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Abstract 
 
Background: Pneumothorax is an acute thoracic disease caused by abnormal air collection 
between the lungs and chest wall. Recently, artificial intelligence (AI), especially deep learning 
(DL), has been increasingly employed for automating the diagnostic process of pneumothorax. 
To address the opaqueness often associated with DL models, explainable artificial intelligence 
(XAI) methods have been introduced to outline regions related to pneumothorax diagnoses made 
by DL models. However, these explanations sometimes diverge from actual lesion areas, 
highlighting the need for further improvement. 
 
Method: We propose a template-guided approach to incorporate the clinical knowledge of 
pneumothorax into model explanations generated by XAI methods, thereby enhancing the 
quality of these explanations. Utilizing one lesion delineation created by radiologists, our 
approach first generates a template that represents potential areas of pneumothorax occurrence. 
This template is then superimposed on model explanations to filter out extraneous explanations 
that fall outside the template’s boundaries. To validate its efficacy, we carried out a comparative 
analysis of three XAI methods (Saliency Map, Grad-CAM, and Integrated Gradients) with and 
without our template guidance when explaining two DL models (VGG-19 and ResNet-50) in two 
real-world datasets (SIIM-ACR and ChestX-Det). 
 
Results: The proposed approach consistently improved baseline XAI methods across twelve 
benchmark scenarios built on three XAI methods, two DL models, and two datasets. The average 
incremental percentages, calculated by the performance improvements over the baseline 
performance, were 97.8% in Intersection over Union (IoU) and 94.1% in Dice Similarity 
Coefficient (DSC) when comparing model explanations and ground-truth lesion areas. We 
further visualized baseline and template-guided model explanations on radiographs to showcase 
the performance of our approach. 
 
Conclusions: In the context of pneumothorax diagnoses, we proposed a template-guided 
approach for improving AI explanations. This approach not only aligns model explanations more 
closely with clinical insights but also exhibits expandability to other thoracic diseases. We 
anticipate that our template guidance will forge a fresh approach to elucidating AI models by 
integrating clinical domain expertise. 
 
Keywords: Pneumothorax Diagnosis, Convolutional Neural Networks, Explainable Artificial 
Intelligence, Saliency Map, Grad-CAM, Integrated Gradients 
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1 Introduction 
 
Pneumothorax is an acute thoracic disease caused by abnormal air collection in the pleural space 
between the lungs and chest wall 1. Timely intervention is crucial to prevent pneumothorax from 
evolving into a life-threatening emergency 2. In clinical practice, pneumothorax is usually 
diagnosed by radiologists on a chest radiograph - a process that demands considerable expertise 
and expert efforts. Recent advancements suggest that this process can be automated using 
artificial intelligence (AI), especially deep learning (DL) models such as convolutional neural 
networks (CNNs). For instance, EfficientNet B3 3 has demonstrated high accuracy in classifying 
pneumothorax of various sizes, with the area under the receiver operating characteristic curve 
(AUROC) ranging from 88% to 96% 2. Xception 4 further advanced the classification capability, 
achieving an AUROC of 99% on an open-access dataset 5. While these DL-based classifiers have 
exhibited high-fidelity classification ability, their complexity poses a challenge: Comprising 
numerous interconnected neurons with intricate relationships, their decision-making processes 
are often opaque and challenging to interpret 6. This complexity can hinder radiologists’ 
acceptance and trust in these AI tools, thereby affecting their practical application in real-world 
settings 7,8. 
 
To solve this problem, researchers have introduced various explainable artificial intelligence 
(XAI) methods to chest radiograph analysis. For instance, Mosquera et al. 9 applied class 
activation maps (CAM) 10 to identify regions in chest radiographs that significantly influence the 
disease diagnosis. Feng et al. 11 and Wang et al. 4 used Grad-CAM 12, a variant of CAM, to 
pinpoint the specific pixels on chest radiographs that contributed most to model predictions. 
These heatmaps partially alleviate radiologists’ concerns regarding the trustworthiness of DL 
models 6. However, a recent benchmarking study pointed out a notable result: even with a high-
accuracy DenseNet-121 13 achieving an AUROC of 99.3% in the pneumothorax classification, 
the areas highlighted by the model only coincided with 7.0% of the actual lesion areas as 
delineated by radiologists 14. Similarly, Rocha et al. developed a ResNet-50 15 with an AUROC 
of 85.4% in classifying pneumothorax, yet its explanations attained an Intersection over Union 
(IoU) of 17.6% when assessed using lesion areas delineated by coarse bounding boxes 16. 
Giachanou et al. reported IoUs ranging from 3.1% to 15.1% across a variety of model 
explanations for pneumothorax diagnoses 17. These identified discrepancies between 
classification and explanation capabilities underline the urgent need to improve existing model 
explanations 14. 
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Leveraging prior clinical knowledge is one promising direction for enhancing model 
explanations. Specifically, pneumothorax occurs in the pleural space between the lungs and chest 
walls 1. This clinically validated information could serve as invaluable prior knowledge to 
improve model explanations 18. Previous studies have successfully utilized disease location 
information in pneumothorax classification and localization. Crosby et al. 19 capitalized on the 
observation that pneumothorax typically occurs in apex areas of chest radiographs. Therefore, 
they segmented the upper third of chest radiographs for pneumothorax classification, achieving 
enhanced accuracy. However, it remains unclear whether model explanations can also take 
advantage of the location information. Addressing this, Jung et al. 7 identified common thoracic 
disease patterns on chest radiographs, directing models to focus on typical disease locales, which 
in turn enhanced both classification and explanation quality. However, their method requires an 
exhaustive labeling of eight common thoracic diseases and is inappropriate for resource-limited 
settings where only diagnostic labels of a single disease are available.  
 
