2) holds on Ω, where C0(Ω)
depends only on d (see Lemma 4.10); it is worth noting that Marcus, Mizel, and
Pinchover [41, Theorem 11] provided that for a convex domain Ω, (1.2) holds where
C0(Ω) = 4, and C0(Ω) cannot be chosen less than 4.

By combining Theorems 4.13 and 5.9, we obtain the following result:

Theorem 5.10. Let Ω ⊂ Rd be a convex domain. For any p ∈ (1,∞) and θ ∈ R

with

−p− 1 < θ − d < −1 ,

Statement 4.3 (Ω, p, θ) holds. In addition, N1 in (4.3) depends only on d, p, γ, θ.
In particular, Ω is not necessarily bounded, and N1 is independent of Ω.
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5.3. Exterior Reifenberg condition. The notion of the vanishing Reifenberg
condition was introduced by Reifenberg [47] and has been extensively studied in
the literature (see, e.g., [11, 12, 24, 50] and Subsubsection 1.2.3 of this paper). The
following definition can be found in [11, 24]: For δ ∈ (0, 1) and R > 0, a domain
Ω ⊂ Rd is said to satisfy the (δ, R)-Reifenberg condition, if for every p ∈ ∂Ω and
r ∈ (0, R], there exists a unit vector ep,r ∈ Rd such that

Ω ∩Br(p) ⊂ {x ∈ Br(p) : (x − p) · ep,r < δr} and

Ω ∩Br(p) ⊃ {x ∈ Br(p) : (x − p) · ep,r > −δr} . (5.10)

In addition, Ω is said to satisfy the vanishing Reifenberg condition if for any
δ ∈ (0, 1), there exists Rδ > 0 such that Ω satisfies the (δ, Rδ)-Reifenberg condi-
tion. Note that the vanishing Reifenberg condition is weaker than the C1-boundary
condition (see Example 5.13.(2) and (3)).

In this subsection, we present the totally vanishing exterior Reifenberg condition,
which is a generalization of the vanishing Reifenberg condition. We also obtain a
result for the Poisson equation on domains satisfying the totally vanishing exterior
Reifenberg condition (see Theorem 5.18).

Definition 5.11 (Exterior Reifenberg condition).

(1) By ERΩ we denote the set of all (δ, R) ∈ [0, 1]×R+ satisfying the following:

For each p ∈ ∂Ω, and each connected component Ω
(i)
p,R of Ω∩B(p,R), there

exists a unit vector e
(i)
p,R ∈ Rd such that

Ω
(i)
p,R ⊂ {x ∈ BR(p) : (x− p) · e(i)p,R < δR} . (5.11)

By δ(R) := δΩ(R) we denote the infimum of δ such that (δ, R) ∈ ERΩ.
(2) For δ ∈ [0, 1], we say that Ω satisfies the totally δ-exterior Reifenberg condi-

tion (abbreviate to ‘〈TER〉δ’), if there exist constants 0 < R0 ≤ R∞ < ∞
such that

δΩ(R) ≤ δ whenever R ≤ R0 or R ≥ R∞ . (5.12)

(3) We say that Ω satisfies the totally vanishing exterior Reifenberg condition
(abbreviate to ‘〈TVER〉’), if Ω satisfies 〈TER〉δ for all δ ∈ (0, 1]. In other
word,

lim
R→0

δΩ(R) = lim
R→∞

δΩ(R) = 0 .

The main theorem in this subsection concerns domains satisfying 〈TER〉δ for
sufficiently small δ > 0. However, our main interest is the condition 〈TVER〉. For
a comparison between the Refenberg condition and 〈TVER〉, see Figure 5.3 and
Example 5.13 below.

Lemma 5.12. For any R > 0,
(
δ(R), R

)
∈ ERΩ.

