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We investigate topological and spectral properties of models of European and US-American power grids and of paradig-
matic network models as well as their implications for the synchronization dynamics of phase oscillators with het-
erogeneous natural frequencies. We employ the complex-valued order parameter – a widely-used indicator for phase
ordering – to assess the synchronization dynamics and observe the order parameter to exhibit either constant or periodic
or non-periodic, possibly chaotic temporal evolutions for a given coupling strength but depending on initial conditions
and the systems’ disorder. Interestingly, both topological and spectral characteristics of the power grids point to a di-
minished capability of these networks to support a temporarily stable synchronization dynamics. We find non-trivial
commonalities between the synchronization dynamics of oscillators on seemingly opposing topologies.

Many natural and man-made systems can be described
as phase oscillators coupled onto a network with a com-
plex interaction topology. We here report nontrivial syn-
chronization dynamics of simple phase oscillators with
heterogeneous natural frequencies coupled onto power
grid models. Although many of these dynamics resem-
ble the ones seen for well-studied paradigmatic networks,
relevant topological and spectral properties of the latter
largely differ from those of the power grid models. These
properties could be the reason for the diminished capabil-
ity of the power grid models to support a stable synchro-
nization dynamics.

I. INTRODUCTION

Synchronization and related complex phenomena in pop-
ulations of interacting elements are ubiquitous in nature and
play an important role in numerous scientific fields, ranging
from physics to the neurosciences1–9, and in technology10–16.
In networks of interacting elements, synchronization emerges
from the complex interplay between network topology and
vertex dynamics17–20. An improved understanding of the var-
ious forms of synchronization can be achieved by modeling
each element of the population as an oscillator. Among the
many models available, the Kuramoto model is often used in
various contexts21–25. It consists of a population of N globally
coupled phase oscillators, and the population’s macroscopic
state can be characterized by the complex-valued order pa-
rameter26,27. The long-time average28,29 of its absolute value
is usually used as a single measure for phase ordering. There
are, however, systems for which the temporal evolution of the
order parameter exhibits large fluctuations or might even indi-
cate a chaotic motion30–32. These include systems with de-
lays33–35, systems with nontrivial coupling topologies36–40,
and time-dependent oscillator networks41–43. Nontrivial tem-

poral evolutions of the order parameter were also reported for
other oscillator models44–51.

Here, we investigate synchronization dynamics of Ku-
ramoto phase oscillators coupled onto frequently-used models
of power grids and paradigmatic network models. Consider-
ing heterogeneities seen in real power grids, we find the os-
cillators’ synchronization dynamics to vary vastly depending
on initial conditions and the systems’ disorder. We conjecture
that the variabilities can be traced back, at least in part, to
topological and spectral properties of the networks.

II. METHODS

A. Power grid models

For our investigations, we make use of two publicly
available power grid datasets. PyPSA-Eur52 is an open model
dataset of the European power system at the transmission
network level that covers the full European Network of
Transmission System Operators for Electricity (ENTSO-E)
area (Fig. 1). We here considered pre-built networks53

(excluding the isolated power grids of Cyprus and Iceland)
that consist of N ∈ {37,128,256,512,1024} vertices with
E ∈ {77,260,483,929,1744} edges, respectively. Vertices
represent buses to which consumers, generators or storages
are connected directly or via lower-voltage distribution grids.
Edges correspond to transmission lines or transformers that
connect pairs of buses.

The classical IEEE test cases54 consist of N buses (N ∈
{14,30,57,118,300}) and represent a portion of the Ameri-
can Electric Power System as of the early 1960s (the 300-bus
test case was developed in the early 1990s). The networks are
partly synthetic and partly derived from real power grids and
have E ∈ {20,41,78,179,409} edges.
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FIG. 1. Sketch of an ENTSO-E network model with 1024 vertices
and 1744 edges.

B. Network dynamics

We consider a generalized Kuramoto model55,56, which
consists of an ensemble of N coupled phase oscillators. Its
evolution is governed by

θ̇i(t) = ωi +κ

N

∑
j=1

Ai, j sin(θ j(t)−θi(t)), (1)

where θi(t) is the instantaneous phase of the ith oscillator, and
κ denotes the global coupling strength. A ∈ {0,1}N×N is the
symmetric adjacency matrix (Ai j = A ji = 1, if and only if os-
cillators i and j are coupled) that represents a network. We
draw the oscillators’ natural frequencies ωi from a normal dis-
tribution N (2,0.1) with a mean of 2 and standard deviation
0.1 to mimic fluctuations of the power grid frequency in a
given network57–59.