To overcome aforementioned limitations, we propose a template-guided approach that crafts a 
template covering potential occurrence areas of pneumothorax to guide model explanations 
generated by baseline XAI methods. We illustrate the performance of our approach through 
comparative experiments of three XAI methods with and without our template guidance. We 
hope our template-guided approach provides a novel perspective for incorporating clinical 
knowledge into the explanation of other thoracic conditions. 
 
2 Methods 
 
AI models, especially CNNs, have become the mainstream backbones for chest radiograph 
classification, with various XAI methods accompanied to interpret their diagnostic processes 
12,20,21. Despite these advancements, a recent study 14 indicates that model explanations provided 
by the pneumothorax classifier fail to match ground truth lesion areas, suggesting a need for 
further improvement. To bridge this gap, we propose a template-guided approach for existing 
XAI methods in the context of pneumothorax diagnoses. This section outlines our methodology, 
starting with an introduction of notations followed by a detailed description of CNNs’ training 
strategy. We then illustrate three well-established explanation methods for CNNs. The section 
concludes with our proposed approach that guides model explanations with a clinical knowledge-
derived template. 
 
2.1 Notations 
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We first introduce key notations for subsequent illustrations of classifier training and 
explanation. For the pneumothorax classification task, we denote the nonoverlapping training, 
validation, and test dataset as 𝐷!"#$%, 𝐷&#', and 𝐷!()!, respectively. Each dataset consists of pairs 
of images and corresponding image-level binary labels, structured identically. As an illustrative 
example, we consider the training dataset 𝐷!"#$% , which includes 𝑁!"#$% samples: 
 

𝐷!"#$% = $%𝐼$!"#$%, 𝑌$!"#$%), 𝑖 = 1,2, … , 𝑁!"#$%.. (1) 
 
𝐼$!"#$% designates a two-dimensional image with a width of 𝑊* and a height of 𝐻*. 𝑌$!"#$% ∈ {0,1} 
is the ground truth label by radiologists and 𝑌$!"#$% = 1 states that 𝐼$!"#$% is diagnosed with 
pneumothorax. 𝐼$!"#$% consists of 𝑊* × 𝐻* pixels and 𝑝+,-(𝐼$!"#$%) denotes a pixel in 𝐼$!"#$% whose 
coordinate of width and height is (𝑤, ℎ): 
 

𝐼$!"#$% = {𝑝+,-%𝐼$!"#$%), 𝑤 = 1,2, … ,𝑊*, ℎ = 1,2, … . , 𝐻*}. (2) 
  
Each 𝑝+,-(𝐼$!"#$%) comprises three elements 𝑒+,-,.(𝐼$!"#$%) standing for pixel values in channel 𝑐 
of red, green, or blue: 
 

𝑝+,-%𝐼$!"#$%) = {𝑒+,-,.%𝐼$!"#$%), 𝑐 = 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}. (3) 
 
Based on the input of 𝑒+,-,.(𝐼$!"#$%) and the output target of 𝑌$!"#$%, the pneumothorax classifier 
is trained and subsequently explained. Model explanations are typically generated by initially 
calculating the importance of pixels and then shortlisting pixels with importance values 
exceeding a pre-determined threshold to constitute the important sub-region 14,22. Our template-
guided approach relies on a radiologists-annotated lesion delineation 𝐴/!"#$% of a single image 
𝐼/!"#$% from 𝐷!"#$%. Additionally, for assessing the alignment between model explanations and 
real lesion areas, pneumothorax samples 𝐼$!()! in test dataset 𝐷!()! are also annotated with pixel-
level lesion areas 𝐴$!()!. 𝐴/!"#$% holds the same structure as 𝐴$!()! and we use 𝐴$!()! as an 
illustrative instance. 𝐴$!()! is a two-dimensional image and consists of 𝑊* × 𝐻* elements 
𝑎+,-(𝐴$!()!) ∈ {0,1}. Decided by radiologists, 𝑎+,-(𝐴$!()!) = 1 denotes that the pixel with the 
coordinate of (𝑤, ℎ) in 𝐼$!()! belongs to the lesion areas: 
 

𝐴$!()! = {𝑎+,-(𝐴$!()!), 𝑤 = 1,2, … ,𝑊*, ℎ = 1,2, … . , 𝐻*}. (4) 
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It is important to note that lesion annotations 𝐴/!"#$% and 𝐴$!()! are exclusively employed for 
model explanations. The model training of pneumothorax classifiers follows the standard 
paradigm that uses binary diagnostic labels 𝑌$!"#$% and 𝑌$&#' 23. 
 