Proof. Take a sequence {δn}n∈N such that (δn, R) ∈ ERΩ and δn → δ(R) as n →
∞. Since (δn, R) ∈ ERΩ, for any p ∈ ∂Ω and any connected component of Ω ∩
B(p,R), denoted by Ωp,R, there exists a unit vector en such that

Ωp,R ⊂ {x ∈ BR(p) : (x− p) · en < δnR} . (5.13)

Since {en}n∈N ⊂ ∂B(0, 1), there exists a subsequence {enk
}k∈N such that ep :=

limk→∞ enk
exists in ∂B(0, 1). It is impliled by (5.13) that

Ωp,R ⊂ {x ∈ BR(p) : (x − p) · ep < δ(R)R} .
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Vanishing
Reifenberg condition

Totally vanishing exterior
Reifenberg condition

(Definition 1.6)

Totally vanishing exterior
Reifenberg condition
(Definition 5.11)

Figure 5.3. Totally vanishing exterior Reifenberg condition

Therefore
(
δ(R), R

)
∈ ERΩ. �

Example 5.13.

(1) If Ω satisfies the (δ, R1)-Reifenberg condition, then δ(R) ≤ δ for all R ≤ R1,

indeed the first line of (5.10) implies (5.11) with e
(i)
p,r = ep,r. Moreover, if Ω

is bounded, then Proposition 5.14 implies δ(R) ≤ diam(Ω)/R. Therefore, if
Ω is a bounded domain satisfying the vanishing Reifenberg condition, then
Ω also satisfies 〈TVER〉.

(2) By λ∗(R
d−1), we denote the little Zygmund class, which is the set of all

f ∈ C(Rd−1) such that

lim
h→0

sup
x∈Rd−1

|f(x+ h)− 2f(x) + f(x− h)|
|h| = 0 .

For f ∈ λ∗(R
d−1), put

Ω = {(x′, xd) ∈ Rd−1 × R : xd > f(x′)} .
Then, as mentioned in [12, Example 1.4.3] (see also [16, Theorem 6.3]), Ω
satisfies the vanishing Reifenberg condition, which implies limR→0 δΩ(R) =
0. Moreover, since A := ‖f‖C(Rd−1) < ∞, Proposition 5.14 implies that

δ(R) ≤ 2‖f‖
C(Rd−1)

R . Therefore Ω satisfies 〈TVER〉.
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(3) Suppose that Ω is bounded, and for any p ∈ ∂Ω there exists R > 0 and
f ∈ λ∗(R

d−1) such that

Ω ∩B(p,R) =
{
y = (y′, yn) ∈ Rd−1 × R : |y| < R and yn > f(y′)

}
,

where (y′, yn) = (y1, . . . , yn) is an orthonormal coordinate system centered
at p. Then Ω satisfies the vanishing Reifenberg condition, and therefore Ω
satisfies 〈TVER〉.

(4) Let Ω satisfy the exterior R0-ball condition, i.e., there exists R0 > 0 such
that for any p ∈ ∂Ω, there exists q ∈ Rd satisfying |p − q| = R0 and
B(q, R0) ⊂ Ωc. Then δ(R) ≤ R

2R0
, and therefore limR→0 δ(R) = 0.

(5) If a domain Ω is an intersection of domains satisfying the totally vanishing
Reifenberg condition, then Ω satisfies 〈TVER〉.

All of the following examples are valid even if 〈TVER〉 is defined by (1.9) instead
of (5.11).

A sufficient condition for limR→∞ δΩ(R) = 0 is that δΩ(R) . 1/R. We provide
an equivalent condition for Ω to satisfy δΩ(R) . 1/R.

Proposition 5.14.

sup
R>0

RδΩ(R) = sup
p∈∂Ω

d
(
p, ∂(Ωc.h.)

)
,

where Ωc.h. is the convex hull of Ω, i.e.,

Ωc.h. :=
{
(1 − t)x+ ty : x, y ∈ Ω , t ∈ [0, 1]

}
.

Remark 5.15. It follows from the definition of δΩ(R) that RδΩ(R) increases as
R → ∞. Therefore if δΩ(r0) > 0 for some r0 > 0, then δΩ(R) & 1/R as R → ∞.
As a result, due to Proposition (5.14), an equivalent condition for δ(R) to have
minimal nontrivial decay (i.e., δΩ(R) ≃ 1/R) is that supp∈∂Ω d

(
p, ∂(Ωc.h.)

)
<∞.