In our simulations, we vary κ and generate Nr = 100 re-
alizations of the network dynamics for each configuration of
this control parameter. With equally distributed initial phases
θi(0)∈ [0,2π), redrawn natural frequencies, and after discard-
ing 104 transients, we generate synthetic phase time series of
length T = 104 by numerically integrating60 Eq. 1 with a sam-
pling interval of 1.

To characterize the collective dynamical behavior of a net-
work, we employ the complex-valued order parameter

r̃(t) =
1
N

∣∣∣∣∣ N

∑
j=1

eiθ j(t)

∣∣∣∣∣ , (2)

which takes on values between 0 and 1, where 1 indicates
complete phase synchronization. Given the different number

of vertices N of the investigated networks, we derive an esti-
mator61 for the order parameter as

r(t) =

√
N

N −1

(
r̃2(t)− 1

N

)
, (3)

which allows an unbiased comparison between networks of
different sizes.

C. Network metrics

We estimate relevant topological and spectral character-
istics of the power grid models and compare them with
those of paradigmatic network models20,62–64, namely small-
world networks65 (here with rewiring probability p = 0.2),
scale-free networks66, random networks67,68, and 2D-lattices,
whose respective numbers of vertices and edges compare to
those of the power grid models.

The global clustering coefficient C assesses the tendency of
vertices to cluster together, thus measuring the transitivity of
a network. It is defined as69

C =
3N∆

N3
, (4)

where N∆ is the number of closed triplets and N3 the number
of all triplets.

The average shortest path length L assesses the average
number of edges that must be traversed to reach any other
vertex. L is often associated with the efficiency of a network
and is defined as69

L =
1

N(N −1) ∑
i ̸= j

d(i, j), (5)

where (i, j) ∈ V and d(i, j) is the length of the shortest path
between vertices i and j. V is the set of all vertices of a
network.

Assortativity A quantifies whether vertices preferentially
connect to vertices with similar characteristics. We here con-
centrate on the degree of a vertex, i.e., the number of edges it
is incident to, and define A as70

A =
∑i eii −∑i aibi

1−∑i aibi
. (6)

Here ai = ∑ j ei j and b j = ∑i ei j, where ei j is the fraction of
edges from a vertex of degree i to a vertex of degree j. Positive
(negative) values of A indicate an assortative (disassortative)
network. Disassortative networks are more vulnerable to
perturbations and appear to be easier to synchronize than
assortative networks71,72.

Synchronizability S assesses the stability of the globally
synchronized state of a network of coupled oscillators and
is defined as the ratio of largest and smallest non-vanishing
eigenvalue of the network Laplacian73–76. Given some vertex
dynamics, the higher S the less stable is the globally synchro-
nized state of the network.
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III. RESULTS

In Fig. 2, we compare the topological and spectral charac-
teristics of the power grid models to those of the paradigmatic
network models.
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FIG. 2. Topological and spectral characteristics of the ENTSO-E net-
work models (black ■), the IEEE test cases (black ×), small-world
(violet), scale-free (yellow), random (turquoise), and regular net-
works (2D-lattice; red) with different numbers of vertices N. Global
clustering coefficient C, average shortest path length L, assortativity
A, and synchronizability S. For the paradigmatic complex networks,
we show the range (error bars) from 100 realizations of the networks.

The global clustering coefficient C of the ENTSO-E net-
works decreases with an increasing number of vertices, and
this dependency compares to the one seen for the small-world
networks. We observe a similar decrease for C of the IEEE
test cases. It attains, however, values much smaller than that
of the ENTSO-E networks and appears to follow the depen-
dency seen for the scale-free networks. The average shortest
path lengths L of the power grids are quite similar and grow
much faster with the number of vertices than the ones of the
paradigmatic network models. Assortativity A of the power
grids attains values close to 0 independent on the number of
vertices N and compares to the dependency seen for a random
network. Together, these findings indicate that the topologies
of the investigated power grids cannot be clearly assigned to
prototypical topologies62,63,77–80. They share, however, some
commonalities in certain characteristics.

Interestingly, synchronizability S of the power grids in-
creases more strongly with network size N than that of the
paradigmatic network models. The comparably high values of
S of the power grids possibly indicate an unstable global syn-
chronization state of oscillators coupled onto such networks.