2.2 Image classifier training 
 
CNNs have achieved outstanding performance in various thoracic disease classification tasks 24. 
In general, the image classifier training is to find a set of parameters that minimizes the 
difference between CNNs’ predictions and ground truth labels in the training set. Formally, with 
the training dataset 𝐷!"#$%, we aim to optimize a model 𝑓0 parameterized by 𝜃. The model takes 
input 𝑒+,-,.(𝐼$!"#$%) , 𝑓0 produces an output 𝑓0%𝐼$!"#$%). The optimization objective is to minimize 
the difference 𝑑 between 𝑓0%𝐼$!"#$%) and sample labels 𝑌$!"#$% for all samples in 𝐷!"#$%. The 
cumulative difference over all training samples known as loss function 𝑙%𝜃; 𝐷!"#$%	) is expressed 
as: 
 

𝑙%𝜃; 𝐷!"#$%	) = 	
1

𝑁!"#$%
M𝑑%𝑓0%𝐼$!"#$%), 𝑌$!"#$%).

$
	 (5) 

 
To avoid overfitting of 𝑓0, the validation dataset 𝐷&#' is applied to early stop the optimization 
procedure. If the loss 𝑙(𝜃; 𝐷&#') has not decreased for a pre-defined epoch number 𝑁(12.-, the 
iteration of 𝜃 will be terminated. The last 𝜃 that led to a decrease in 𝑙(𝜃; 𝐷&#') is retained as the 
optimal parameter 𝜃∗: 
 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛0 P𝑙%𝜃; 𝐷!"#$%)Q𝑙(𝜃; 𝐷&#')R . (6) 

 
After the determination of 𝜃∗, we measure the classification performance 𝑀 on the unseen test 
dataset 𝐷!()!. An evaluation metric 𝑚 is used to assess the model performance by comparing the 
model prediction 𝑓0∗(𝐼$!()!) and the true label 𝑌$!()!: 
 

𝑀(𝜃∗; 𝐷!()!	) = 	
1

𝑁!()!
M𝑚(𝑓0∗(𝐼$!()!), 𝑌$!()!).

$
	 (7) 

 
2.3 Image classifier explanation 
 
The developed model 𝑓0∗ classifies an unseen image 𝐼$!()! from the test dataset 𝐷!()! as 
𝑓0∗(𝐼$!()!). We aim to further explain 𝑓0∗(𝐼$!()!) to both uncover the model decision logic and 
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evaluate its trustworthiness 25,26. A commonly used explanation paradigm calculates each pixel’s 
importance 𝐸(𝑝+,-(𝐼$!()!)) to the prediction 𝑓0∗(𝐼$!()!), and further identifies the focus area 
𝑅(𝐼$!()!) consisting of the most discriminative pixels towards model outputs 27. Explanations are 
considered reliable if focus areas precisely match disease lesion areas annotated by human 
experts 14. Within the explanation paradigm using focus areas, we introduce three mainstream 
XAI techniques of Saliency Map 20, Grad-CAM 12, and Integrated Gradients 21 to generate and 
evaluate model explanations. Concrete technical details of these techniques have been elaborated 
in their respective original publications 12,20,21. Here we provide a concise overview to facilitate 
the downstream illustration of our template-guided approach. 
 
As a pioneer in the image classifier explanation, Saliency Map 20 calculates the importance of 
𝑝+,-(𝐼$!()!) through its forthright gradient towards 𝑓0∗(𝐼$!()!). Specifically, it computes 
𝑓0∗(𝐼$!()!)’s gradients with respect to every element 𝑒+,-,.(𝐼$!()!) in pixel 𝑝+,-(𝐼$!()!) and derives 
the pixel importance 𝐸(𝑝+,-(𝐼$!()!)) as the largest absolute gradient among all channels. 
 
Saliency Map depicts the impact of each pixel towards final model outputs while possibly 
outlines all recognizable objects in 𝐼$!()! and fails to spotlight 𝑅(𝐼$!()!) towards 𝑓0∗(𝐼$!()!) 10. 
Grad-CAM 12 conjectures that the problem can be resolved by initially computing the pixel 
importance 𝐸(𝑝+,-%𝐼$,.2%&!()! )) on the last convolutional layer 𝐼$,.2%&!()! , and subsequently 
reconstructing 𝐸(𝑝+,-(𝐼$!()!)) through the bilinear interpolation of 𝐸(𝑝+,-%𝐼$,.2%&!()! )). 
 
Both Saliency Map and Grad-CAM depict the local changes in 𝑓0∗(𝐼$!()!) with respect to a small 
range of pixel values. However, if a pixel’s possible values within a narrow range are always 
important towards 𝑓0∗(𝐼$!()!), the gradient saturates to zero, indicating the opposite conclusion 
that the pixel is trivial 21. Integrated Gradients 21 solves this problem via computing the gradients 
sum of 𝑚 pseudo images interpolated between 𝐼$!()! and a reference image 𝐼"(4 obtained by 
fusing all training images. Same as the previous two methods, Integrated Gradients output the 
pixel importance 𝐸(𝑝+,-(𝐼$!()!)). 
 
