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Abstract. Attention based Large Language Models (LLMs) are the
state-of-the-art in natural language processing (NLP). The two most
common architectures are encoders such as BERT, and decoders like the
GPT models. Despite the success of encoder models, on which we focus
in this work, they also bear several risks, including issues with bias or
their susceptibility for adversarial attacks, signifying the necessity for
explainable AI to detect such issues. While there does exist various local
explainability methods focusing on the prediction of single inputs, global
methods based on dimensionality reduction for classification inspection,
which have emerged in other domains and that go further than just using
t-SNE in the embedding space, are not widely spread in NLP.
To reduce this gap, we investigate the application of DeepView, a method
for visualizing a part of the decision function together with a data set in
two dimensions, to the NLP domain. While in previous work, DeepView
has been used to inspect deep image classification models, we demon-
strate how to apply it to BERT-based NLP classifiers and investigate its
usability in this domain, including settings with adversarially perturbed
input samples and pre-trained, fine-tuned, and multi-task models.

Keywords: BERT · Dimensionality Reduction · Global XAI · Adver-
sarials.

1 Introduction

Since the development of the attention architecture [15], large pre-trained lan-
guage models such as encoders like BERT [4] and decoders like GPT [10] have
become a dominant technology in many tasks of NLP, which is under continuous
further development [1,14] and includes extensions to e.g. chat-bots. However,
even when focusing only on encoder models, issues and risks of such models do
exist when it comes to downstream tasks [19]. These include robustness, for in-
stance due to adversarial examples [5,12], or observing social biases [8,2,3]. Such
risks demonstrate the need of explainable AI (xAI) methods in order to help
detect, better understand and mitigate them.

Explanations for encoder models can be categorized into local explanations,
where the goal is to explain the behaviour of the model for a specific given input
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instance, and global explanations, which aim to provide insights into the work-
ings of the model on a broader level. Regarding local explanations in encoder-
based LLMs, they can be grouped into feature attribution approaches, attention-
based explanations, example and natural-language-based methods [22]. Global
explanations can be grouped into probing-based, neuron activation, concept-
based, mechanistic [22] and also dimensionality-reduction-based [11]. The latter,
however, in NLP often boil down to a simple application of nonlinear dimen-
sionality reduction (DR). In other domains, however, tailored DR approaches for
explanation have emerged to provide useful inspections of classifiers [13,6,20].

In this work, we focus on dimensionality reduction-based approaches and in-
vestigate the application of DeepView [13], a recently proposed tool to visually
inspect the decision function of a high-dimensional classifier with regard to a
given data set. It extends dimensionality reduction methods with a discrimina-
tive component and with the projection of a part of the decision function. Since
DeepView has only been applied to the image domain, we analyse how to utilize
it for encoder-only LLMs and showcase its usefulness in practical applications.

More precisely, our contributions are (i) a procedure to apply DeepView to
different settings of encoder based NLP models including frozen, fine-tuned and
multi-task fine-tuned BERT encoders, (ii) application examples where DeepView
supports the finding of interesting information, such as adversarially perturbed
and atypical samples among normal data, the latent space organization helping
to detect synergy between different tasks and examples of similarity between
classification strategies of different models. Our code is available online1.

In the remainder of the paper, we first recap some foundations in section
2, describe our modifications of DeepView in 3, provide details regarding the
trained encoder models in 4, present our experiments in 5 and conclude in 6.

2 Background

This section recaps the DR literature, that we build upon, including the classifier
visualization tool DeepView [13] and methods to evaluate DR mappings.

2.1 DeepView

DeepView [13] is a framework to visualize a part of the decision function of a
deep neural network classifier together with a data subset in two dimensions.
It consists of four steps: (i) project the data down using a discriminative DR
mapping, (ii) sample a regular grid in the projection space and project it to
the original data space, (iii) apply the classifier to the projected samples to
obtain the class label and the certainty estimate and (iv) visualize these in the
background of a scatter plot to obtain an approximation of the decision function.

