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ON UNITIFICATION OF ∗-RINGS

SANJAY MORE, ANIL KHAIRNAR AND B. N. WAPHARE

Abstract: S. K. Berberian raised the open problem “Can every weakly Rickart ∗-ring be em-

bedded in a Rickart ∗-ring? with preservation of right projections?” Berberian has given a partial

solution to this problem. Khairnar and Waphare raised a similar problem for p.q.-Baer ∗-rings and

gave a partial solution. In this paper, we give more general partial solutions to both the problems.

Keywords: weakly Rickart ∗-rings, weakly p.q.-Baer ∗-rings, projections, central cover.

1. Introduction

Kaplansky [5] introduced Baer rings and Baer ∗-rings to abstract various properties of

AW ∗-algebras (that is a C∗-algebra which is also a Baer ∗-ring), von Neumann algebras

and complete ∗-regular rings. The concept of a Baer ∗-ring is naturally motivated from the

study of functional analysis. For example, every von Neumann algebra is a Baer ∗-algebra.

One can refer [7, 8, 9, 10, 11, 12] for recent work on rings with involution.

Throughout this paper, R denotes an associative ring. An ideal of a ring R, we mean

a two sided ideal. A ring R is said to be reduced if it does not have a nonzero nilpotent

element. A ring R is said to be abelian if its every idempotent element is central. Let S

be a nonempty subset of R. We write rR(S) = {a ∈ R ∣ sa = 0, ∀ s ∈ S}, and is called the

right annihilator of S in R, and lR(S) = {a ∈ R ∣ as = 0, ∀ s ∈ S}, is the left annihilator of

S in R. A ∗-ring R is a ring equipped with an involution x→ x∗, that is, an additive anti-

automorphism of the period at most two. An element e of a ∗-ring R is called a projection

if it is self-adjoint (i.e. e = e∗) and idempotent (i.e. e2 = e). A ∗-ring R is said to be a

Rickart ∗-ring, if for each x ∈ R, rR({x}) = eR, where e is a projection in R. For each

element a in a Rickart ∗-ring, there is unique projection e such that ae = a and ax = 0 if

and only if ex = 0, called the right projection of a denoted by RP (a). Similarly, the left

projection LP (a) is defined for each element a in Rickart ∗-ring. A ∗-ring R is said to be

a weakly Rickart ∗-ring, if for any x ∈ R, there exists a projection e such that (1) xe = x,

and (2) if xy = 0 then ey = 0.

Recall the following propositions and an open problem from [1].

Proposition 1.1 ([1, Proposition 2, page 13]). If R is Rickart ∗-ring, then R has a unity

element and the involution of R is proper.

Proposition 1.2 ([1, Proposition 2, page 28]). The following condition on a ∗-ring R are

equivalent:

(a)R is a Rickart ∗-ring;

(b)R is weakly Rickart ∗-ring with unity.

Proposition 1.1 says that the unity element exist in any Rickart ∗-ring and the proposi-

tion 1.2 naturally create the following problem.
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Problem 1: Can every weakly Rickart ∗-ring be embedded in a Rickart ∗-ring with preser-

vation of RP ’s?

In [1] Berberian has given a partial solution to this problem.

According to Birkenmeier et al. [2], a ∗-ring R is said to be a quasi-Baer ∗-ring if

the right annihilator of every ideal of R is generated, as a right ideal, by a projection

in R. Birkenmeier et al. [3] introduced principally quasi-Baer (p.q.-Baer) ∗-rings as a

generalization of quasi-Baer ∗-rings. A ∗-ring R is said to be a p.q.-Baer ∗-ring, if for every

principal right ideal aR of R, rR(aR) = eR, where e is a projection in R, it follows that

lR(Ra) = Rf for a suitable projection f . Note that an abelian Rickart ∗-ring is a p.q.-Baer

∗-ring, and a reduced p.q.-Baer ∗-ring is a Rickart ∗-ring. We say that an element x of a

∗-ring R possesses a central cover if there exists a smallest central projection h ∈ R such

that hx = x. If such a projection h exists, then it is unique, it is called the central cover of

x, denoted by h = C(x). In [6] Khairnar and Waphare proved that the central cover exists

for every element in any p.q.- Baer∗-ring.

Theorem 1.3 ([6, Theorem 2.5]). Let R be a p.q.- Baer ∗-ring and x ∈ R. Then x has a

central cover e ∈ R. Further, xRy = 0 if and only if yRx = 0 if and only if ey = 0.

That is rR(xR) = rR(eR) = lR(Rx) = lR(Re) = (1 − e)R = R(1 − e).

In [6] Khairnar and Waphare introduced the concept of weakly p.q.- Baer ∗-ring. A

∗-ring R is said to be a weakly p.q.-Baer ∗-ring, if every x ∈ R has a central cover e ∈ R

such that, xRy = 0 if and only if ey = 0. According to [3], the involution ∗ of a ∗-ring R is

semi-proper, if for any a ∈ R, aRa∗ = 0 implies a = 0.