Proof of Proposition 5.14. We only need to prove that for any N0 > 0,

sup
R>0

R δΩ(R) ≤ N0 ⇐⇒ sup
p∈∂Ω

d
(
p, ∂(Ωc.h.)

)
≤ N0 . (5.14)

Step 1. We first claim that LHS of (5.14) holds if and only if for any p ∈ ∂Ω,
there exists a unit vector ep such that

Ω ⊂ {x ∈ Rd : (x− p) · ep < N0} . (5.15)

The ‘if’ part is obvious. Therefore, we only need to prove the ‘only if’ part. Assume

that LHS of (5.14) holds. Fix p ∈ ∂Ω, and take {Ω̃n}n∈N such that Ω̃n is a connceted

component of Ω ∩Bn(p), and Ω̃1 ⊂ Ω̃2 ⊂ Ω̃3 ⊂ · · · . Since Ω is a domain, Ω is path
connected, which implies

⋃

n∈N

Ω̃n = Ω . (5.16)

Since Rδ(R) ≤ N0, for each n ∈ N, there exists en ∈ ∂B1(0) such that

Ω̃n ⊂ {x ∈ Rd : (x− p) · en < N0} (5.17)

(see Lemma 5.12). Since ∂B1(0) is compact, there exists a subsequence {enk
} which

converges to a certain point, ep ∈ ∂B1(0). Due to (5.16) and (5.17), we obtain that
(5.15) holds for this ep.
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Step 2. Due to (5.14), we only need to prove the following: For p ∈ ∂Ω, (5.15)
holds for some ep ∈ ∂B1(0) if and only if d

(
p, ∂(Ωc.h.)

)
≤ N0.

To prove the ‘only if’part, suppose (5.15) and observe that

p ∈ ∂Ω ⊂ Ωc.h. ⊂ {x ∈ Rd : (x− p) · ep ≤ N0} .
Put α0 := sup{α ≥ 0 : p + αep ∈ Ωc.h.}. Then p + α0ep ∈ ∂(Ωc.h.), and therefore
d
(
p, ∂(Ωc.h.)

)
≤ α0 ≤ N0.

To prove the ‘if’ part, suppose that there exists q ∈ ∂(Ωc.h.) such that

|p− q| = d
(
p, ∂(Ωc.h.)

)
≤ N0 .

Due to Lemma 5.8 and that Ωc.h. is a convex domain, there is a unit vector ẽq such
that

Ωc.h. ⊂ {x ∈ Rd : (x − q) · ẽq < 0} .
This implies that for any x ∈ Ω ⊂ Ωc.h.,

(x− p) · ẽq < (q − p) · ẽq ≤ |p− q| ≤ N0 .

Therefore (5.15) holds for ep := ẽq. �

Remark 5.16. From Step 1 in the proof of Proposition 5.14, one can observe that this
proposition remains valid even if the definition of δΩ(R) is replaced by the infimum
of δ > 0 such that, for any p ∈ ∂Ω, there exists a unit vector ep,R satisfying (1.9)
for r = R.

Now, we state the main result of this subsection. We temporarily assume Theo-
rem 5.17 (they are proved at the end of this subsection) and prove Theorem 5.18.

Theorem 5.17. For any ǫ ∈ (0, 1), there exists δ > 0 depending only on d, ǫ such
that if Ω satisfies 〈TER〉δ, then Ω satisfies LHMD(1 − ǫ) where M1−ǫ in (4.7)
depends only on d, ǫ, δ, and R0/R∞, where R0 and R∞ are constants in (5.12).

Theorem 5.18. For any p ∈ (1,∞) and θ ∈ R with −p − 1 < θ − d < −1,
there exists δ > 0 depending only on d, p, ǫ such that if Ω satisfies 〈TER〉δ, then
Statement 4.3 (Ω, p, θ) holds. In addition, N1 in (4.3) depends only on d, p, γ,
θ, and R0/R∞, where R0 and R∞ are constants in (5.12). In particular, if Ω
satisfying 〈TVER〉, then Statement 4.3 (Ω, p, θ) holds for all p ∈ (1,∞) and θ ∈ R

with −p− 1 < θ − d < −1.

