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Abstract

Influence maximization (IM) is the problem of identifying a
limited number of initial influential users within a social net-
work to maximize the number of influenced users. However,
previous research has mostly focused on individual informa-
tion propagation, neglecting the simultaneous and interactive
dissemination of multiple information items. In reality, when
users encounter a piece of information, such as a smartphone
product, they often associate it with related products in their
minds, such as earphones or computers from the same brand.
Additionally, information platforms frequently recommend
related content to users, amplifying this cascading effect and
leading to multiplex influence diffusion.
This paper first formulates the Multiplex Influence Maxi-
mization (Multi-IM) problem using multiplex diffusion mod-
els with an information association mechanism. In this prob-
lem, the seed set is a combination of influential users and
information. To effectively manage the combinatorial com-
plexity, we propose Graph Bayesian Optimization for Multi-
IM (GBIM). The multiplex diffusion process is thoroughly
investigated using a highly effective global kernelized atten-
tion message-passing module. This module, in conjunction
with Bayesian linear regression (BLR), produces a scalable
surrogate model. A data acquisition module incorporating
the exploration-exploitation trade-off is developed to opti-
mize the seed set further. Extensive experiments on synthetic
and real-world datasets have proven our proposed framework
effective. The code is available at https://github.com/zirui-
yuan/GBIM.

Introduction
The rapid growth of online social networks has sparked sub-
stantial interest among researchers in understanding the dy-
namics of information dissemination within these networks.
This interest has led to the study of influence maximization
(IM), an optimization problem that aims to maximize the
influence spread within a specific diffusion model by select-
ing a limited number of seeds (Kempe, Kleinberg, and Tar-
dos 2003). IM has garnered considerable attention from both
industry and academia due to its relevance in various real-
world applications, including viral marketing, epidemic con-
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Figure 1: The comparison of related IM problems, and u1 is
the initial seed user. (a) Canonical IM in the homogeneous
network. (b) Heterogeneous IM on networks with multiple
node and edge types. (c) Multi-layer IM with users in two
social network platforms. (d) Multiplex IM with three infor-
mation items {v1, v2, v3}, and (u1, v1) is the seed.

trol, and rumor blocking (Li et al. 2018; Zhang et al. 2022;
Li et al. 2022a).

Most IM literature focuses on the canonical setting, which
only considers an individual information item spread over a
homogeneous social network based on an information dif-
fusion model. Researchers have made great progress in de-
vising various efficient and effective methods to address the
canonical IM problem, utilizing techniques such as simula-
tion, proxy, and sketch (Goyal, Lu, and Lakshmanan 2011;
Borgs et al. 2014; Tang, Shi, and Xiao 2015). In recent
years, IM research has witnessed a growing interest in ex-
ploring more realistic scenarios beyond the canonical set-
ting, including Heterogeneous IM and Multi-Layer IM. Het-
erogeneous IM (Figure 1b) addresses the IM problem in
heterogeneous networks with diverse node and edge types.
Researchers commonly employ techniques involving net-
work schema and meta-paths to construct propagation path-
ways. Building on this, both traditional and learning-based
methods can be designed to optimize the seed set (Zhan
et al. 2015; Deng et al. 2019; Li et al. 2022b). Multi-Layer
IM (Figure 1c) discusses the cross-layer nature of informa-
tion dissemination across different social network platforms.
These studies consider the sharing of nodes between net-
works as a mechanism enabling information to propagate
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across layers. Some approaches for tackling this problem
involve integrating networks into one unified large network
and applying existing IM algorithms (Kuhnle et al. 2018;
Keikha et al. 2020; Katukuri, Jagarapu et al. 2022).

While these efforts have succeeded, they still concen-
trate on scenarios where individual information spreads in
isolation. However, real-world online social networks typ-
ically involve the simultaneous dissemination of multiple
information items, with heterogeneous diffusion patterns
over these items. Additionally, interconnected information
items often result in multiplex influence, further compli-
cating the dynamics of information spread. This study in-
troduces the Multiplex Influence Maximization (Multi-IM)
problem, which aims to maximize the multiplex influence
within the constraints of a fixed seed budget. As depicted
in Figure 1d, three interconnected information items rep-
resented by {v1, v2, v3} (e.g., three complementary prod-
ucts) propagate concurrently in a social network. This can
be modeled as a multiplex network consisting of three prop-
agation layers, each representing the dissemination of one
information item, denoted by the colors red, purple, and
green, respectively. When information item v1 influences
user u1, it creates multiplex influence due to the associa-
tions among the three information items. Consequently, user
u1 also adopts the information from v2 and v3, activating
u1 on the propagation layers of v2 and v3 in this multiplex
network. Moreover, the preference biases of users towards
items lead to different propagation results.