Recall the following results and an open problem from [6].

Proposition 1.4 ([6, Proposition 2.4]). If R is p.q.Baer ∗-ring, then R has the unity

element and the involution of R is semi-proper.

Theorem 1.5 ([6, Theorem 3.9]). The following conditions on a ∗-ring R are equivalent:

(a) R is a p.q.-Baer ∗-ring.

(b) R is a weakly p.q.-Baer ∗-ring with unity.

In view of the above theorem, the following problem is raised in [6].

Problem 2: Can every weakly p.q.-Baer ∗-ring be embedded in a p.q.-Baer ∗-ring? with

preservation of central covers?

In [6], Khairnar and Waphare provided a partial solution to Problem 2.

In the second section of this paper, we give a more general partial solution of problem 1

and in section 3, we give a more general partial solution of problem 2.

2. Unitification of Weakly Rickart ∗-rings

Recall the definition of unitification of a ∗-ring given by Berberian [1]. Let R be a ∗-ring.

We say that R1 is a unitification of R, if there exists a ring K, such that,

1) K is an integral domain with involution (necessarily proper), that is, K is a commutative

∗-ring with unity and without divisors of zero (the identity involution is permitted),

2) R is a ∗-algebra over K (that is, R is a left K-module such that, identically 1a =

a, λ(ab) = (λa)b = a(λb), and (λa)∗ = λ∗a∗ for λ ∈K and a, b ∈ R).

3) R is torsion free K-module (that is λa = 0 implies λ = 0 or a = 0).

Define R1 = R ⊕ K (the additive group direct sum), thus (a,λ) = (b,µ) means, by the
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definition that a = b and λ = µ, and addition in R1, is defined by the formula (a,λ)+(b,µ) =

(a + b, λ + µ). Define (a,λ)(b,µ) = (ab + µa + λb,λµ), µ(a,λ) = (µa,µλ), (a,λ)∗ = (a∗, λ∗).

Evidently, R1 is also a ∗-algebra over K, has unity element (0,1) and R is a ∗-ideal in R1.

The following lemmas are elementary facts about unitification R1 of a ∗-ring R.

Lemma 2.1 ([1, Lemma 1, page 30]). With notations as in the definition of unitification,

if an involution on R is proper, then so is the involution of R1.

Lemma 2.2 ([1, Lemma 3, page 30]). With notations as in the definition of unitification, let

x ∈ R and let e be a projection in R. Then RP (x) = e in R if and only if RP ((x,0)) = (e,0)

in R1.

Berberian has given a partial solution to Problem 1 as follows.

Theorem 2.3 ([1, Theorem 1, page 31]). Let R be a weakly Rickart ∗-ring. If there exists

an involutory integral domain K such that R is a ∗-algebra over K and it is a torsion-free

K-module, then R can be embedded in a Rickart ∗-ring with preservation of RP’s.

After 1972, there was not much headway towards the solution of Problem 1. In 1996

Thakare and Waphare supplied partial solutions wherein the condition on the underlying

weakly Rickart ∗-rings was weakened in two distinct ways. For the solution of this open

problem, Berberian used the condition that R is torsion free left K-module, and K is an

integral domain. Thakare and Waphare gave another solution in which the condition of

torsion free is replaced by other condition. They establish the following.

Theorem 2.4 ([14, Theorem 2]). A weakly Rickart ∗-ring R can be embedded into a Rickart

∗-ring, provided there exists a ring K such that

(1) K is an integral domain with involution,

(2) R is ∗-algebra over K, and

(3) For any λ ∈ K − {0}, there exist a projection eλ that is an upper bound for the set

of left projections of the right annihilators of λ, that is if x ∈ R and λx = 0 then

LP (x) ≤ eλ.

Theorem 2.5 ([14, Theorem 7]). A weakly Rickart ∗-ring R can be embedded into Rickart

∗-ring provided the characteristic of R is non zero.

The ∗-ring C∞(T )⊕M2(Z3) has no embedding in the sense of Theorem 2.3 as the

characteristic of R is zero though it has unitification in the sense of Theorem 2.4. This is

the example that shows that Theorem 2.4 is an improvement over Theorem 2.3 of Berberian.

Now we prove the existence of largest projection corresponding to the self adjoin element

by using condition (3) of the above theorem.

Lemma 2.6. Let R be a weakly Rickart ∗-ring with condition (3) in Theorem 2.4. Then

for any self-adjoint element a and λ ≠ 0 there exists a largest projection g such that ag = λg.

