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Abstract. Imposing key anatomical features, such as the number of
organs, their shapes, sizes, and relative positions, is crucial for build-
ing a robust multi-organ segmentation model. Current attempts to
incorporate anatomical features include broadening effective recep-
tive fields (ERF) size with resource- and data-intensive modules such
as self-attention or introducing organ-specific topology regularizers,
which may not scale to multi-organ segmentation problems where
inter-organ relation also plays a huge role. We introduce a new ap-
proach to impose anatomical constraints on any existing encoder-
decoder segmentation model by conditioning model prediction with
learnable anatomy prior. More specifically, given an abdominal scan,
a part of the encoder spatially warps a learnable prior to align with
the given input scan using thin plate spline (TPS) grid interpola-
tion. The warped prior is then integrated during the decoding phase
to guide the model for more anatomy-informed predictions. Code is
available at https://anonymous.4open.science/r/AIC-UNet-7048.
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1 Introduction

It is becoming increasingly common to encounter AI models with reported per-
formance on par with or surpassing radiologists. However, it is highly unlikely
that AI models will replace radiologists anytime soon. While the AI models per-
form well in most cases, they may still make anatomically flawed predictions
that radiologists would never make. For instance, the AI may predict that the
esophagus, a muscular tube that carries food and liquid from the throat to the
stomach, is disjointed. Alternatively, the AI might mistakenly identify the tibia
bone as a femur, since these two bones may look similar at a local level. These
examples demonstrate that current AI models are unreliable in learning essential
anatomical features.

What prevents current AI models from identifying crucial anatomical features
even after being exposed to hundreds of thousands of instances during training?

* These authors contributed equally to this work
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Currently, fully autonomous AI-based segmentation models are solely trained to
detect organs based on the input scan [5, 4, 7]. Consequently, we expect the AIs
to pick up these anatomical constraints by the AI itself in a fully data-driven
way. However, not only are these anatomical features global features, which are
significantly more challenging to learn than local features, but the model may
not even perceive them as strict constraints. Therefore, learning or incorporating
anatomical features is a great challenge to current AI models.

Several methods have been proposed to incorporate or better learn anatom-
ical constraints. These methods can be broadly categorized into 1) broadening
effective receptive fields (ERF) or 2) imposing topological constraints. Many
works considered Graph Neural Networks (GNNs) [15, 9] and self-attention net-
works [17, 7], which are more suitable for discovering global features than stan-
dard Convolutional Neural Networks (CNNs). However, these networks typically
require more training data for better generalization [6], which can be a chal-
lenging requirement in medical domains. Some works considered reformulating
segmentation to mesh-defomration task [1, 10], naturally offering smoother con-
tour prediction by learning to deform a template mesh. However, it struggles to
represent intricate structures. Topology regularization techniques [14, 8], while
effective for specific anatomical challenges, limit the technique’s generalizability
when the task scales to multi-organ segmentation where organs’ relative location
plays a greater role.

Our proposed model, the Anatomically Informed Cascaded UNet (AIC-UNet),
is designed to incorporate global anatomical priors without making significant
changes to the standard encoder-decoder segmentation network. The model in-
corporates anatomical features without relying on resource-intensive global con-
text learners, or topology regularizer, which does not handle inter-organ rela-
tions. Instead, we introduce an extra learnable parameter called the “prior ”,
which can be spatially deformed to match a patient’s anatomy. The deformed
prior acts as a soft constraint during prediction. More specifically, a portion
of the image encoder output is used as the control points of thin plate spline
(TPS) grid deformation. TPS deforms a learnable prior to match a patient’s
anatomy. The deformed prior is integrated during the decoding phase to guide
the decoder for more anatomy-informed predictions. To further increase the de-
formation accuracy of intricate objects, we repeat the same process with cropped
local patches, resulting in a global-local cascaded network.

The contributions of this paper are summarized as follows:

– We propose improving the multi-organ segmentation model’s robustness by
conditioning its prediction with a deformed anatomical prior.

– We propose a global-local cascaded deformation approach to increase the
deformation accuracy of intricate objects.

– We propose an activation maximization technique to learn a generic prior
instead of using a fixed anatomy template.
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2 Prior Works

Existing methods for enhancing anatomical feature learning focus on broadening
ERF, reformulating segmentation to mesh deformation, or imposing topological
constraints with regularizers, each with its own drawbacks.

Broadening ERF GNNs [15] and self-attention networks [17] are models that
can attain larger ERF than standard CNNs. Therefore, these models are more
suitable for learning distant dependencies within the data, making them good
candidates for learning anatomical feature [3, 7, 13]. However, in practice, these
models may struggle to effectively learn anatomical priors due to the limited
data available to supervise the learning of long-range dependencies.