The new mode of propagation presents the following diffi-
culties for seed set selection. First, the presence of multiple
information items increases combinatorial complexity. To
maximize multiplex influence, we must not only select users
to disseminate information but also determine the most per-
tinent information items for those users. Second, this novel
modeling of propagation results in a heterogeneous, multidi-
mensional structure that introduces a new type of geometric
complexity. Furthermore, compared to Canonical IM, this
propagation modeling generates larger dimensions and data
volume, resulting in catastrophic data processing issues. Nu-
merous layers representing item-specific propagation envi-
ronments would considerably increase computational costs
in Multi-IM, making it challenging for conventional tech-
niques to complete tasks in a timely manner.

We propose GBIM, a Graph Bayesian Optimization
framework for Multi-IM, to tackle these challenges. By ef-
fectively navigating the complex search space, GBIM iden-
tifies the most influential users and the optimal information
items to maximize multiplex influence. To address the het-
erogeneous and multi-layered geometric structure generated
by the new propagation modeling, a highly effective global
kernelized attention message-passing module based on Pos-
itive Random Features (PRF) (Choromanski et al. 2020) is
employed. This module acquires a comprehensive under-
standing of the multiplex diffusion process, yielding a re-
liable influence estimation. GBIM combines this module
with Bayesian linear regression to create a scalable surrogate
model that facilitates efficient data processing. In addition,
the data acquisition module incorporates the exploration-
exploitation trade-off, enabling effective exploration of the

vast search space for optimizing the seed set with the high-
est observed performance. Our contributions are as follows:

• First formulate the Multi-IM problem, which models the
scenario that multiple information items propagate and
interact in a multiplex network.

• Devise a highly effective global kernelized attention
message-passing module to learn the complex multiplex
diffusion process.

• Present GBIM to optimize the seed set with the highest
observed performance efficiently.

• Conduct extensive experiments to demonstrate the per-
formance of the proposed method.

Related Work
Influence Maximization. The influence maximization
(IM) problem was introduced in seminal work by (Kempe,
Kleinberg, and Tardos 2003), relying on diffusion models
like Linear Threshold and Independent Cascade (Li et al.
2018, 2022a). Much research has developed traditional sim-
ulation, proxy, and sketch-based methods (Goyal, Lu, and
Lakshmanan 2011; Borgs et al. 2014; Tang, Shi, and Xiao
2015), as well as recent learning-based techniques (Ling
et al. 2023). However, these canonical IM studies focus on
single information spread in homogeneous networks. Recent
interest has emerged in more realistic settings like Hetero-
geneous IM and Multi-Layer IM. Heterogeneous IM han-
dles diverse nodes and edges using techniques involving
meta-paths (Zhan et al. 2015; Deng et al. 2019; Li et al.
2022b). Multi-Layer IM examines cross-platform informa-
tion spread via node sharing (Kuhnle et al. 2018; Keikha
et al. 2020; Katukuri, Jagarapu et al. 2022). While incor-
porating complex networks, these works still consider indi-
vidual information. Multi-information settings are first dis-
cussed in Competitive IM, which handles a purely competi-
tive scenario (Bharathi, Kempe, and Salek 2007). The com-
plement relation between information items is only investi-
gated in (Lu, Chen, and Lakshmanan 2015) but is limited to
the IC model. Recently, some studies have examined multi-
information scenarios but did not account for interconnec-
tions between information items (Ni et al. 2020; Wu et al.
2021; Fang, Ho, and Dai 2022). In summary, modeling com-
plex interactions among multiple information items remains
a key limitation. Our work introduces a multiplex network
perspective to model multi-information dissemination.