After obtaining 𝐸(𝑝+,-(𝐼$!()!) by different methods, a binarization cutoff value 𝑣∗ is used to 
outline the most important pixels and constitute the model focus region 𝑅&∗(𝐼$!()!). Explanations 
are considered reliable when 𝑅&∗(𝐼$!()!) highly overlaps with lesion areas 𝐴$!()! 14. Different 
metrics, e.g. 𝐼𝑜𝑈, are applied to quantify the performance 𝑄 of model explanations on the test 
dataset 𝐷!()!: 
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𝑄 =M 𝐼𝑜𝑈(𝑅&∗(𝐼$!()!), 𝐴$!()!)
$

. (8) 

  
2.4 Proposed template-guided explanation 
 
As illustrated above, baseline XAI methods outline the important region 𝑅&∗(𝐼$!()!) from the 
whole area of 𝐼$!()!. However, domain knowledge elucidates that pneumothorax typically occurs 
in the pleural space between the lungs and chest walls 7,19. Particularly, on an upright frontal 
radiograph, pneumothorax is recognized by non-dependent lucency that parallels the chest wall 
and displaces the visceral pleural line medially. It usually localizes to the lung apices and lateral 
aspect of the lungs. Based on this prior clinical knowledge, we propose a template-guided 
approach that integrates the disease occurrence areas with baseline model explanations. The 
proposed approach requires minimal human involvement and yields explanations that align 
better with the clinical understanding of pneumothorax. Figure 1 shows the overview of our 
template guidance as a plug-and-play module for existing XAI methods. To depict the pleural 
space from the clinical experts’ view, a canonical lesion annotation by radiologists is extracted as 
the basis for template generation. Then several morphological operations are implemented to 
further refine the pleural space - potential occurrence areas of pneumothorax. After that, we 
shepherd the original explanations using the generated template region: Only the pixel within the 
template boundaries will be included in model focus areas. Finally, focus areas with or without 
template guidance are compared with the ground truth lesion annotations. 
 
The first step in the proposed template guidance is to generate the optimal template carrying the 
location information of disease occurrence. Figure 2 summarizes the details of template 
generation: Using one canonical lesion delineation 𝐴/!"#$% as the starting point, the candidate 
templates are generated by flipping, overlap, and dilation. Selected by radiologists, 𝐴/!"#$% 
contours at least the pleural space on one side. Then the step of flipping turns over the original 
lesion delineation horizontally to generate 𝐴/,4'$1!"#$%  on the other side. After that, considering the 

domain knowledge that pneumothorax potentially occurs in both the left and the right pleural 
space, the step of overlapping is implemented to generate 𝐴/,2&("'#1!"#$%  spotlighting both left and 
right pleural spaces 28. A pixel 𝑝+,-%𝐴/,2&("'#1!"#$% ) is included in the template area if it is within 
either 𝑝+,-%𝐴/!"#$%) or 𝑝+,-%𝐴/,4'$1!"#$% ). Another factor affecting the depiction of pleural space is 

that the chest radiographs are captured at different distances and angles. Thus, the concrete 
position and scale of pleural space vary in different radiographs 29. To address this issue, we 
introduce the step of dilation to eliminate the problem of deformation through enlarging the 
template area to cover a broader space. Following the previous work 30, a 15×15 ellipse kernel 
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sweeps each pixel on the original image, and a pixel will be included in the dilated template area 
if one of its neighbor pixels within the kernel belongs to 𝐴/,2&("'#1!"#$% . After that, we obtain the 
final template 𝑇∗ wherein 𝑎+,-(𝑇∗) = 1 denotes the coordinate of (𝑤, ℎ) in 𝐼$!()! belongs to the 
pleural space. Through the element-wise product, the template-guided pixel importance 
𝐸∗(𝑝+,-(𝐼$!()!) is calculated:  
 

𝐸∗(𝑝+,-(𝐼$!()!) = 𝑇∗⊙𝐸(𝑝+,-(𝐼$!()!). (9) 
 
Finally, the identical approach as the baseline explanation is employed to extract the model focus 
region from 𝐸∗(𝑝+,-(𝐼$!()!). 
 
3 Experiments 
 
In this section, we first introduced the datasets. Then we provided details on the training and 
explanation of pneumothorax classifiers, and clarified the relevant evaluation metrics. After that, 
we presented the experimental results of pneumothorax classification and explanation. We 
demonstrated that the proposed template-guided approach consistently improved the baseline 
XAI methods. To provide a comprehensive assessment, we visualized both successful and 
collapsing cases of model explanations. All experiments were conducted using Python, and the 
code has been made publicly available on GitHub for reproducibility 31. 
 
3.1 Datasets 
 
The performance of pneumothorax classification and explanation was demonstrated using two 
real-world datasets of SIIM-ACR Pneumothorax Segmentation Challenge 32 and ChestX-Det 33. 
The SIIM-ACR dataset comprises a total of 12,047 chest radiographs, among which 2,669 
instances are diagnosed as positive, indicating the presence of pneumothorax. Unlike the SIIM-
ACR dataset, The ChestX-Det dataset is notably smaller, consisting of 611 healthy images and 
189 pneumothorax-positive images. Besides the binary pneumothorax diagnosis at the image 
level, both datasets provide pixel-level lesion delineations in positive cases.  
 
We randomly split the SIIM-ACR dataset into three parts at 60: 20: 20. Specifically, the training 
set consisted of 7,226 images (60%, containing 1,600 positive samples), the validation set 
comprised 2,410 images (20%, containing 534 positive samples), and the test set included 2,410 
images (20%, containing 534 positive samples). To validate the generalizability of the proposed 
method, we evenly partitioned the ChestX-Det dataset into validation (50%, containing 95 
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positive samples) and test sets (50%, containing 94 positive samples) for external validation. 
Table 1 gives an overview of the used data sets, annotations, and functions in our study. Detailed 
information is elaborated in the subsequent two sections. 
 