The first step is the most important one as it selects the subspace for visu-
alization. For this purpose, DeepView utilizes a discriminative (sometimes also

1 https://github.com/LucaHermes/DeepView

https://github.com/LucaHermes/DeepView
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referred to as supervised) variant of UMAP [9], which uses regular UMAP to-
gether with a discriminative distance metric that emphasizes directions in the
data space, where classifier predictions change. More formally, let f be the classi-
fier outputting a probability distribution over the classes and dJS be the Jensen-
Shannon metric dJS(p, q) :=

√
(DKL(p∥m) +DKL(q∥m))/2,m = (p + q)/2

based on the Kullback-Leibler divergence DKL. DeepView utilizes

d(x, y) :=

n∑
i=1

(1− λ)dJS (f (pi−1) , f (pi)) + λdS (pi−1, pi) (1)

as the discriminative distance metric between two points from the original input
space x and y, where the sum is over n equidistant points pi =

(
1− i

n

)
x +

i
ny on a straight line from x to y approximating an arc-length metric, dS is
an unsupervised default metric on the data space acting as a regularization,
e.g. the euclidean metric, and λ ∈ [0, 1] determines the balance between the
discriminative and unsupervised metric.

After the DR has been used to select a subspace of the input for visualization,
an inverse mapping is required to project the corresponding part of the decision
function. A suitable mapping when using UMAP for DR has been shown in [13]
to be a Radial Basis Function network.

In addition to numerical evaluation measures (see 2.2), we also make use of
visual cues in the DeepView images to help users judge parts of the plot. To
this end, a larger circle surrounding a point in the scatter plot encodes that the
model’s predicted value of the input is different than the background in that
area, while the true label of each input is indicated by the color of the point.

2.2 Evaluation in Dimensionality Reduction

Common methods for evaluating the quality of an unsupervised dimensionality
reduction mapping are summarized in [21]. Popular strategies are based on the
neighborhood preservation of the DR. Here, we utilize the following measures,
which are applied to two representations of the same data points, usually the
original data space and the embedding:
QNN(k): How many points are the same among the k nearest neighbors between
the two data representations. LCMC(k): The baseline value, which corresponds
to the diagonal of the QNN (k) curve, is removed from QNN (k). Kmax: Corre-
sponds to the maximum value of LCMC(k). AUC(QNN (k)) is the area under
the QNN (k) curve. Qlocal is the area the QNN (k) curve up to Kmax with nor-
malization, highlighting local neighborhood preservation.

However, these rely classically on an unsupervised metric in the input space
and hence are not useful to evaluate discriminative projections. We will uti-
lize them in a slightly different way, by applying to two embedding spaces and
thereby comparing the similarity of these.
DeepView Evaluation To assess the quality of the DeepView DR projection,
we evaluate its fidelity to the model’s decision function. This is determined by
the extent to which the projected data reflect similar classification outcomes for
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Table 1: Classification accuracies for all models. Additionally Matthew’s Corre-
lation for COLA and F1 score for MRPC due to class imbalance.

Setting SST2 COLA MRPC QQP QNLI MNLI RTE

Pre-trained BERT 0.80 0.74/0.37 0.68/0.41 0.70 0.70 0.47 0.56
Fine-tuned BERT 0.92 0.81/0.52 0.84/0.89 0.88 0.91 0.84 0.68
Multi-Task BERT 0.91 0.80/0.49 0.84/0.88 0.90 0.90 0.83 0.76

proximal points in the embedding space, providing insights into how a model
organizes its embedding space by class. Following [13], we gauge the fidelity
using QkNN , which calculates the leave-one-out error of a k-nearest neighbor
(kNN) classifier with k = 5 using the model’s predicted labels. We also evaluate
the quality of the inverse projection by reporting the agreement between the
prediction labels of data points and the background of the scatter plot as Qdata.

3 DeepView Modification for NLP

Previous applications of DeepView focused on the image classification domain.
In order to adapt it for use in the NLP domain, we propose to make the following
adjustments: (i) using the BERT embedding as the input space for DeepView
and (ii) employing the cosine distance for regularization. We also provide useful
pipelines and demonstration examples in section 5.

To apply DeepView, an input space with a distance measure and the possibil-
ity to compute interpolations between data points is required. For this purpose,
we leverage the encoding of the BERT model [4] using the ”CLS” token to create
a single vector per input sequence and employ this as the data representation.

Further, DeepView utilizes a discriminative distance measure and regularizes
it with dS , an unsupervised one. While the discriminative distance depends on
the classifier in question, the cosine distance is the most natural choice for reg-
ularization in the present setting. With this framework, we will investigate how
dominant the discriminative information is in the embedding space of different
models, among other experiments.