Proof. Take ǫ ∈ (0, 1) such that

−p− 1 + (p− 1)ǫ < θ − d < −1− ǫ , (5.18)

and put δ as the constant in Theorem 5.17 for this ǫ. Consider a domain Ω satisfying
〈TER〉δ. By Theorem 5.17, this Ω satisfies LHMD(1− ǫ). Therefore Theorem 4.13
and (5.18) imply that Statement 4.3 (Ω, p, θ) holds with N1 = N(d, p, γ, θ, R0/R∞).

�

Remark 5.19. Kenig and Toro [25, Lemma 2.1] established that if a bounded do-
main satisfies the vanishing Reifenberg condition, then this domain also satisfies
LHMD(1− ǫ) for all ǫ ∈ (0, 1).

To prove Theorem 5.17, we need the following lemma:

Lemma 5.20. If (δ, R) ∈ ERΩ, then there exists a continuous function wp,R : Ω →
(0, 1] satisfying the following:
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(1) wp,R is a classical superharmonic function on Ω .
(2) wp,R = 1 on {x ∈ Ω : |x− p| > (1− δ)R} .
(3) wp,R ≤Mδ on Ω ∩B(p, δR) .

Here, M is a constant depending only on d. In particular, M is independent of δ.

Proof of Lemma 5.20. If δ > 1/8, then by putting wp,R ≡ 1 andM = 8, this lemma
is proved. Therefore we only need to consider the case δ ≤ 1/8. For a fixed p ∈ ∂Ω,

let
{
Ω

(i)
p,R

}
be the set of all connected components of Ω ∩B(p,R). For each i, take

a unit vector e
(i)
p,R satisfying (5.11). Put

q = p+R(δ + 1/4)e
(i)
p,R , (5.19)

so that

|p− q| = R(δ + 1/4) and Ω
(i)
p,R ∩B(q, R/4) 6= ∅ (5.20)

(see Figure 5.4 below).

Ω
(i)
p,R

p

q e
(i)
p,R

Figure 5.4. q and B(q, R/4) in (5.19), (5.20)

Put W (i)(x) = F0

(
4R−1|x− q|

)
/F0(2), where

F0(t) = log(t) if d = 2 ; F0(t) = 1− t2−d if d ≥ 3 , (5.21)

so that ∆W (i) = 0 on Rd \ {q}. Observe that

0 ≤W (i)(x) ≤M0

(
4R−1|x− q| − 1

)
if |x− q| ≥ R/4 ;

W (i)(x) ≥ 1 if |x− q| ≥ R/2 ,

where M0 is a constant depends only on d. Due to (5.20) and that δ < 1
8 , for

x ∈ Ω
(i)
p,R,

if |x− p| ≤ δR , then
R

4
≤ |x− q| ≤ R

4
+ 2δR ;

if |x− p| ≥ (1− δ)R , then |x− q| ≥ (3 − 8δ)R

4
≥ R

2
.

Therefore we obtain that

0 ≤W (i)(x) ≤ 8M0δ if |x− p| ≤ δR ;

W (i)(x) ≥ 1 if |x− p| ≥ (1 − δ)R .
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Put

wp,R(x) =

{
W (i)(x) ∧ 1 if x ∈ Ω

(i)
p,R

1 if x ∈ Ω \B(p,R) .

Then wp,R is continuous on Ω, and satisfies (2) and (3) of this lemma. (1) of this
lemma follows from (5.21) and Lemma 4.5. �

Proof of Theorem 5.17. Let M > 0 be the constant in Lemma 5.20. For given
ǫ ∈ (0, 1), take small enough δ ∈ (0, 1) such that Mδ < δ1−ǫ. We assume that
Ω satisfies (5.12) for this δ. By using dilation and Lemma 5.12, without loss of

generality, we assume that (δ, R) ∈ ERΩ whenever R ≤ R̃0 := R0/R∞ (≤ 1) or
R ≥ 1.