3.2 Classifier training and evaluation 
 
We implemented the pneumothorax classifier with two lightweight architectures: VGG-19 34 and 
ResNet-50 15, modifying their outputs for binary classification. A Stochastic Gradient Descent 
(SGD) optimizer was employed with a learning rate of 1e-3 and a momentum of 0.9. Model 
training was conducted in batches of 16 images, using weighted cross-entropy as the loss 
function to counterbalance the predominance of negative samples35. The training was set as 100 
epochs on the training set of SIIM-ACR with an early-stop initiated if no improvement was 
observed on the validation set of SIIM-ACR over 10 consecutive epochs. After the training, the 
model classification performance was evaluated on both the internal test set of SIIM-ACR and 
the external test set of ChestX-Det. Evaluation metrics included AUROC, the area under the 
precision recall curve (AUPRC), accuracy, sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV). Binarization cutoffs were chosen as the points 
closest to the upper-left corner in the ROC curves on the respective validation sets 36. For each 
metric, standard errors were calculated using the nonparametric bootstrap method 37. 
 
3.3 XAI explanation and evaluation 
 
After the pneumothorax classification training and evaluation, model explanations play a pivotal 
role in gaining the trust of clinicians 22. Our study utilized three model explanation methods: 
Saliency Map 20, Grad-CAM 12, and Integrated Gradients 21. Our template-guided approach 
worked as a plug-and-play module on the basis of the three XAI methods, necessitating only one 
lesion delineation from the training set of SIIM-ACR. Therefore, we had a total of six 
explanation methods. The direct production of the six explanation methods was the pixel 
importance, from which focus areas were further outlined as the final explanation using the 
threshold value 𝑣∗ of 0.95 38. We leveraged IoU and Dice Score Coefficient (DSC) to quantify 
the alignment between the generated focus areas and ground truth lesion delineations on both the 
internal test set of SIIM-ACR and the external test set of ChestX-Det. The standard errors of IoU 
and DSC were computed through the nonparametric bootstrap method 37. 
 
3.4 Experimental results 
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In this section, we showed the evaluation results followed by their respective standard errors 
enclosed within parentheses. Table 2 quantifies the model classification performance on the 
internal test set of SIIM-ACR. The VGG-19 classifier achieved results of an AUROC of 0.864 
(0.008), an AUPRC of 0.660 (0.023), an accuracy of 80.5% (0.8%), a sensitivity of 78.3% 
(1.8%), a specificity of 81.1% (0.9%), a PPV of 54.1% (1.9%), and an NPV of 92.9% (0.7%). 
The ResNet-50 discriminator attained an AUROC of 0.842 (0.007), an AUPRC of 0.630 (0.023), 
an accuracy of 77.8% (0.8%), a sensitivity of 75.7% (1.5%), a specificity of 78.4% (0.9%), a 
PPV of 49.9% (2.0%), and an NPV of 91.9% (0.6%). Following the evaluation of model 
classification, Table 3 illustrates the model explanation performance of the baseline XAI 
methods and their template-guided versions. Under the framework of VGG-19, the original 
Saliency Map achieved an IoU of 2.2% (0.2%) and a DSC of 4.1% (0.3%). The original Grad-
CAM obtained an IoU of 1.4% (0.1%) and a DSC of 2.6% (0.2%). The original Integrated 
Gradients achieved an IoU of 3.1% (0.2%) and a DSC of 5.9% (0.3%). Adding template 
guidance consistently resulted in performance improvements in terms of IoU and DSC: 1.0% and 
1.9% for Saliency Map, 0.9% and 1.7% for Grad-CAM, and 1.4% and 2.3% for Integrated 
Gradients. Based on ResNet-50, the performance enhancements were 1.7% and 3.1% for 
Saliency Map, 3.0% and 5.1% for Grad-CAM, and 2.6% and 4.5% for Integrated Gradients. In 
the internal test scenarios, the incremental percentages of IoU and DSC, calculated by the 
performance improvements over the baseline performance, ranged from 41.7% to 168.4% and 
30.7% to 114.9%, respectively. 
 
Table 4 presents the classification performance of developed VGG-19 and ResNet-50 on the 
external test set of ChestX-Det. Specifically, VGG-19 without fine-tuning presented an AUROC 
of 0.942 (0.016), an AUPRC of 0.896 (0.025), an accuracy of 89.7% (1.5%), a sensitivity of 
86.2% (3.3%), a specificity of 90.8% (1.6%), a PPV of 74.3% (4.4%), and an NPV of 95.5% 
(1.1%). The directly-deployed ResNet-50 also showed satisfactory performance. Regarding the 
explanation performance, akin to the internal validation on SIIM-ACR, our template-guided 
approach consistently improved all three baseline XAI methods as showcased in Table 5. In 
terms of IoU and DSC, the template-guided explanation of VGG-19 achieved improvements of  
1.6% and 3.0% for Saliency Map, 0.8% and 1.7% for Grad-CAM, and 1.6% and 2.9% for 
Integrated Gradients. Based on ResNet-50, the performance enhancements were 2.0% and 3.6% 
for Saliency Map, 2.0% and 3.6% for Grad-CAM, and 2.4% and 4.2% for Integrated Gradients. 
Notably, the incremental percentages of IoU and DSC, when compared with baseline methods, 
ranged from 71.3% to 130.9% and 66.5% to 134.1%, respectively. We highlighted that the used 
template was the one depicted in Figure 2 while other template candidates, as shown in the 
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Appendix, also yielded comparable improvements, presenting the robustness of the proposed 
approach. 
 