4 BERT Training Set-up

This section summarizes the technical details of the NLP classification models
that we inspect later.
Datasets The Glue dataset [17] comprises a collection of datasets used for
various NLP tasks that are phrased as classification problems. For the Single
Sentence Sentiment Analysis task, we utilize the Stanford Sentiment Treebank
(SST2) data set, for Single Sentence Grammar Acceptability task the Corpus
of Linguistic Acceptability (COLA) set, for Sentence Similarity the Microsoft
Research Paraphrase Corpus (MRPC) and Quora Question Pairs (QQP) sets,
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Table 2: Mean and standard deviations of QkNN and Qdata percent errors with
different weights of discriminative and unsupervised metrics. PT values averaged
over GLUE Datasets where the classifier performed better than random.

Setting λ = 1 λ = 0.8 λ = 0.6 λ = 0.4 λ = 0.2 λ = 0.0

Q
k
N

N

PT 27 ± 12 2 ± 4 2 ± 3 1 ± 2 2 ± 2 1 ± 2
FT 2 ± 2 2 ± 2 1 ± 1 1 ± 1 1 ± 1 1 ± 1
MT 1 ± 1 1 ± 1 1 ± 1 1 ± 1 1 ± 1 1 ± 1

Q
d
a
ta

PT 31 ± 14 3 ± 6 3 ± 4 2 ± 3 0.3 ± 0.6 1 ± 1
FT 1 ± 1 1 ± 1 1 ± 1 0.3 ± 1 0.3 ± 1 0.3 ± 1
MT 1 ± 1 1 ± 1 1 ± 1 1 ± 1 0.3 ± 1 0 ± 0

and for Natural Language Inference the Stanford Question Answering Dataset
(QNLI), Multi-Genre Natural Language Inference (MNLI) and Recognizing Tex-
tual Entailment (RTE) datasets.

Model Architectures In our study, we utilize three standard types of training
to investigate differences among them using DeepView. We always employ stan-
dard pre-trained BERT. Pre-trained (PT) BERT refers to a frozen encoder
model and training only the additional classification head. It consists of three
fully-connected layers with sizes 768−512−256 for all data sets, except for MNLI
where one layer performed best. For fine-tuned (FT) BERT the encoder as well
as the classification head were fine-tuned to one task, and as such, the classifi-
cation head consists of a single linear layer. Multi-Task (MT) BERT refers to
fine-tuning the whole model as well, but with an individual classification head
for each task and using all tasks simultaneously and shuffled for training.

Training HyperparametersWe detail the performance of the resulting models
on the data sets in 1, where we always report the accuracy and for the data sets
with class imbalance (COLA and MRPC) additionally a metric that is invariant
to class imbalance. The used hyperparameters are desciribed in the following:
All models use the ”bert-based-uncased” tokenization and model engine, with
Hugging Face’s default optimizer Adam Weighted Decay, using a batch size of
16 and learning rate of 2e−05. The multi-task model is trained for 3 epochs,
the fine-tuned ones for 5 on the smaller datasets (MRPC, RTE, COLA) and 3
epochs for the larger ones (MNLI, QNLI, QQP, SST2). The pre-trained models
are trained similarly, except that COLA was trained for 10 epochs and QNLI
for 9 epochs for better performance.

5 Experiments

In this section, we delve into BERT’s embedding space and classification function
using DeepView across various settings, focusing on the tasks given by the Glue
Dataset. Section 5.1 begins by evaluating the use of discriminative information
in visualization of BERT-based classification models.
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(a) λ = 1 (b) λ = 0.8 (c) λ = 0

Fig. 1: DeepView of the Pre-Trained BERT with classification head trained on
SST2, a binary classification dataset; the background colors correspond to ei-
ther class label; the color intensity is a proxy for classification certainty; one
dot corresponds to a single embedded sentence. λ encodes different amounts of
discriminative information.

We demonstrate DeepView’s application in current NLP settings, showcasing
its utility in identifying adversarials (Sec. 5.2), understanding multi-task model
organization (Sec. 5.3), and comparing classification strategies across models
(Sec. 5.4).