Mesh Deformation Mesh-deformation [10, 1], which naturally offers smoother
contour predictions compared to conventional pixel prediction, encounters diffi-
culties representing intricate structures. One potential solution is integrating
mesh-based segmentation with pixel-based methods. However, this approach
poses challenges due to the differing nature of object representation between
the two methods.

Topology regularization Different shapes of organs can be described by their
topological features, e.g. number of objects and number of cavities for 3D vol-
umes. There are studies [18, 8] that use topological constraints to regularize
network predictions. Topology-based techniques are often custom-tailored to
specific anatomical challenges, diminishing their generalizability. Furthermore,
these methods tend to prioritize penalizing local concepts, such as the number
of holes or local connectedness, without addressing broader considerations like
organ shapes and their relations.

3 Method

Network Overview At its core, AIC-UNet (depicted in Figure 1) is a cas-
caded network that requires both the global Xg ∈ RH×W×D and local view
Xl ∈ RH′×W ′×D′

to produce a comprehensive local multi-organ prediction
Ŷl ∈ [0, 1]C×H′×W ′×D′

where C signifies the number of organs.
Initially, the model takes a down-scaled global view Xg as input to gener-

ate an initial, rough global prediction Ŷg ∈ [0, 1]C×H×W×D. In addition to the
standard encoder-decoder structure of a segmentation model, AIC-UNet incor-
porates a free-parameter Prg ∈ RC×H×W×D alongside 3 computation blocks:
PriorEncoderg, Deformg, and {SE(i)

g }. Prg is optimized to represent a generic
anatomy. Prg is spatially deformed by a deformation module Deformg to produce
P̂rg which closely follows the anatomy of Xg. The degree of deformation is mod-
ulated by a concatenated feature extracted from Encoder(4)g and PriorEncoderg.
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Fig. 1: Overview of AIC-UNet. AIC-UNet is a cascaded network combining global
and local views for comprehensive multi-organ prediction. Initial input Xg yields
rough global prediction Ŷg, enhanced by P̂rg, a spatially deformed anatomy
from a learnable prior Prg via Deformg. This process repeats in the local segment
of the model for further enhancements, taking local view Xl and local prior Prl.

This process is replicated in the local segment of the model, taking local
view Xl and local prior Prl, a cropped and rescaled global prediction Ŷg, as an
input prior. The local model serves to refine the deformed global prior, yielding
a deformed local prior P̂rl.

Fig. 2: Deform block deforms a learnable
prior anatomy Pr to a patient-specific
anatomy P̂r.

Deformation block As shown in
Figure 2, Deform block takes 2 in-
puts: estimated source control points
{p(i)

source}Ni=1 and prior Pr, producing
a deformed prior P̂r. We use TPS
deformation [2], which allows non-
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linear deformation with sparse control
points, to deform the generic anatomy
Pr.

TPS deformation works as fol-
lows, given a sequence of the pre-
defined dense target control points
{p(i)

target ∈ R3}Mi=1 and sparse source
control points {p(i)

source ∈ R3}Ni=1,
N << M , a unique grid deformation function D is determined by matching the
control points p

(i)
target 7→ p

(i)
source with minimal bending energy. The matching of

the h, w, and d coordinates of the control points, together with regularization
conditions, give three sets of coefficients (a(1), · · · , a(N+4)), (b(1), · · · , b(N+4)),
and (c(1), · · · , c(N+4)), such that a general target point p = (h,w, d) is mapped
to (Dh(p),Dw(p),Dd(p)) with

Dh(p) = a(N+1) + a(N+2)h+ a(N+3)w + a(N+4)d+

N∑
i=1

a(i)U(|p− p(i)
source|),

(1a)

Dw(p) = b(N+1) + b(N+2)h+ b(N+3)w + b(N+4)d+

N∑
i=1

b(i)U(|p− p(i)
source|),

(1b)

Dd(p) = c(N+1) + c(N+2)h+ c(N+3)w + c(N+4)d+

N∑
i=1

c(i)U(|p− p(i)
source|),

(1c)

where U(r) = r2 log r2 is a kernel function. Further details on optimizing the
coefficients of TPS are given in Appendix.

Learnable Prior Having a realistic organ anatomy as a global prior greatly
benefits the accuracy of the subsequently deformed global and local priors. Un-
like other atlas-based segmentation methods [10, 1], which assigns an arbitrary
ground truth anatomy from a training set or simple structures like a sphere, AIC-
UNet learns to find the optimal global prior during training. This is achieved
by turning the global prior Prg as a free parameter with size C ×H ×W ×D,
which matches the global view’s spatial dimension. We apply Softmax along the
channel dimension C to limit the range between [0, 1].

We further explain the optimization trick used to accelerate the prior learning
in Loss Function and Optimization subsection.