These quantitative metrics elucidated the explanation improvements attributable to the proposed 
template-guided approach. To further compare XAI methods with and without template 
guidance, Figure 3 and Figure 4 visualize their explanations on the internal test set of SIIM-
ACR and the external test set of ChestX-Det, respectively. From the left to the right, each figure 
displays the lesion areas delineated by radiologists (Ground truth), important regions outlined by 
the original explanations (Baseline), and the enhanced explanations (Our method). Figure 3b 
and Figure 4b show the samples on which the proposed approach can upgrade the original 
explanation quality. However, the proposed method fails to upgrade the baseline in Figure 3c 
and Figure 4c. Such a performance contrast demonstrated that our template-guided approach 
collapses when the pneumothorax exists outside the template region. Figure 3a and Figure 4a 
illustrate scenarios where both XAI methods with and without template guidance perform well, 
whereas Figure 3d and Figure 4d depict situations where both XAI methods with and without 
template guidance exhibit poor performance. Also, we identified that either method presented a 
lower performance for small pneumothorax compared with the large one, which has been 
reported by other studies 2. 
 
4 Discussion 
 
This study proposed a template-guided approach to improve AI explanations in the context of 
pneumothorax diagnoses. Based on clinical knowledge that pneumothorax occurs in the pleural 
space, we generated a template covering the pleural space based on a canonical lesion annotation 
by radiologists. Then the template was superimposed on the baseline explanations to filter out 
extraneous model explanations that fall outside the template’s boundaries. This straightforward 
approach effectively constrained model explanations within the potential areas of pneumothorax 
occurrence, thereby consistently improving baseline XAI methods across twelve benchmark 
scenarios. 
 
Beyond the investigated pneumothorax, our template guidance holds applicability for other 
thoracic diseases characterized by clinically validated disease locations. Cardiomegaly, the heart 
enlargement evident at the cardiac region 39, serves as another use case for the proposed 
template-guided approach. According to the radiological knowledge, the cardiac region 
encompasses the central area of a frontal chest radiograph 40. To derive a comprehensive 
occurence template of cardiomegaly, radiologists are invited to meticulously analyze radiograph 
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samples and collaborate closely with ML engineers to ascertain the details of morphological 
operations. With the derived template, model explanation aligns better with clinical knowledge, 
underscoring the value of embedding domain knowledge in DL for healthcare. 
 
Our method focuses on incorporating domain knowledge into model explanations. Nevertheless, 
it is worth noting that some professionals hold the perspective that a segmentation model assists 
clinicians better than a classification model supplemented with explanations 41. Unlike a 
classification model that outputs a single diagnostic probability, a segmentation model explicitly 
delineates disease lesion areas. Yet an accurate segmentation model is largely dependent on the 
availability of large-scale pixel-level annotations, which are time-consuming and hard to acquire 
42. Potential solutions to this dilemma are semi-supervised learning and weakly-supervised 
learning 43.  
 
Validated through comprehensive studies, both semi-supervised learning and weakly-supervised 
learning stand out as effective methods for alleviating the annotation burden during the 
development of an accurate segmentation model. Madani et al. 41 proposed a semi-supervised 
approach for cardiac disease prediction that achieved high accuracy using only a small amount of 
lesion annotations. Based on only 4% labeled data, they achieved 85% of the accuracy by the 
fully-supervised model on 100% labeled data. Semi-supervised learning still requires few pixel-
level annotations while weakly-supervised learning aims to build a segmentation model using 
only image-level labels. Ouyang et al. 44 derived the pixel-level segmentations through focus 
areas extracted from a classification model and corrected the noisy segmentation label by a 
spatial annotation smoothing technique. They showed that the weakly-supervised approach 
upgraded the segmentation model training significantly without any pixel-level annotations. 
While these methods are promising in reducing the labeling cost, several studies have reported 
that semi or weakly-supervised learning failed to reach the baseline by a fully-supervised model 
45,46. In medical artificial intelligence, how to achieve a balance between the annotation cost and 
AI accuracy remains an unsolved conundrum in resource-limited settings 25. With the recent 
release of versatile foundation models, a potential solution could be the Segment Anything 
Model (SAM), known for its capability to cut out any object in any image with a single click 47. 
Hence, under the same budget, SAM facilitates the annotation of a larger number of samples and 
the development of a more accurate segmentation model 47. 
 
Our study has limitations that warrant future investigation. First, we employed a static template 
as a prior in guiding model explanations. Although the proposed method improved baseline 
explanations, the current performance is still unable to meet the deployment standards required 
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by some regulatory agencies. For example, the Korea Ministry of Food and Drug Safety 
mandates a minimum Dice coefficient of 20% for clinically relevant explanations 48. Future 
research may explore the integration of the current approach with affine transformation, which 
has been proven valuable in modifying the scale, angle, and displacement of the fixed template, 
thereby improving the explanation performance 18,29,49. Second, we evaluated the performance of 
the template-guided approach within a limited set of experimental configurations, comprising 
three XAI baselines, two DL models, and one thoracic disease. Future endeavors will encompass 
alternative XAI methods like LayerCAM 50, extra DL models including vision transformer 51, 
and additional thoracic diseases such as cardiomegaly 52-54 for a more comprehensive assessment 
of our approach. 
 