5.1 Information Provided by Discriminiative Distances

To investigate the effect of discriminative distance in the respective NLP set-
ting, we compare DeepView visualizations based on different amounts of dis-
criminative information, as formalized by λ in equation (1). We consider the
three different classification model types: PT, FT, and MT BERT for each of
the GLUE datasets. Using QkNN 2.2, we evaluate for each resulting DeepView
visualization whether neighboring data points are classified with the same label
by the classifier, i.e. the consistency of the displayed class structure.

More precisely, after having trained the classification models, we select a
random sample of 250 data points which were not part of the classification
training set and apply DeepView with varying weightings λ of the two metrics.
Thereby, λ = 1 refers to using only the cosine distance and the other extreme
λ = 0 to only discriminative distance. The average QkNN values are displayed
together with their standard deviations in Table 2. In the fine-tuned and multi-
task settings, we averaged over all the datasets, and in the pre-trained case, we
averaged over the dataset where the classifier performed better than random.

We can observe two different trends: For the pre-trained models, the error
changes heavily as λ decreases from 1. For the two fine-tuned cases, the error
values change very little. Using a larger discriminative weight displays the aspects
of the embedding relevant to the downstream task. The different results for pre-
trained models show that this information is included in the embedding but not
tailored to it. For fine-tuned models, as expected, the representation adjusts to
the downstream task, i.e. there is less to no difference. We also would like to
highlight that DeepView by changing λ values allows us to see that!
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(a) Multi-Task BERT (b) SST2 Fine-tuned BERT

Fig. 2: DeepView of the Multi-Task BERT and SST2 Fine-tuned BERT Model’s
embedding space with respect to the SST2 dataset. Figure 2a also contains an
adversarially attacked data point. The bottom left of the cyan region displays
an area of high uncertainty which we investigate in Section 5.2.

We also show example visualizations for the SST2 data set. Figure 1 shows
the DeepView of a pre-trained model for different values of λ, while Figure 2
shows a DeepView for a fine-tuned and a multi-task fine-tuned model, both for
λ = 1. While λ = 1 in Figure 1a looks like a random embedding regarding the
class labels and only shows meaningful class structure as discriminative informa-
tion is included, in this example with λ = 0.8, in Figure 1b a rather clear class
structure is displayed for λ = 1. These results follow the observations in Table 2.
Finally, Figure 1c with λ = 0 demonstrates why regularizing with an unsuper-
vised distance metric is useful: the fisher metric focuses on class differentiation
and thus removes most of the intra-class variation.

Consequently, we will utilize in the following DeepViews λ = 1 if we are
visualizing a fine-tuned model, and λ = 0.8 for pre-trained ones, as it corresponds
to the largest proportion of unsupervised metric while having a low QkNN error.

5.2 Inspecting the Decision Function in the Presence of
Adversarially Manipulated Data

In the following, we demonstrate how DeepView can help us identify malicious
data samples in an example containing adversarially manipulated inputs.

We utilize samples from the Adversarial Glue dataset curated by [18], fo-
cusing on a targeted attack method which operates at the sentence level and
employs a distraction-based tactic by adding a randomly generated URL to a
negative sentiment input.

As an example, the attack would adapt ”I do not like this movie.” to e.g.
”I do not like this movie http://ahsdbw.gos.”, which leaves the sentiment of the
sentence unchanged.

For this experiment, we utilize the Multi-Task model and randomly sample
5000 data points from the validation and training set of SST2 and select an
adversarial sample at random. Following that, we visualize the decision space
using DeepView in Figure 2a.

http://ahsdbw.gos
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Fig. 3: Left: This image is zoomed into the uncertain region in the bottom left
of the cyan region of Figure 2a. The numbers correspond to the selection order
of the points and to the sentences on the right. We selected points from left to
right because the background indicates a high level of uncertainty in the left.
The fifth point selected reveals the adversarial attack.

Upon closer inspection, we identify particularly difficult areas in the bottom
left of the cyan region and bottom right of the dark blue region. The white
coloration of the areas indicate difficulty for the model in determining sentiment.
In scenarios where adversarial inputs are suspected, thorough investigation of
these regions is advisable. The priority is given to the largest uncertain region
which we visually determine to be in the cyan region.