Bayesian Optimization. Bayesian optimization (BO)
(Mockus 1998) is a method to optimize complex black-box
functions relying on Bayesian statistical models paired with
optimization algorithms. It requires a surrogate model repre-
senting the target function, typically based on Gaussian pro-
cesses (GPs) (Brochu, Brochu, and De Freitas 2010; Snoek,
Larochelle, and Adams 2012). However, GPs scale cubically
with increasing observations, challenging massively parallel
optimization requiring many evaluations. Neural networks
can serve as a practical surrogate model, leveraging flexi-
ble representation power to model complex functions and
enhance scalability (Snoek et al. 2015; Springenberg et al.
2016; Perrone et al. 2018; Ma, Cui, and Yang 2019). In



this work, we develop a highly effective global kernelized
attention message-passing module to learn the multiplex
diffusion process and serve as non-linear basis functions
for Bayesian linear regression to yield a scalable surrogate
model, leveraging both the nonlinear fitting capabilities of
neural networks and the effective statistical properties of
Bayesian.

Problem and Model Definition
In this work, we examine a context where m distinct
pieces of information are concurrently disseminated across
a weighted, directed social network, represented as G =
(U , EU ). Here, U = {u1, u2, ..., un} signifies the user set,
while EU denotes the edge set, with each ei,j ∈ EU carrying
a specific weight wi,j . We introduce the information associ-
ation network as I = (V, EV), where V = {v1, v2, ..., vm}
represents the set of information items and Ev encompasses
the edges linking these items. Furthermore, we consider a
preference matrix, P ∈ Rn×m, in which the element pi,j re-
flects the inclination of user ui towards item vj . The multi-
plex diffusion model M is expressed as y = M(x;G, I,P).
In this representation, the input x = {..., (u, v), ...} indi-
cates a seed set containing multiple user-item pairs, while
each pair (u, v) ∈ x implies that user u is initially influenced
by the information item v during the execution of M. The
output y ∈ N+ signifies the multiplex influence exerted by
all items. Grounded on the formalization above, the Multi-
IM problem is defined as follows:

Definition 1 (Multiplex Influence Maximization). The ob-
jective of the Multi-IM problem is to strategically choose a
maximum of k user-item pair from U and V , each user and
item can only be selected once, so as to maximize the overall
multiplex influence.

x∗ = arg max
|x|≤k

M(x;G, I,P), (1)

s.t. ui ̸= uj , vi ̸= vj , ∀(ui, vi), (uj , vj) ∈ x,

where x∗ represents the optimal seed node set capable of
generating the maximum multiplex influence in M.

In reality, the propagation dynamics of each informa-
tion item are different since users are inclined to spread
information aligning with their interests while overlooking
content that does not appeal to their preferences. Besides,
when users are influenced, they may associate other inter-
connected information in their minds, resulting in multiplex
influence. To model this realistic scenario, we introduce the
multiplex influence diffusion model M along with the asso-
ciation mechanism in a multiplex network perspective.

A multiplex network is a graph with multiple layers,
where each layer contains a network on the same set of
nodes. The multiplex network in M(x;G, I,P) contains m
layers, where each layer models the propagation environ-
ment for one information item and shares the same structure
as G. The commonly used information diffusion models like
Linear Threshold (LT) and Independent Cascade (IC) can
simulate propagation on each layer but need adaption to in-
corporate inherent heterogeneity stemming from preference

matrix P. Specifically, within the propagation layer of in-
formation item vk, the threshold for user ui is adjusted to
1− pi,k when using the LT model. For the IC model, the in-
fluence probability of edge ei,j is modified to wi,j · pj,k. We
propose an association mechanism to model the inter-layer
propagation across information items:
Definition 2 (Association Mechanism). The Association
Mechanism in the multiplex influence diffusion model refers
to the process by which activated users spread across the
interconnected information item propagation layers.

Specifically, when user ui gets activated by information
vj , they have a probability β ∗pi,k of associating to other ad-
jacent information vk ∈ NI(vj) and self-activating in vk’s
propagation layer. Here, NI(vj) denotes the neighbor infor-
mation items of vj in I, and β is a base ratio scaling the
inter-layer association strength. This process resembles dif-
fused thinking along I, terminating when user ui makes no
more associations.

Building on the multiplex network structure and associa-
tion mechanism, we formally define the multiplex influence
model as follows:
Definition 3 (Multiplex Diffusion Model). The multiplex
diffusion model M(x;G, I,P) is a model characterizing the
dynamical diffusion process of multiple information items in
a multiplex network. Each layer has a heterogeneous dif-
fusion pattern depending on the preference matrix P, and
the association mechanism allows influenced users to prop-
agate across layers based on I. The output is the expected
activated number at the multiplex network.