Note that for (δ, R) ∈ ERΩ, due to Lemma 5.20 and the definition of PWB
solutions (4.6), w(·, p, R) ≤ Mδ ≤ δ1−ǫ on Ω ∩ ∂BδR(p). Therefore, by Lemma
4.6.(3),

w(·, p, R) ≤ δ1−ǫw(·, p, δR) on Ω ∩BδR(p) . (5.22)

The proof is completed by establishing (4.7) for α := 1− ǫ and M1−ǫ depending

only on δ and R̃0. We prove (4.7) by dividing r and |x − p| into the following five
cases:

Case 1: r ≤ R̃0. Take n0 ∈ N0 such that δn0+1r ≤ |x − p| < δn0r. Since
(δ, δkr) ∈ ERΩ for all k ≥ 0, it follows from (5.22) that

w(x, p, r) ≤ δn0(1−ǫ)w(x, p, δn0r) ≤ δn0(1−ǫ) ≤
( |x− p|

δ r

)1−ǫ

.

Case 2: |x − p| < R̃0 < r ≤ 1. By Lemmas 4.6.(1) and (3) and the result in
Case 1, we have

w(x, p, r) ≤ w(x, p, R̃0) .δ,R̃0
|x− p|1−ǫ ≤

( |x− p|
r

)1−ǫ

Case 3: R̃0 ≤ |x− p| < r ≤ 1. It directly follows that

w(x, p, r) ≤ 1 ≤
( |x− p|

R̃0 r

)1−ǫ

.

Case 4: |x − p| < 1 < r. Take n0 ∈ N0 such that δn0+1r ≤ 1 < δn0r. Then
(δ, δkr) ∈ ERΩ for all k = 0, 1, . . . , n0 − 1. Therefore we have

w(x, p, r) ≤ δn0(1−ǫ)w(x, p, δn0r) ≤ δn0(1−ǫ)w(x, p, 1) .δ,R̃0
δn0(1−ǫ)|x− p|1−ǫ ,

where the first inequality follows from (5.22), the second follows from Lemmas
4.6.(1) and (3), and the last follows from the result in Cases 2 and 3. Since δn0 ≤
1/(δr), we have w(x, p, r) .δ,R̃0

(
|x− p|/r

)1−ǫ
.

Case 5: 1 ≤ |x− p| < r. Take n0 ∈ N0 such that δn0+1r ≤ |x− p| < δn0r. Since
1 < |x− p|, we have (δ, δkr) ∈ ERΩ for all k = 0, 1, . . . , n0 − 1. This implies that

w(x, p, r) ≤ δn0(1−ǫ)w(x, p, δn0r) ≤ δn0(1−ǫ) ≤
( |x− p|

δ r

)1−ǫ

.

�
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Appendix A. Auxiliary results

Lemma A.1. Let p ∈ (1,∞) and u ∈ C(Rd) satisfy (2.3).

(1) |u|p/2−1u ∈W 1
2 (R

d) and Di(|u|p/2−1u) = p
2 |u|p/2−1(Diu)1{u6=0}.

(2) |u|p ∈ W 2
1 (R

d) and

Di

(
|u|p

)
= p|u|p−2uDiu1{u6=0} ;

Dij

(
|u|p

)
=
(
p|u|p−2uDiju+ p(p− 1)|u|p−2DiuDju

)
1{u6=0} .

(A.1)

Proof. This proof is a variant of [34, Lemma 2.17]. Take a sequence of nonnegative
functions {gn}n∈N ⊂ C(R) such that gn = 0 on a neighborhood of 0 for each n ∈ N,
and gn(s) ր |s|p/2−11s6=0 for all s ∈ R. Put

Fn(t) :=

∫ t

0

gn(s) ds , Gn(t) :=

∫ t

0

(
gn(s)

)2
ds .

Recall the assumption (2.3), and denote A = sup |u|. Since 0 ≤ gn(s) ≤ |s|p/2−1,
the Lebesgue dominated convergence theorem implies that Fn(t) → 2

p |t|p/2−1t and

Gn(t) → 1
p−1 |t|p−2t uniformly for t ∈ [−A,A]. Furthermore, there absolute values

increase as n → ∞. Since Fn
(
u( · )

)
and Gn

(
u( · )

)
vanish on a neighborhood of

{u = 0}, they are supported on a compact subset of {u 6= 0}, and continuously
differentiable with

Di

(
Fn(u)

)
= gn(u)Diu 1{u6=0} and Di

(
Gn(u)

)
=
(
gn(u)

)2
Diu 1{u6=0} .