In Figure 3, we zoom into the scatter plot and observe that the background
appears more white to the left of the image than the right, signifying greater
uncertainty in the left region. As such, we begin our investigation by selecting the
leftmost point, denoted by the number 1 in the image. Upon examination, we find
that this is not the perturbed data point. Subsequently, we examine other points
and ascertain that the fifth point indeed represents the adversarially perturbed
data point. Additionally, our inspection reveals other noteworthy points located
in the region; in particular, the point selected, denoted by asterisks, reveals
another type of noise, akin to typo-based attacks [7], already present within
the SST2 dataset. Thus, DeepView can be used to narrow the search space of
potential malicious data points down to isolated areas using the background
color as a prioritization guide.

5.3 Investigating the Embedding Space of the Multi-Task Model

The GLUE Authors and the broader NLP community agree that RTE is the
most challenging task in the GLUE collection [16]. In our studies, we observe a
noteworthy improvement between the FT and MT settings (from 0.68 to 0.76),
suggesting a training synergy between the datasets. Hence, we utilize DeepView
to pinpoint potentially interesting aspects in the embedding space of the MT
model and then validate our observations. For this purpose, we employ a kNN
classifier to differentiate the datasets in the embedding space of the model, with
k = 5. We show the according DeepView in Figure 4 (left).

Initially, we note significant separation among many datasets, despite the
MT model being trained with individual classification heads for each dataset i.e.
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Fig. 4: Left: DeepView of a kNN classifier on the embedding space of the multi-
task model which is trained to differentiate between the datasets. Each point
and region are colored according to respective dataset. Right: Confusion matrix
of the same kNN classifier.

it was not trained for such distinction. Furthermore, when focusing on the RTE
dataset, we recognize some possible confusion with MNLI, particularly in the
approximated decision function plotted in the background. After DeepView has
pointed us to these relations, we verify them with a confusion matrix in Figure
4 (right). Indeed, the confusion between RTE and MNLI is the most frequent.
This suggests that MT BERT represents these two datasets very similarly. Also,
because this model achieves a better accuracy on RTE, it makes the follow-
ing hypothesis, which we phrase as a question, plausible: Does a representation
obtained by fine-tuning on MNLI improve the performance for RTE?

In order to investigate whether a synergy can be obtained, we utilize the
MNLI fine-tuned model, remove its classification head, freeze the weights of the
encoder and train the weights of a new classification head for RTE. Evaluating
the performance, we observe that indeed the accuracy goes up from 0.68 of
the regular FT RTE model to 0.76 which is comparable to the MT model. We
conclude that indeed a synergy has been implemented this way.

5.4 Local Neighborhood Investigation

In the following, we propose the use of DeepView in a pipeline to compare the
classification strategies between two models, allowing us to quantitatively mea-
sure their similarity. We again use SST2 as a running example. Here, we apply
the scores from 2.2 to compare the neighborhood structure of different DeepView
embeddings and display the resulting QNN and LCMC scores in Figure 5a, as
well as the aggregated Qlocal and Kmax measures in Table 6.
Analysis The largest similarity can be observed between MT and FT in the
curves (AUC of 0.69) as well as with the Qlocal measure 0.5. This indicates that
the number of co-neighbors in these model settings is the greatest. In the pre-
trained (λ = 1) versus multi-task or fine-tuned cases, the Qlocal score is very low
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(a) Low Dimensional Neighborhood Analysis

(b) High Dimensional Neighborhood Analysis

Fig. 5: QNN (k) and LCMC curves of models trained on SST2 in high (5b) and
low (5a) dimensions. Visually, we can see each of the curves are very similar
between high and low dimensions. The similarity is further proven by the AUC
scores located in the bottom right of each figure.

at 0.08 and 0.00, demonstrating that there are very few co-neighbors between
the projections which aligns with our results from Section 5.1 that no useful
representation results without discriminative distances in this case. When incor-
porating it, as in (λ = 0.8), Qlocal as well as the AUC scores increase, confirming
that with the discriminative distances the representation is more similar to the
better performing MT model. The results of the pre-trained models remain con-
sistent across all the models where the pre-trained model outperformed random
guessing. In the comparison between fine-tuned and multi-task case, the embed-
ding spaces are consistently more similar in terms of their neighborhoods except
in the case of RTE which we investigated in Section 5.3.

Finally, we also evaluate in how much the observations in this section based
on the DeepView embeddings resemble the relations in the original space. For
this purpose, we rerun the neighborhood comparisons in the high-dimensional
space and show them in Figure 5b. These curves and the AUC scores resemble
a high similarity for all cases, indicating that the neighborhoods of each model
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Table 3: SST2 QNN (k) Statistics. λ is displayed in brackets.