Let σi(x) denote the number of the users influenced by
item vi, we define the multiplex influence output by M as:

M(x;G, I,P) =

m∑
i=1

σi(x). (2)

The multiplex diffusion model M(x) operates in discrete
time steps. At step 0, the starting state is configured based on
the input seed set x. In each following step, the association
mechanism is executed for every newly activated user. Het-
erogeneous information diffusion then takes place on prop-
agation layers with active users. The model repeats this pro-
cess until no further activations occur and outputs the final
multiplex influence.

GBIM: Graph Bayesian Optimization
Framework for Multi-IM

Framework Overview
The process of our suggested GBIM framework is illus-
trated in Figure 2. This framework encompasses two pri-
mary modules: the surrogate model and data acquisition.
Initially, seeds are generated at random and assessed using
the objective multiplex diffusion model M(x), forming the
preliminary training dataset D = {(x1, y1), ..., (xN , yN )}.
Subsequently, we iteratively: (1) train a surrogate diffusion
model, denoted as M∗(x), to fit the present dataset D and
employ the output from the final layer of M∗(x) as a set
of basis functions ϕ(x), integrate it with a Bayesian linear
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Figure 2: The overview of the proposed GBIM framework. This framework includes two modules: surrogate model and data
acquisition. Initially, random seeds are evaluated by the true model M(x) to form dataset D. We then iteratively: (1) train
surrogate model M∗(x) on D; (2) sampling and evaluate the candidates X via M∗(x), selecting top K seed sets to be X ∗; (3)
assess X ∗ via M(x) to expand D. Finally, the optimal x∗ from D with maximal influence is selected.

regressor (BLR) to capture uncertainty; (2) sample an unob-
served candidate set X with the explore-exploit tradeoff, se-
lect the top K seed sets with elevated acquisition values into
X ∗; (3) appraise X ∗ using M(x) to curate a new dataset,
subsequently expanding the training data D. Upon the con-
clusion of the optimization cycle, the optimal x∗ from the
final observed dataset D, showcasing the maximum spread
number, is chosen as the definitive seed set.

Surrogate Model
Message-passing graph neural networks (GNNs) are widely
recognized for modeling geometric structures. By iteratively
updating node representations through aggregating informa-
tion from adjacent nodes, they bear resemblances to the
influence diffusion model. However, prevalent GNNs en-
counter challenges in addressing long-range dependencies,
which are pivotal in the influence diffusion model. In our
study, we introduce an optimized global message-passing
graph neural network to learn the multiplex influence dif-
fusion and leverage a BLR head to capture uncertainty.

Global Kernelized Attention Message Passing. The in-
put seed set x = {..., (ui, vj), ...} can be represented by
a matrix S ∈ Rn×m where Si,j = 1 if (ui, vj) ∈ x
and Si,j = 0 otherwise. We first encode S into a low-
dimensional status matrix X ∈ Rn×d. The non-zero rows of
X represent the status information of the seed users, while
zero rows represent non-seed users. Let H ∈ Rn×d be the
node feature matrix and Z ∈ Rn×d the output status matrix.
We can define a global attention message passing as follows:

Z = softmax(
HWQ(HWK)⊤√

d
)XWV , (3)

where WQ, WK and WV are learnable projection matri-
ces. However, this incurs O(n2) complexity, hindering scal-
ability to large graphs. To accelerate computation, we fur-
ther derive a kernel view of Equation 3. Denoting the i-th

row of X, H and Z as xi, hi, zi respectively, the kernelized
formulation is:

zi =

n∑
j=1

κ(hiWQ,hjWK)∑n
k=1 κ(hiWQ,hkWK)

(xjWV ), (4)

where κ(·, ·) : Rd × Rd → R+ is a positive-definite ker-
nel measuring the pairwise similarity. We further randomly
choose finite set of t basis functions to approximate the ker-
nel function:

κ(x,x′) ≈ φ(x)⊤φ(x′), (5)

φ(x) =
exp(−||x||2

2 )
√
t

[exp(w⊤
1 x), · · ·, exp(w⊤

t x)], (6)

where φ(·) : Rd → Rt is positive random feature map func-
tion and wk is independently sampled from N (0, Id). It en-
ables us to rewrite Equation 4 as follows:

zi =
n∑

j=1

φ(hiWQ)φ(hjWK)⊤∑n
k=1 φ(hiWQ)φ(hkWK)⊤

(xjWV ). (7)