(1) Integrate by parts to obtain
∫

Rd

|gn(u)∇u 1{u6=0}|2 dx = −
∫

Rd

Gn(u)∆u 1{u6=0} dx

≤ 1

p− 1

∫

{u6=0}

|u|p−1|∆u| dx .

By the monotone convergence theorem, we have |u|p/2−1|∇u| ∈ L2(R
d). We denote

v = 2
p |u|p/2−1u. For any ζ ∈ C∞

c (Rd), we have

−
∫

Rd

v ·Diζ dx = − lim
n→∞

∫

Rd

Fn(u) ·Diζ dx

= lim
n→∞

∫

{u6=0}

gn(u)Diu · ζ dx =

∫

{u6=0}

|u|p/2−1Diu · ζ dx .

Here, the first and the last equalities follow from the Lebesgue dominated conver-
gence theorem, because |Fn(u)| ≤ |v| and |gn(u)Diu| ≤ |u|p/2−1|∇u| ∈ L2(R

d).
Therefore v ∈ W 1

2 (R
d) and Div = |u|p/2−1Diu 1{u6=0}.

(2) It follows from (1) of this lemma that |u|p ∈ W 1
1 (R

d) with Di

(
|u|p

)
=

p|u|p−2uDiu1u6=0. For any ζ ∈ C∞
c , we have

1

p− 1

∫

{u6=0}

|u|p−2uDiu ·Djζ dx

= lim
n→∞

∫

Rd

Gn(u)Diu ·Djζ dx

= − lim
n→∞

∫

Rd

(
|gn(u)|2DiuDju+Gn(u)Diju

)
ζ dx
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= −
∫

{u6=0}

(
|u|p−2DiuDju+

1

p− 1
|u|p−2uDiju1{u6=0}

)
ζ dx .

Here, the first and last inequalities follow from the Lebesgue dominated convergence
theorem, because |Gn(u)| ≤ 1

p−1 |u|p−1 and |gn(u)| ≤ |u|p/2−1 (recall the assumption

for u, and (1) of this lemma). Therefore |u|p ∈W 2
1 (R

d) with (A.1). �

Lemma A.2. There exist linear maps

Λ0 : ΨHγ
p,θ → ΨHγ+1

p,θ (Ω) and Λ1, . . . , Λd : ΨH
γ
p,θ → ΨHγ+1

p,θ−p(Ω)

such that for any f ∈ ΨHγ
p,θ(Ω), f = Λ0f +

∑d
i=1Di(Λif) and

‖Λ0f‖ΨHγ+1
p,θ (Ω) +

d∑

i=1

‖Λif‖ΨHγ+1
p,θ−p(Ω) ≤ N‖f‖ΨHγ

p,θ(Ω) , (A.2)

where N = N(d, p, γ, θ,C2(Ψ)).

Proof. Step 1. We first prove the case Ψ ≡ 1. Consider linear operators from Hγ
p

to Hγ+1
p defined by L0 := (1 − ∆)−1 and Li := −Di(1 − ∆)−1 for i = 1, . . . , d.

They satisfy that for any g ∈ Hγ
p ,

L0g +

d∑

i=1

DiLig = g and

d∑

i=0

‖Lig‖Hγ+1
p

.d,p,γ ‖g‖Hγ
p
. (A.3)

We denote ζ1(t) = ζ0(e
−1t) + ζ0(t) + ζ0(et) and ζ1,(n)(x) := ζ1

(
e−nρ̃(x)

)
. Put

Λ̃0f(x) :=
∑

n∈Z

ζ1,(n)(x)L0

[(
ζ0,(n)f

)
(en·)

]
(e−nx)

−
d∑

k=1

∑

n∈Z

en
(
Dkζ1,(n)

)
(x)Lk

[(
ζ0,(n)f

)
(en·)

]
(e−nx) ,

Λ̃if(x) :=
∑

n∈Z

enζ1,(n)(x)Li

[(
ζ0,(n)f

)
(en·)

]
(e−nx) ,

for i = 1, . . . , d. Due to (A.3), we have

Λ̃0f +
d∑

i=1

DiΛ̃if =
∑

n∈Z

(
ζ1,(n)( · )×

[(
L0 +

d∑

i=1

DiLi
)[
(ζ0,(n)f)(e

n·)
]]
(e−n · )

)

=
∑

n∈Z

[
ζ1,(n)ζ0,(n)f

]
=
∑

n∈Z

ζ0,(n)f = f .