5 Conclusion 
 
Historically, clinical domain knowledge was undervalued by the DL community when designing 
XAI methods for DL-aided diagnoses. In this study, we showcase the value of clinical 
knowledge, especially potential areas of disease occurrence, in consistently improving model 
explanations across twelve benchmark scenarios. It is imperative to highlight that our template-
guided approach necessitates only a single lesion delineation crafted by radiologists, obviating 
the need for extensive annotation efforts. We anticipate that our template guidance will forge a 
fresh approach to elucidating AI models by integrating clinical domain expertise. 
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Table 1: An overview of the used data set, annotation, and function 
Data set Annotation Function 

SIIM-ACR 

Training set 
Binary diagnosis Classifier training 

Lesion delineation Template generation 

Validation set Binary diagnosis 
Classifier training 

Binarization cutoff calculation 

Test set 
Binary diagnosis Internal evaluation of classifier’s classification capability 

Lesion delineation Internal evaluation of XAI’s explanation capability 

ChestX-Det 

Validation set Binary diagnosis Binarization cutoff calculation 

Test set 
Binary diagnosis External evaluation of classifier’s classification capability 

Lesion delineation External evaluation of XAI’s explanation capability 

 
Table 2: Internal classification evaluation of various deep learning models. The evaluation 
metrics on the test set are presented, accompanied by their respective standard errors enclosed 
within parentheses. 

Model AUROC AUPRC Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) PPV (%) NPV 

(%) 

VGG-19 0.864 
(0.008) 

0.660 
(0.023) 80.5 (0.8) 78.3 (1.8) 81.1 (0.9) 54.1 

(1.9) 
92.9 
(0.7) 

ResNet-
50 

0.842 
(0.007) 

0.630 
(0.023) 77.8 (0.8) 75.7 (1.5) 78.4 (0.9) 49.9 

(2.0) 
91.9 
(0.6) 

 
Table 3: Internal explanation evaluation of various deep learning models by XAI methods. The 
evaluation metrics on the test set are presented, accompanied by their respective standard errors 
enclosed within parentheses. 

Model XAI Knowledge-Guidance IoU (%) DSC (%) 

VGG-19 

Saliency Map 
× 2.2 (0.2) 4.1 (0.3) 
√ 3.2 (0.2) 6.0 (0.3) 

Grad-CAM 
× 1.4 (0.1) 2.6 (0.2) 
√ 2.3 (0.2) 4.3 (0.3) 

Integrated Gradients 
× 3.1 (0.2) 5.9 (0.3) 
√ 4.5 (0.2) 8.2 (0.3) 

ResNet-50 

Saliency Map 
× 2.3 (0.1) 4.3 (0.2) 
√ 4.0 (0.2) 7.4 (0.3) 

Grad-CAM 
× 1.7 (0.2) 3.1 (0.3) 
√ 4.7 (0.3) 8.2 (0.4) 

Integrated Gradients 
× 2.1 (0.1) 4.0 (0.2) 
√ 4.7 (0.2) 8.5 (0.4) 
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Table 4: External classification evaluation of various deep learning models. The evaluation 
metrics on the test set are presented, accompanied by their respective standard errors enclosed 
within parentheses. 

Model AUROC AUPRC Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) PPV (%) NPV 

(%) 

VGG-19 0.942 
(0.016) 

0.896 
(0.025) 89.7 (1.5) 86.2 (3.3) 90.8 (1.6) 74.3 

(4.4) 
95.5 
(1.1) 

ResNet-
50 

0.943 
(0.013) 

0.870 
(0.029) 89.7 (1.6) 84.0 (3.8) 91.5 (1.7) 75.2 

(3.9) 
94.9 
(1.2) 

 
Table 5: External explanation evaluation of various deep learning models by XAI methods. The 
evaluation metrics on the test set are presented, accompanied by their respective standard errors 
enclosed within parentheses. 

Model XAI Knowledge-Guidance IoU (%) DSC (%) 

VGG-19 

Saliency Map 
× 1.3 (0.2) 2.5 (0.4) 
√ 2.9 (0.3) 5.5 (0.6) 

Grad-CAM 
× 1.1 (0.4) 1.9 (0.6) 
√ 1.9 (0.4) 3.6 (0.7) 

Integrated Gradients 
× 2.3 (0.3) 4.4 (0.5) 
√ 3.9 (0.4) 7.3 (0.7) 

ResNet-50 

Saliency Map 
× 1.7 (0.2) 3.2 (0.4) 
√ 3.7 (0.4) 6.8 (0.7) 

Grad-CAM 
× 1.5 (0.4) 2.7 (0.8) 
√ 3.5 (0.6) 6.3 (0.9) 

Integrated Gradients 
× 1.8 (0.2) 3.4 (0.4) 
√ 4.2 (0.5) 7.6 (0.8) 
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Figure 1: Overview of the proposed template-guided explanation pipeline. 
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Figure 2: Detailed steps of the template generation. 
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Figure 3: Visualization comparison of pneumothorax radiograph explained by original and the 
template-guided Saliency Map, Grad-CAM, and Integrated Gradients (IG) on the internal test set 
of SIIM-ACR. 
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Figure 4: Visualization comparison of pneumothorax radiograph explained by original and the 
template-guided Saliency Map, Grad-CAM, and Integrated Gradients (IG) on the external test set 
of ChestX-Det. 
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Appendix 
 
Figure A.1 presents four alternative guidance templates and their performance in upgrading 
model explanation quality on SIIM-ACR and ChestX-Det datasets are shown in Table A.1 and 
A.2, respectively. 
 