The dot-then-exponentiate in Equation 3 then converts into
inner-product, which enables two summations to be shared
by each user:

zi =
φ(hiWQ)

∑n
j=1 φ(hjWK)⊤(xjWV )

φ(hiWQ)
∑n

k=1 φ(hkWK)⊤
. (8)

Finally, we obtain the matrix form of the Global Kernelized
Attention Message Passing (GKAMP) module with O(n)
complexity:

Z =
φ(HWQ)(φ(HWK)⊤(XWV ))

diag(φ(HWQ)(φ(HWK)⊤1n×1))
. (9)



Basis Functions Learning. Firstly, we use the GKAMP
module defined above to learn the complex multiplex diffu-
sion process of the objective multiplex influence model:

Zout = X+ GKAMP(X), (10)

where Zout ∈ Rn×d represents the final status matrix af-
ter multiplex information diffusion. Then we use multi-layer
perception (MLP) to regress this matrix to the prediction of
multiplex influence:

ŷ = MLP(Zout), (11)

and use the Mean Absolute Error (MAE) as the loss func-
tion:

L =

N∑
i=1

|yi − ŷi|. (12)

After training, we extract ϕ(x) ∈ RD, the output of the
last hidden layer of the MLP, as the basis functions for the
Bayesian linear regression.

Adaptive Basis Regression. In this work, we construct
the surrogate model by adaptively combining the basis func-
tions ϕ(x) via Bayesian linear regression (BLR). Let Φ =
[ϕ(x1), ...,ϕ(xN )] denote the design matrix arising from
the training data D, and y ∈ RN denote the stack target vec-
tor. Consider a linear regression model y = w⊤ϕ(x) + b,
where w ∼ N (0, σ2

wI) and b ∼ N (0, σ2
b I). For a new in-

put x, the predictive mean µ(x;D) and variance σ2(x;D)
of the BLR are then given by:

µ(x;D) = m⊤ϕ(x),

σ2(x;D) = ϕ(x)⊤A−1ϕ(x) + σ2
b ,

where
m = σ−2

b A−1Φ⊤y,

A = σ−2
b Φ⊤Φ+ Iσ−2

w .

Theorem 1. The surrogate model constructed by combining
neural network basis functions ϕ(x) with Bayesian linear
regression is a special case of Gaussian process regression
with a linear kernel.

Proof. Given a dataset D, Bayesian linear regression over
input features ϕ(x) has the following posterior predictive
distribution:

p(y|x,D) = N (y|σ−2
b A−1Φ⊤y,ϕ(x)⊤A−1ϕ(x)).

It can be rewritten as follows:

p(y|x,D) = N (y|k′⊤(K+σ2
b I)

−1y, k′′−k′⊤(K+σ2
b I)

−1k′),

where K = ΦΣwΦ⊤, k′ = ΦΣwϕ(x) and k′′ =
ϕ(x)⊤Σwϕ(x). This is equivalent to a Gaussian process
with prior mean is zero and covariance function: κ(x, x′) =
ϕ(x)⊤Σwϕ(x′), where Σw = Iσ2

w. This establishes that
the surrogate model using neural networks and Bayesian lin-
ear regression is a special case of Gaussian process regres-
sion with the nonlinear mapping of ϕ(x).

Data Acquisition
Data acquisition is a critical component in Bayesian Opti-
mization. In this component, we need to trade off explo-
ration and exploitation and quantify the promise of unob-
served inputs using an acquisition function.

Acquisition Function. In this work, we adopt the ex-
pected improvement (EI) as the acquisition function. The EI
is defined as the expectation of the improvement function
I(x) = max{0, (µ(x;D)− max(y))} at candidate point x.
It can be formulated as:

aEI(x;D) = σ(x;D)[γ(x)C(γ(x)) +N (γ(x); 0, 1)],

where

γ(x) =
µ(x;D)− max(y)

σ(x;D)
.

Here C(·) and N (·; 0, 1) denote the cumulative distribution
function and probability density function of the standard
normal distribution, respectively.

Explore-Exploit Tradeoff. At each optimization round,
we sample candidate sets X and compute their acquisition
values. As users and items frequently present in influential
seed sets are more likely to appear in the optimal set, X is
sampled as follows: α from top 5% high influence entries,
the rest uniform randomly, where α is the exploit ratio. Can-
didates with top 1% acquisition values are chosen as X ∗ to
evaluate via the objective multiplex diffusion model, obtain-
ing new observations D∗ to expand the current dataset D.