In addition, we also obtain

∥∥(ζ0,(n)Λ̃0f
)
(en·)

∥∥p
Hγ+1

p
+

d∑

i=1

e−np
∥∥(ζ0,(n)Λ̃if

)
(en·)

∥∥p
Hγ+1

p
(A.4)

.N

d∑

i=0

∑

|k|≤2

∥∥∥
(
ζ0,(n)ζ1,(n+k)

)
(en·)× Li

[(
ζ0,(n+k)f

)
(en+k·)

]
(e−k·)

∥∥∥
p

Hγ+1
p

+ enp
d∑

i=0

∑

|k|≤2

∥∥∥
(
ζ0,(n)Dζ1,(n+k)

)
(en·)× Li

[(
ζ0,(n+k)f

)
(en+k·)

]
(e−k·)

∥∥∥
p

Hγ+1
p
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.N
∑

|k|≤2

d∑

i=0

∥∥∥Li
[(
ζ0,(n+k)f

)
(en+k·)

]∥∥∥
p

Hγ+1
p

.d,p,γ
∑

|k|≤2

∥∥(ζ0,(n+k)f
)
(en+k·)

∥∥p
Hγ

p
,

Here, the first and second inequalities follow from that
∥∥(ζ0,(n)ζ1,(n+k)

)
(en·)

∥∥
Cm(Rd)

+ en
∥∥(ζ0,(n) ·Dζ1,(n+k)

)
(en·)

∥∥
Cm(Rd)

≤ N(d, k,m) ,

where N(d, k, l) = 0 if |k| ≥ 3 (note (3.10) and that supp(ζ1) ⊂ [e−2, e2]). (A.4)

implies (A.2) for Ψ ≡ 1 and Λ̃i instead of Λi.
Step 2. For f ∈ ΨHγ

p,θ (⇔ Ψ−1f ∈ Hγ
p,θ(Ω)), put

Λ0f = ΨΛ̃0(Ψ
−1f)−

d∑

k=1

(
DkΨ

)
· Λ̃k(Ψ−1f) ; Λif = ΨΛ̃i(Ψ

−1f) .

for i = 1, · · · , d. Then we have

(
Λ0 +

d∑

i=1

DiΛi

)
f = Ψ

(
Λ̃0 +

d∑

i=1

DiΛ̃i

)(
Ψ−1f

)
= f .

Moreover, Lemma 3.10.(3) and (A.4) imply that

‖Ψ−1Λ0f‖Hγ+1
p,θ (Ω) +

d∑

i=1

‖Ψ−1Λif‖Hγ+1
p,θ−p(Ω)

. ‖Λ̃0(Ψ
−1f)‖Hγ+1

p,θ (Ω) +

d∑

i=1

‖Λ̃i(Ψ−1f)‖Hγ+1
p,θ−p(Ω) . ‖Ψ−1f‖Hγ

p,θ(Ω) .

Therefore, the proof is completed. �

Lemma A.3. Let η ∈ C∞
c (Rd) satisfy η = 1 on B1(0) and supp(η) ⊂ B2(0). For

each i ∈ N, let N(i) ∈ N be a constant satisfying

supp
( ∑

|n|≤i

ζ0,(n)

)
⊂
{
x ∈ Ω :

(
N(i)/2

)−1 ≤ ρ(x) ≤ N(i)/2
}
.

Let Λi, Λi,j, Λi,j,k are linear functionals on D′(Ω) defined as

Λif :=
( ∑

|n|≤i

ζ0,(n)

)
f , Λi,jf = η(j−1· )Λif , Λi,j,kf =

(
Λi,jf

)(N(i)−1k−1)
,

where
(
Λi,jf

)(ǫ)
is defined in the same way as in (2.1). Then for any p ∈ (1,∞),

γ, θ ∈ R, and regular Harnack function Ψ, the following hold:

(1) For any f ∈ D′(Ω), Λi,j,kf ∈ C∞
c (Ω) .