Considering the postulated impact of synchronizability on
the synchronization dynamics of such oscillator networks, we
investigate the oscillators’ collective behavior on the power
grid models and show in Fig. 3 exemplary temporal evolu-
tions of the order parameter for an ENTSO-E network model
with N = 128 oscillators. We observe a variety of temporal
evolutions depending on initial conditions, i.e., the oscilla-
tors’ initial phases, as well as on the systems’ disorder (drawn
natural frequencies), but for a given coupling strength. These
range from constant to strictly periodic and to non-periodic,
possibly chaotic30 evolutions (see also Fig. 8 in Appendix A),
and the majority of them indicate either no or partial phase-
locking and only rarely full phase-locking. Note that this vari-
ety holds independent on whether we fix the initial conditions
or the systems’ disorder. We also note that such evolutions
do not change upon increasing the phase time series length a
hundred-fold.

Going beyond exemplary observations, we proceed with a
more detailed characterization of the networks’ synchroniza-
tion dynamics. To do so, we vary the coupling strength over
five orders of magnitude (κ ∈

[
10−3,102

]
) and estimate, for

each value of κ , the long-time mean value of the order param-
eter, which we define as

ri =
1
T

T

∑
t=0

ri(t)

⟨r⟩= 1
Nr

Nr

∑
i=1

ri. (7)

Moreover, we define the standard deviation of the mean val-
ues of the temporal means of each realization for the order
parameter as

σ = std. dev.(ri) , (8)

and the standard deviation of the standard deviations of each
realization ri(t) as

Σ = std. dev.
i=1,...,Nr

(std. dev.
t=1,...,T

(ri(t))). (9)

Upon increasing the coupling strength κ , the mean order
parameter (Eq. 7) increases sigmoidal-like, as expected24

(Fig. 4). However, only some of the realizations of the dy-
namics on the smallest investigated network (N = 128) ap-
proach almost full phase-locking for sufficiently large cou-
pling strength. We observe a similar dependence on κ for
the standard deviation σ of the mean values of the temporal
means of the order parameter, which indicates that some cou-
pling (0.1 ≤ κ ≤ 1) is required for non-trivial, non-constant
evolutions of r(t) to emerge. The dependence on the initial
conditions and on systems’ disorder (their combined impact
is assessed with Σ), however, is most pronounced in an inter-
mediate range of coupling strengths. The observed increase in
Σ for moderate coupling can partly be attributed to the systems
susceptibility to perturbations at the bifurcation point1,22.

Given these observations, we estimate the relative frequen-
cies of constant, periodic, and non-periodic temporal evolu-
tions of the order parameter for the aforementioned range of
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FIG. 3. Examples of constant, periodic81, and non-periodic temporal evolutions of the order parameter. ENTSO-E network model with N = 128
oscillators and coupling strength κ = 0.3. Insets show distribution of phases on the unit circle at times indicated by red dots. The arrow points
towards the mean phase and its length corresponds to the value of the order parameter.
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FIG. 4. Impact of the coupling strength κ on the order parameter
(means (⟨r⟩) and standard deviations (σ and Σ)) for ENTSO-E net-
work models and the largest (N = 300) of the IEEE test cases. Lines
are for eye-guidance only.

coupling strengths (Fig. 5). For small couplings (κ ≲ 0.1),
we observe non-periodic temporal evolutions for all investi-
gated networks, and for large couplings (κ ≳ 1), we solely
find constant evolutions. For an intermediate and quite nar-
row range of couplings (0.1 ≲ κ ≲ 1), however, we observe
a quite sharp transition between preferentially non-periodic to
preferentially constant temporal evolutions which is accom-
panied by the emergence of strictly periodic evolutions. There
is a tendency for this transition to occur at slightly smaller
couplings for smaller networks sizes. These observations al-
low for hypothesizing that other network properties may also
impact on the synchronization dynamics. In the following,
we therefore compare the synchronization dynamics on a se-
lected power grid model (ENTSO-E; N = 256) with those on
paradigmatic network models.

Just as for the mean order parameter ⟨r⟩ in the case of the
power grid models, ⟨r⟩ in the case of the paradigmatic network
topologies also increases sigmoidal-like with an increasing
coupling strength κ (Fig. 6). However, for the complex topolo-
gies (small-world, random, and scale-free), ⟨r⟩ indicates full
phase-locking for large κ , while for the regular topology (2D-
lattice) it does not. Instead, ⟨r⟩ levels off at a lower value of
κ , similar to the case of the ENTSO-E network model of cor-
responding size. For the complex topologies, the standard de-
viation σ takes on largest values for an intermediate range
of coupling strengths and is otherwise close to zero. For the
regular topology (2D-lattice), the increase of σ with increas-
ing κ is again sigmoidal-like and comparable to the ENTSO-
E case. The impact of the initial conditions and the systems’
disorder on the synchronization dynamics of the paradigmatic
networks mimics the case of the power grid models and is also
strongest in an intermediate range of couplings.