Experiments
In the following experiments, we evaluate the effectiveness
of our proposed GBIM framework on four real-world net-
works and one synthetic network for maximizing multiplex
influence across a range of seed set sizes.

Experiment Setup
We evaluate the expected multiplex influence defined in
Equation 2 under Multi-LT and Multi-IC, two multiplex dif-
fusion models extended by LT and IC. We enable each mul-
tiplex diffusion model to simulate until the diffusion process
stops and report the average multiplex influence over 100
simulations.

Datasets. We evaluate GBIM against other methods on
four real-world social networking datasets: Ciao, Epinions1,
Delicious and LastFM2. These datasets containing genuine
user-item interactions (i.e., ratings or frequencies) are instru-
mental in constructing a pragmatic preference matrix for the
multiplex diffusion model. We also use a synthetic Erdos-
Renyi (Erdős, Rényi et al. 1960) random graph with 30,000
nodes. For each real dataset, we sample some items and con-
struct the item-item association network I by calculating
cosine similarity over user interaction records (item pairs
with similarity above 0.5 are connected). We use item-based
collaborative filtering to generate the user preference matrix

1https://www.cse.msu.edu/∼tangjili/datasetcode/truststudy.htm
2https://grouplens.org/datasets/hetrec-2011/
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Figure 3: Performance comparison on Multi-LT (first row) and Multi-IC (second row) with the seed set size growth. The
traditional approaches IMM and CELF++ exceeded time and memory limits under Multi-LT on the Synthetic dataset, and
Multi-IC on Ciao, Epinions and Synthetic datasets.

#Users #UserEdges #Items #ItemEdges
Ciao 7317 170410 404 1018

Epinions 18069 574064 411 1408
Delicious 1861 15328 536 750
LastFM 1892 25434 501 906

Synthetic 30000 200000 1000 3000

Table 1: The statistics of the datasets.

P from user-item interactions. For the synthetic dataset, we
randomly construct the item network I and preference ma-
trix P. The statistics of all datasets are provided in Table 1.

Baseline Methods. We compare the proposed GBIM
framework with the following methods.

• IMM (Tang, Shi, and Xiao 2015): A sampling-based tra-
ditional IM algorithm that employs martingale analysis
and bootstrap estimation.

• CELF++ (Goyal, Lu, and Lakshmanan 2011): An effi-
cient greedy algorithm for canonical IM, which avoids
unnecessary Monte Carlo simulations.

• DeepIM (Ling et al. 2023): A recent learning-based IM
framework, based on autoencoder and GAT, optimizing
the seed set via projected gradient descent.

• BO: The Bayesian Optimization with Gaussian processes
as the surrogate model for Multi-IM.

• MaxDegree: The ranking of the product of the degree of
users and the degree of items.

Implementation Details In multiplex influence models,
the inter-layer association strength β is set as 0.3, and the
weights of edges are set as the reciprocal of in-degree. In
GBIM, the hidden dimension d in GKAMP is set as 64,
and we adopt a 4-layer MLP with hidden sizes 512, 1024,
1024, and 1024. The exploit rate α is set as 0.75. We sam-
ple 1000 instances at first and leverage the Adam optimizer
(Kingma and Ba 2014) with a learning rate of 0.001 for

parameters learning. The experiments are implemented in
a machine with the following configuration: RTX 2080 Ti
GPU with 12GB VRAM, i7-9700 CPU@3.00GHz, 16GB
RAM Ubuntu OS, and PyTorch 2.0.1 (Paszke et al. 2019).

Experimental Results
As depicted in Figure 3, GBIM consistently outperforms
other methods across all experimental configurations and
datasets. This substantial improvement is attributed to
GBIM’s Bayesian optimization strategy effectively navi-
gating the immense search space, as well as its accurate
surrogate model, which aptly captures the complex het-
erogeneous influence diffusion patterns and inter-layer as-
sociations. In contrast, traditional methods like IMM and
CELF++ encounter scalability bottlenecks, exceeding mem-
ory limits and runtime budgets within the Multi-LT Syn-
thetic and Multi-IC Ciao/Epinions/Synthetic experiments.
This highlights their computational constraints when applied
to large-scale Multi-IM problems. Meanwhile, the learning-
based DeepIM falls short across all datasets. This can be
attributed to the limitations of the GAT module they em-
ploy, which struggles to capture long-range dependencies
across multiple layers. Additionally, standard Gaussian pro-
cesses fail to effectively learn the intricate multiplex influ-
ence diffusion patterns, causing mediocre performance of
BO methods. Compared to these approaches, GBIM con-
sistently achieves superior performance under seed sets of
all sizes, demonstrating its robustness. For example, on the
LastFM network, GBIM attained over 40% higher multiplex
influence spread than the best baseline method.