MT vs FT FT vs PT (1) MT vs PT (1) FT vs PT (0.8) MT vs PT (0.8)

Qlocal 0.50 0.00 0.08 0.34 0.35
Kmax 225 1 2 194 209

are represented in both the low-and high- dimensional embedding spaces. Hence,
we conclude that it is suitable to examine the neighborhood differences in the
representation/visualization created by DeepView.

6 Conclusions

This study extends the capabilities of DeepView into the domain of NLP. We
analyze the embedding space of the popular and widely-used BERT trans-
former across various text classification tasks using the GLUE dataset in distinct
training settings (pre-trained, fine-tuned, and multi-task). We demonstrate that
DeepView enables us to investigate the downstream task-related part of the em-
bedding space, and for pre-trained models, discriminative distances are crucial
for this examination. Further, we show that DeepView enables quick detection
of adversarial and atypical data, even among 5000 data points. We investigate
the embedding of a multi-task model and use DeepView to pinpoint a source of
synergy. Finally, we also investigate local neighborhoods in the embeddings of
DeepView and verify similar relationships between different models.

Promising directions for future work along this line include extending ob-
served phenomena from Pre-Trained BERT to other Language Models, expand-
ing DeepView to investigate robustness, feature manipulation, and uncertainty.
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7 Appendix

Table 4: Pre-Trained QkNN Errors.

Dataset λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

SST2 0 0 0 0 0 0.368
RTE 0.004 0.004 0.004 0.004 0.004 0.032
COLA 0.016 0.016 0.02 0.016 0.012 0.012
MRPC 0 0 0 0 0 0
QQP 0 0 0 0 0 0.28
QNLI 0.008 0.016 0.008 0.008 0.004 0.104
MNLI 0.032 0.044 0.044 0.072 0.088 0.328

Table 5: Fine-Tuned QkNN Errors.

Dataset λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

SST2 0 0 0 0.004 0.004 0.02
RTE 0.008 0.02 0.008 0.02 0.016 0.036
COLA 0.008 0.008 0.008 0.008 0.008 0.008
MRPC 0.004 0.004 0.004 0.004 0.004 0.012
QQP 0.008 0.012 0.008 0.008 0.012 0.024
QNLI 0 0 0 0.004 0.004 0
MNLI 0.032 0.036 0.032 0.04 0.048 0.044
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Table 6: Multi-Task QkNN Errors.

Dataset λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

SST2 0.004 0.004 0.004 0.004 0.008 0.008
RTE 0.008 0.004 0.004 0.016 0.016 0.012
COLA 0.004 0.004 0.004 0.004 0.004 0.008
MRPC 0.004 0.008 0.008 0.012 0.012 0.016
QQP 0.02 0.012 0.008 0.008 0.008 0.008
QNLI 0 0 0 0.004 0.004 0.004
MNLI 0.012 0 0.008 0 0.008 0.008

Table 7: Pre-Trained Qdata Errors.

Dataset λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

SST2 0 0 0 0 0 0.4
RTE 0 0 0 0.013 0.01333 0.013
COLA 0 0 0 0.013 0.027 0.133
MRPC 0 0 0 0 0 0
QQP 0 0 0 0 0 0.387
QNLI 0 0 0.0267 0.013 0 0.107
MNLI 0.027 0.013 0.067 0.093 0.12 0.36

Table 8: Fine-Tuned Qdata Errors.

Dataset λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

SST2 0 0 0 0 0 0
RTE 0.027 0 0 0 0.013 0.013
COLA 0 0 0 0 0 0
MRPC 0 0 0 0 0 0.013
QQP 0 0 0 0.013 0.013 0.027
QNLI 0 0 0 0.013 0.013 0
MNLI 0 0.027 0.027 0.013 0.013 0.013

Table 9: Multi-Task Qdata Errors.

Dataset λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

SST2 0 0 0.013 0 0.013 0.013
RTE 0 0.027 0.013 0.013 0 0.027
COLA 0 0 0 0 0 0.013
MRPC 0 0 0 0 0 0
QQP 0 0 0 0.013 0.013 0.013
QNLI 0 0 0.013 0.013 0.013 0.013
MNLI 0 0 0 0 0 0
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