 
Figure A.1 Alternative examples of guidance templates 
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Table A.1 Internal explanation evaluation of various deep learning models by XAI methods. The 
evaluation metrics on the test set are presented, accompanied by their respective standard errors 
enclosed within parentheses. 

Guidance Index XAI Knowledge-Guidance IoU (%) DSC (%) 

VGG-19 

Saliency Map 

× 2.22 (0.15) 4.14 (0.26) 
Template 1 2.94 (0.15) 5.46 (0.26) 
Template 2 2.73 (0.13) 5.11 (0.26) 
Template 3 2.84 (0.15) 5.30 (0.26) 
Template 4 3.57 (0.15) 6.60 (0.26) 

Grad-CAM 

× 1.43 (0.13) 2.63 (0.20) 
Template 1 2.24 (0.20) 4.07 (0.33) 
Template 2 2.32 (0.18) 4.25 (0.31) 
Template 3 2.27 (0.18) 4.14 (0.33) 
Template 4 2.70 (0.23) 4.91 (0.36) 

Integrated Gradients 

× 3.14 (0.18) 5.85 (0.31) 
Template 1 4.53 (0.18) 8.34 (0.31) 
Template 2 4.27 (0.15) 7.89 (0.26) 
Template 3 4.52 (0.18) 8.34 (0.28) 
Template 4 4.96 (0.18) 9.08 (0.28) 

ResNet-50 

Saliency Map 

× 2.30 (0.10) 4.33 (0.20) 
Template 1 3.99 (0.18) 7.33 (0.31) 
Template 2 3.68 (0.15) 6.81 (0.26) 
Template 3 3.43 (0.15) 6.36 (0.26) 
Template 4 4.98 (0.20) 9.01 (0.36) 

Grad-CAM 

× 1.74 (0.15) 3.09 (0.28) 
Template 1 4.71 (0.31) 8.12 (0.48) 
Template 2 4.00 (0.26) 7.08 (0.41) 
Template 3 4.08 (0.28) 7.14 (0.43) 
Template 4 5.33 (0.28) 9.29 (0.46) 

Integrated Gradients 

× 2.09 (0.13) 3.95 (0.23) 
Template 1 4.70 (0.20) 8.56 (0.36) 
Template 2 4.54 (0.18) 8.31 (0.31) 
Template 3 4.50 (0.18) 8.25 (0.33) 
Template 4 5.46 (0.20) 9.84 (0.36) 
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Table A.2 External explanation evaluation of various deep learning models by XAI methods. 
Guidance Index XAI Knowledge-Guidance IoU (%) DSC (%) 

VGG-19 

Saliency Map 

× 1.33 (0.20) 2.54 (0.36) 
Template 1 2.46 (0.36) 4.61 (0.61) 
Template 2 2.36 (0.33) 4.42 (0.59) 
Template 3 2.34 (0.31) 4.43 (0.54) 
Template 4 2.86 (0.38) 5.36 (0.64) 

Grad-CAM 

× 1.05 (0.36) 1.88 (0.59) 
Template 1 1.73 (0.33) 3.21 (0.61) 
Template 2 1.79 (0.36) 3.33 (0.64) 
Template 3 1.66 (0.33) 3.09 (0.61) 
Template 4 2.15 (0.38) 3.97 (0.66) 

Integrated Gradients 

× 2.30 (0.26) 4.39 (0.46) 
Template 1 3.94 (0.38) 7.35 (0.69) 
Template 2 3.91 (0.36) 7.23 (0.61) 
Template 3 3.87 (0.36) 7.21 (0.64) 
Template 4 4.18 (0.38) 7.75 (0.64) 

ResNet-50 

Saliency Map 

× 1.67 (0.23) 3.18 (0.41) 
Template 1 3.54 (0.38) 6.56 (0.66) 
Template 2 3.25 (0.38) 6.06 (0.69) 
Template 3 2.92 (0.31) 5.50 (0.56) 
Template 4 4.39 (0.46) 8.05 (0.77) 

Grad-CAM 

× 1.52 (0.43) 2.67 (0.77) 
Template 1 3.77 (0.59) 6.66 (0.97) 
Template 2 3.39 (0.66) 5.91 (1.05) 
Template 3 3.51 (0.64) 6.16 (1.05) 
Template 4 4.54 (0.77) 7.88 (1.22) 

Integrated Gradients 

× 1.80 (0.23) 3.41 (0.43) 
Template 1 4.27 (0.51) 7.81 (0.87) 
Template 2 4.17 (0.48) 7.60 (0.84) 
Template 3 4.03 (0.51) 7.39 (0.89) 
Template 4 4.78 (0.56) 8.68 (0.94) 

 