Aggregation of Prior The deformed prior P̂r is combined with the outputs
from decoder blocks using Squeeze Excitation (SE) attention modules. A convo-
lution is applied to the attention-modulated feature to match the desired channel
size of the subsequent decoder block.
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Loss Function and Optimization AIC-UNet is trained to minimize Dice,
the combination of Soft-Dice and Cross Entropy loss computed both at a global
and local level, as well regularization terms to stabilize the source control point
estimations. Loss is defined as :

Dice(Yg, Ŷg) + Dice(Yg, P̂rg) + λg

∑
i

||p(i)
source,g||2 + (2)

Dice(Yl, Ŷl) + Dice(Yl, P̂rl) + λl

∑
i

||p(i)
source,l||2,

where Yg and Yl are the global and local ground truth anatomies. λg and λl

are coefficients to control the degree of L2 regularization.
Directly optimizing global prior Prg along with the other model parameters

leads to slow convergence. We hypothesize that this is due to a correlation be-
tween the prior and TPS control points. For instance, if the predicted anatomy is
smaller than the ground truth, the error can be reduced in two ways: 1) shrink-
ing the source control points in TPS deformation or 2) enlarging the global
prior. This correlation may confuse optimization priority. We prevent confusion
by alternating the optimization of the model parameters and global prior.

4 Dataset and Experimental Setup

Dataset We use the freely available Whole abdominal ORgan Dataset
(WORD) [12]. WORD consists of 150 anonymized CT scans. Each scan con-
tains 159–330 slices with 512×512 pixel and an in-plane resolution of 0.976 mm
× 0.976 mm. Slice spacing varies between 2.5 and 3.0 mm. WORD provides an-
notations of 16 organs, including the liver, spleen, kidneys, and various digestive
organs. For training, validation, and testing purposes, the dataset is randomly
split into 100 scans, 20 scans, and 30 scans, respectively.

Experimental Setup The pixel intensity is truncated between [−250, 500] and
spacing normalized to [1.5, 1.5, 2.0]. Axial direction (d-dimension) is zero-padded
to have an identical volume size. Global view and global mask are down-sampled
by a factor of [3, 3, 2]. The dimension of local view is set to [128, 128, 128]. We use
AdamW [11] optimizer with linear warmup cosine annealing. Maximum learning
rate and weight-decay is set to 3e−4 and 1e−5. For the optimization of the prior,
the learning rate is set to 1e−3. Every 500 iterations, we conduct training for
the prior over a span of 100 iterations. The model is trained for 350 epochs, each
epoch with 200 iterations. Batch size is set to 2. We use 1e−8 for both λl,g in
the loss (2) to regularize TPS control points learning.

Baseline Methods We compare with two baseline methods. The first is a
standard UNet that forms the backbone of our local segmentation network. The
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Table 1: Comparison of Proposed and baseline models on WORD dataset.
95% Haus ↓ NSD ↑ Dice ↑

AIC-UNet CUNet UNet AIC-UNet CUNet UNet AIC-UNet CUNet UNet

liver 2.408 2.149 2.337 95.888 96.322 95.904 96.274 96.404 96.333
spleen 1.462 1.678 1.626 98.924 98.949 98.722 95.463 95.494 95.469
left kidney 1.562 1.452 1.567 98.313 98.499 98.39 95.17 95.236 95.238
right kidney 1.367 7.233 1.47 98.856 98.047 98.719 95.337 95.058 95.405
stomach 7.047 8.2 8.456 91.663 91.751 90.939 91.673 91.529 91.154
gallbladder 4.183 4.176 5.069 91.3 91.719 89.737 80.592 80.532 79.698
esophagus 3.617 3.461 3.931 90.924 91.491 91.369 76.556 77.432 77.065
pancreas 5.18 4.786 4.823 90.357 90.571 91.368 83.265 83.411 83.978
duodenum 13.433 12.954 13.774 76.68 76.137 75.899 68.602 67.617 67.353
colon 8.834 8.35 8.004 88.029 88.28 88.803 85.251 85.33 85.901
intestine 4.327 4.511 4.206 91.917 92.177 92.08 87.777 87.889 88.093
adrenal 4.097 4.026 4.223 88.99 89.381 88.667 69.72 70.42 69.187
rectum 7.212 20.257 10.494 84.987 83.881 84.352 81.745 80.926 81.307
bladder 2.792 3.057 2.704 93.992 93.828 93.963 90.981 90.911 91.191
head of femur left 11.74 3.795 17.85 94.181 92.811 93.467 91.978 91.781 91.825
head of femur right 3.553 10.493 18.591 94.024 93.043 92.964 92.242 91.792 91.43

mean 5.176 6.286 6.82 91.814 91.68 91.584 86.414 86.36 86.289

second is a cascaded UNet (CUNet), which has an identical structure to our AIC-
UNet except that it does not have the common prior Prg. For CUNet, we use
self-attention on the global segmentation network and attend features from the
local segmentation network with cropped predictions from the global network.