(2) For any f ∈ ΨHγ
p,θ(Ω),

sup
i

‖Λif‖ΨHγ
p,θ(Ω) ≤ N1‖f‖ΨHγ

p,θ(Ω)

sup
j

‖Λi,jf‖ΨHγ
p,θ(Ω) ≤ N2‖f‖ΨHγ

p,θ(Ω) (A.5)

sup
k

‖Λi,j,kf‖ΨHγ
p,θ

(Ω) ≤ N3‖f‖ΨHγ
p,θ

(Ω) ,

where N1, N2, N3 are constants independent of f .
(3) For any f ∈ ΨHγ

p,θ(Ω),

lim
k→∞

Λi,j,kf = Λi,jf , lim
j→∞

Λi,jf = Λif , lim
i→∞

Λif = f in ΨHγ
p,θ(Ω) . (A.6)
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Proof. (1) It follows directly from the properties of distributions.
(2), (3) Step 1: Λi. Let f ∈ Hγ

p,θ(Ω). From (3.10), one can observe that

‖f − Λif‖pΨHγ
p,θ(Ω)

.N
∑

|n|≥i−1

enθ
∥∥(Ψ−1fζ0,(n)

)
(en·)

∥∥p
Hγ

p
≤ ‖f‖p

ΨHγ
p,θ(Ω)

,

where N = N(d, p, γ, θ). Therefore we have

sup
i

‖Λif‖ΨHγ
p,θ(Ω) ≤ N‖f‖ΨHγ

p,θ(Ω) and lim
i→∞

‖f − Λif‖ΨHγ
p,θ(Ω) = 0 .

Step 2: Λi,j. The definition of Hγ
p,θ(Ω) implies that for any A > 1, if F ∈ D′(Ω)

or F ∈ D′(Rd), and F is supported on {x ∈ Ω : A−1 ≤ ρ(x) ≤ A}, then
‖F‖Hγ

p,θ(Ω) ≃N ‖F‖Hγ
p
, (A.7)

where N = N(d, p, θ, γ, A). For each i ∈ N, Ψ−1Λif and Ψ−1Λi,jf are supported
on {

x ∈ Ω : N(i)−1 ≤ ρ(x) ≤ N(i)
}
.

Therefore Ψ−1Λif ∈ Hγ
p . Since Ψ−1Λi,jf = η(j−1 ·)Ψ−1Λif , we obtain that

lim
j→∞

∥∥Ψ−1Λif −Ψ−1Λi,jf
∥∥
Hγ

p
= 0 and

∥∥Ψ−1Λi,jf
∥∥
Hγ

p
.N2

∥∥Ψ−1Λif
∥∥
Hγ

p
,

where N2 = N(d, p, γ, θ, i, η). Due to (A.7), (A.5) and (A.6) for Λi,j are proved.
Step 3: Λi,j,k. Put

Ki,j = {x ∈ Ω : N(i)−1 ≤ ρ(x) ≤ N(i) , |x| ≤ 2j} ,
which is a compact subset of Ω, and Λi,jf and Λi,j,kf are supported on there. Since
Ψ and Ψ−1 belong to C∞(Ω), we obtain that

‖Λi,jf‖ΨHγ
p,θ

(Ω) := ‖Ψ−1Λi,jf‖Hγ
p,θ

(Ω) ≃N ‖Ψ−1Λi,jf‖Hγ
p
≃N ‖Λi,jf‖Hγ

p
, (A.8)

where N = N(d, p, γ, θ, i, j,Ψ); it also holds for Λi,j,kf and Λi,jf − Λi,j,kf , instead
of Λi,jf .

Since Λi,j,kf is a mollification of Λi,jf , we have

‖Λi,j,kf‖Hγ
p
.N3 ‖Λi,jf‖Hγ

p
and lim

k→∞

∥∥Λi,jf − Λi,j,kf
∥∥
Hγ

p
= 0 ,

where N3 = N(d, p, θ, γ,Ψ, i, j, η). �
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