Parameter Analysis
In this subsection, we conduct experiments aimed at dis-
cussing the impact of the exploitation rate α within our data
acquisition module on GBIM’s optimization performance.
Specifically, we assess five distinct values of α: 0, 0.25, 0.5,
0.75, and 1. These evaluations are carried out on the Multi-
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Figure 4: Scalability of GBIM on the Multi-IC model of synthetic data. (a) Near-linear runtime scaling with the number of
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Figure 5: Performance of GBIM over iterations on the Multi-
LT model of Ciao dataset, with different exploit rates α. An
appropriate value of α balances exploitation versus explo-
ration, allowing GBIM to optimize efficiently.

LT model using the Ciao dataset, employing a seed set size
of k=5. Other parameters remain set to their optimal config-
urations. As illustrated in Figure 5, the manipulation of ex-
ploit rates, such as α=0.75, fosters swift initial convergence
to the optimal solution. In contrast, lower values like α=0.25
and 0.5 necessitate more iterations for the optimization pro-
cess to culminate. This pattern emerges due to the higher α
values that encourage the acquisition function to lean toward
seeds akin to those previously deemed optimal, expediting
the optimization. However, the scenario where α=1 signifies
complete exploitation devoid of exploration, thereby result-
ing in the entrapment of local optima. On the other hand,
α=0 indicates no exploitation at all, making the optimiza-
tion significantly harder as the search space is not narrowed
effectively. In conclusion, an appropriate intermediate value
of α balances exploitation and exploration, achieving effi-
cient optimization. Empirically, α around 0.5 to 0.75 works
well for GBIM across datasets.

Scalability Analysis
In this subsection, we evaluate the scalability of GBIM on
the Multi-IC model using synthetic datasets. We start with
a base network of 5000 users and 100 items, then progres-
sively increase the number of users and items. As exhib-
ited in Figure 4(a), the running time of GBIM scales nearly

linearly as the number of users n expands, also remaining
consistently lower than CELF++. This favorable scalabil-
ity is attributed to GBIM’s efficient surrogate model based
on global kernelized attention message passing, which em-
beds influence patterns into compact vector representations
and performs efficient computations on the social network
of size n, achieving significantly better scalability as m
grows large. In contrast, traditional IM methods perform
costly simulations on the complete multiplex network of
size n × m, resulting in drastically higher complexity. As
seen in Figure 4(b), CELF++’s runtime increases rapidly
and exceeds time limits as the number of items grows, while
GBIM is relatively stable. Additionally, our surrogate model
based on neural networks and Bayesian regression demon-
strates linear runtime growth with the training dataset size
|D| in Figure 4(c). Whereas the standard Gaussian process
BO method suffers from cubic scaling, becoming infeasible
for large data.

Conclusion

In this work, we studied the intricate dynamics of concurrent
multi-information propagation on directed social networks.
Our core focus was solving the novel Multi-IM problem
which aims to select the user-item pair into the seed set with
a fixed budget to maximize multiplex influence. We first in-
corporated heterogeneous propagation patterns and the asso-
ciation mechanism into a multiplex diffusion model, where
multiple information items disseminate in a multiplex net-
work. To address Multi-IM, we propose GBIM, a Graph
Bayesian Optimization framework. We design a highly ef-
ficient global kernelized attention message-passing module
to learn the complex multiplex diffusion patterns and inte-
grate Bayesian linear regression to obtain a scalable sur-
rogate model. Furthermore, we develop a data acquisition
module with explore-exploit trade-off sampling strategy to
optimize the seed set. Extensive experiments on synthetic
and real-world datasets demonstrate the scalability and ef-
fectiveness of GBIM. In the future, we will investigate how
to learn complementary relations and competitive relations
from data and incorporate them into a heterogeneous item-
item network for a more realistic diffusion model.
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