Figure 7 summarizes our findings concerning the relative
frequencies of constant, periodic, and non-periodic tempo-
ral evolutions of the order parameter depending on coupling
strength. Similar to the ENTSO-E case, we observe non-
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FIG. 5. Number of occurrences of constant, periodic, and non-
periodic temporal evolutions of the order parameter for Nr = 100 re-
alizations of the network dynamics with different initial conditions
of the oscillators but otherwise constant control parameters. Colors
indicate numbers of vertices of the ENTSO-E network models and
of the largest of the IEEE test cases (N = 300). Lines are for eye-
guidance only. The inset shows the number of occurrences of fre-
quencies ω of periodic evolutions normalized with respect to the
mean ωo of the oscillators’ natural frequencies. Frequencies of pe-
riodic evolutions are typically slow and are not natural multiples of
the oscillators’ natural frequencies.

periodic temporal evolutions for all investigated networks for
small coupling strengths (κ ≲ 0.1) and exclusively constant
evolutions for large coupling strengths(κ ≳ 0.4). The transi-
tion between the two types of evolutions is again confined to a
narrow range of coupling strengths (0.1 ≲ κ ≲ 0.4) and is also
accompanied by the emergence of strictly periodic evolutions.
Note that the transition occurs at similar coupling strengths
for all paradigmatic topologies and the ENTSO-E network
model of corresponding size, and for all networks we observe
similar synchronization dynamics. Interestingly, the impact of
the coupling strength on the frequency of occurrence of con-
stant, periodic, and non-periodic synchronization dynamics is
comparable for random networks and the ENTSO-E network
model. The other paradigmatic topologies including the 2D-
lattice share a similar impact although for a different range
of coupling strengths and at, on average, lower values of the
coupling strength.

Due to their high synchronizability, the 2D-lattices and the
ENTSO-E network models exhibit comparable synchroniza-
tion dynamics, as indicated by their averaged order parameters
⟨r⟩ (cf. Fig. 6). These results align with our initial considera-
tions on the impact of this spectral characteristic on synchro-
nization dynamics.Yet, when considering the temporal evolu-
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FIG. 6. Same as Figure 3 but for paradigmatic network topologies
and a selected power grid model. Colors indicate network topolo-
gies (magenta: small-world, cyan: random, yellow: scale-free, red:
2D-lattice), and networks have N = 256 vertices. Black color indi-
cates the ENTSO-E network model of corresponding size (cf. Fig. 4).
Lines are for eye-guidance only.

tions of the order parameter, we find much more similar be-
havior between the seemingly opposing topologies of the ran-
dom networks and the ENTSO-E network models (cf Fig. 7).

IV. CONCLUSIONS

We investigated topological and spectral properties of mod-
els of European and US-American power grids in compar-
ison to paradigmatic network models as well as their char-
acteristics’ implications for the synchronization dynamics of
phase oscillators with heterogeneous natural frequencies cou-
pled onto these networks. Depending on the oscillators’ initial
conditions and on the systems’ disorder, but for otherwise pre-
set control parameters, the complex-valued order parameter
exhibited temporal evolutions that ranged from constant to pe-
riodic and non-periodic, possibly chaotic. The cycle durations
of periodic evolutions point to emergent, possibly network-
generated rhythms that are much slower than the natural peri-
ods of single oscillators. Whether similar conclusions can also
be drawn for non-periodic temporal evolutions remains to be
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investigated.

The synchronization dynamics on the power grid models
compared largely to the ones seen for regular and random
networks. Relevant topological and spectral properties of the
former, however, could not be clearly assigned to the proper-
ties of paradigmatic networks including other complex topolo-
gies (small-world and scale-free). Interestingly though, both
topological and spectral properties of the power grid models
point to a diminished capability of these networks to support a
stable synchronization dynamics. Likewise, this points to the
possibility of improving the latter by modifying the networks’
topology82,83.

Instead of employing the long-time average of the complex-
valued order parameter as a single measure for phase ordering,
a more complete description of the systems’ synchronization
dynamics could possibly be achieved by investigating higher-
order moments of the phase distribution84,85. These moments
could also yield insights into the formation of stable and un-
stable clusters and their behavior over time as well as into their
relationship to topological and spectral characteristics of the
investigated networks.

ACKNOWLEDGMENTS

The authors acknowledge fruitful discussions with
Mehrnaz Anvari and Leonardo Rydin Gorjão.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Data availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Appendix A: Additional exemplary non-periodic
synchronization dynamics on power grid models
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