5 Experimental Results

Segmentation Metrics We measure segmentation performance by three met-
rics: the dice score (Dice), the normalized surface dice (NSD) [16], and the 95%
Hausdorff distance. Our AIC-UNet achieved best mean results on all three met-
rics.

Visualization of Deformed Prior Figure 3 shows the global prior anatomy
and patient-specific deformed anatomy Prg learned by the TPS deform block.
The figure depicts that the learned global prior closely aligns with our under-
standing of a generic organ anatomy. Additionally, the prior anatomy is suc-
cessfully deformed into different patient-specific anatomies. For example, the
deformed anatomy of the subject in the middle accurately represents the sub-
ject’s relatively shorter torso and a smaller waist-to-hip ratio.

Qualitative Comparison The attention mechanism on the learned common
prior in our AIC-UNet can promote anatomically accurate segmentation. This
is supported by results in Figure 4. In Figures 4a–4b, UNet wrongly segmented
bones near knees as femur heads, while AIC-UNet gives more accurate segmen-
tation. In the case of gallbladder segmentation, as shown in Figures 4c–4d, UNet
prediction has an extra component, and it deviates from the ground truth posi-
tion (colored as a transparent red), whereas, AIC-UNet correctly identifies the
number of components and their general position.
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Fig. 3: Deformation of global prior Prg into different patient-specific anatomies
P̂rg. The intestine is occluded for better visualization. The transparent anatomy
in each P̂rg are Prg.

6 Conclusion and Future Research

We propose AIC-UNet, an encoder-decoder segmentation model that takes ad-
vantage of anatomical information by using prior deformation. To improve this
model, future research could focus on two areas. Firstly, by developing a more
effective target control point selection strategy to enhance the TPS deformation
performance. Secondly, by designing a more powerful feature aggregation module
that can integrate the information from the deformed prior to decoder blocks.

(a) AIC-UNet (b) UNet (c) AIC-UNet (d) UNet

Fig. 4: Qualitative comparisons of AIC-UNet and UNet on femur heads (yellow
and blue) and gallbladder segmentation. Ground truth liver and gallbladder are
superimposed with transparency.
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Appendix

Solution of Thin Plate Spline Coefficients Given the estimated source
control points {p(i)

source ∈ R3}Ni=1, 3D-TPS maps a general target point p =
(h,w, d) to (Dh(p),Dw(p),Dd(p)) with

Dh(p) = a(N+1) + a(N+2)h+ a(N+3)w + a(N+4)d+

N∑
i=1

a(i)U(|p− p(i)
source|),

(3a)

Dw(p) = b(N+1) + b(N+2)h+ b(N+3)w + b(N+4)d+

N∑
i=1

b(i)U(|p− p(i)
source|),

(3b)

Dd(p) = c(N+1) + c(N+2)h+ c(N+3)w + c(N+4)d+

N∑
i=1

c(i)U(|p− p(i)
source|),

(3c)

where U(r) = r2 log r2 is a kernel function, (a(1), · · · , a(N+4)), (b(1), · · · , b(N+4)),
and (c(1), · · · , c(N+4)) are coefficients to be optimized. Here we explain how the
three sets of coefficients are calculated. We use the h-coordinate coefficients as
an example, and the calculation of the w and d coordinate coefficients are done
in a similar manner.

The thin plate function (3a) has N + 4 coefficients to be computed. Though
the function is highly non-linear with the kernel function U , the function is
linear with respect to the coefficients. Hence, the coefficients have a closed-form
solution.

Let v = (h(1), · · · , h(N)|0, 0, 0, 0)T , where h(i) is the h-coordinate of the i-th
source control point. Also, define matrices

K =


0 U12 · · · U1K

U21 0 · · · U2K

· · · · · · · · · · · ·
UK1 UK2 · · · 0

 , N ×N ; P =


1 h(1) w(1) d(1)

1 h(2) w(2) d(2)

· · · · · · · · · · · ·
1 h(N) w(N) d(N)

 , N × 4; (4)

and
M =

[
K P
PT O

]
, (N + 4)× (N + 4) (5)

where Ui,j = U(|p(i)
source − p

(j)
source|), h(i), w(i), and d(i) are the h-, w-, and d-

coordinates of source control point p(i)
source, and O is a zero matrix of size 4× 4.

Then the coefficients a = (a(1), · · · , a(N+4)) are given by

a = M−1v. (6)

The additional last four rows of M guarantee that the coefficients a(i) sum to
zero and that their cross-products with the points p

(i)
source are likewise zero.


	AIC-UNet: Anatomy-informed Cascaded UNet for Robust Multi-Organ Segmentation