Proof. Let RP (a) = e′ and eλ be the projection as given by condition (3) of Theorem

2.4. Let e = e′ ∨ eλ, then e′ ≤ e and e′ = e′e = ee′. Since ae′ = a, therefore ae′e = ae.

Hence a = ae′ = ae. Also, a∗ = a implies that a = ea = eae ∈ eRe. Thus a − λe ∈ eRe.

Let h = RP (a − λe) and g = e − h. This gives (a − λe)g = 0, hence ag = λg. Let k be any

projection in R such that ak = λk. Consider λ(ek−k) = eλk−λk = eak−λk = ak−λk = 0. Let

LP (ek−k) = f . Therefore f ≤ eλ ≤ e. That is ek−k = f(ek−k) = fe(ek−k) = f(ek−ek) = 0.
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Consider (a − λe)k = ak − λek = ak − λk = 0. Therefore RP (a − λe)k = hk = 0. Hence

kg = k(e−h) = ke− kh = k − 0 = k. That is k ≤ g. Therefore g is largest projection such that

ag = λg. �

Recall the following lemma from [1].

Lemma 2.7 ([1, Lemma 5, page 31]). Let B be a ∗-ring with proper involution, x ∈ B

and e be a projection in B. Then e is the right projection of x if and only if e is the right

projection of x∗x.

We give a solution of Problem 1 in which the condition “K is an integral domain” is

replaced by “K is a commutative ring with unity”.

Let R be a ∗-ring, K be a commutative ∗-ring with unity and R be an algebra over

K. Write r = r(R,+) for the endomorphism ring of the additive group of R. Each a ∈ R

determines an element La of r via Lax = ax and each λ ∈ K an element λI of r via

(λI)x = λx. Let R1 = R ⊕ K with the ∗-algebra operations as follows (a,λ) + (b,µ) =

(a + b, λ + µ), µ(a,λ) = (µa,µλ), (a,λ)(b,µ) = (ab + µa + λb,λ µ), (a,λ)∗ = (a∗, λ∗). Each

(a,λ) ∈ R1 determines an element La + λI of r and the mapping (a,λ) → La + λI is ring

homomorphism of R1 onto a sub-ring S of r namely the subring of r generated by La and

λI. Define µ(La + λI) to be the ring product (µI)(La + λI), then S becomes an algebra

over K and (a,λ) → La+λI is an algebra homomorphism of R1 onto S. Let N be the kernel

of this mapping and write R̂1 = R1/N for quotient algebra. Denote the coset (a,λ) +N by

[a,λ]. Hence [a,λ] is an equivalence class of (a,λ) under equivalence relation (a,λ) ≡ (b,µ)
if and only if ax + λx = bx + µx, ∀ x ∈ R.

The following result leads to the partial solution of Problem 1.

Theorem 2.8. With above notations, we have the following.

(1) The mapping a→ ā = [a,0] is an algebra homomorphism of R into R̂1.

(2) If L(R) = {x ∈ R ∣ xy = 0, ∀ y ∈ R} = {0} (that is if the involution of R is proper)

then the mapping a → ā is injective.

(3) If the involution of R is proper then [a,λ] = 0 if and only if [a∗, λ∗] = 0 and the

formula [a,λ]∗ = [a∗, λ∗] defines unambiguously proper involution in R̂1.

(4) If R is a weakly Rickart ∗-ring a ∈ R and e is the right projection of a in R then ē

is the right projection of ā in R̂1.

Proof. (1) and (2) are easy verification.

(3) ∶ Observe that [a,λ] = 0 if and only if (a,λ) +N = N if and only if (a,λ) ∈ N if and

only if (La + λI)x = 0, ∀ x ∈ R if and only if ax + λx = 0, ∀ x ∈ R. Therefore in order to

show [a∗, λ∗] = 0 whenever [a,λ] = 0 it is enough to show a∗x + λ∗x = 0, ∀x ∈ R. Consider

(a∗x + λ∗x)∗(a∗x + λ∗x) = (x∗a + λx∗)(a∗x + λ∗x) = x∗aa∗x + x∗aλ∗x + λx∗a∗x + λx∗λ∗x
= x∗ {a(a∗x) + λ(a∗x)}+x∗ {a(λ∗x) + λ(λ∗x)} = x∗0+x∗0 = 0, ∀x ∈ R. Therefore a∗x+λ∗x =

0, ∀x ∈ R. Hence [a,λ ]∗ = [a∗, λ∗] defines an involution in R̂1. Also, [a,λ]∗[a,λ] = 0

implies that [a∗, λ∗][a,λ] = 0. That is [a∗a + λa∗ + λ∗a,λ∗λ] = 0. This gives (a∗a + λa∗ +
λ∗a)x + λ∗λx = 0, ∀x ∈ R. Therefore a∗ax + λa∗x + λ∗ax + λ∗λx = 0, ∀x ∈ R. Also,

(ax + λx)∗(ax + λx) = (x∗a∗ + λ∗x∗)(ax + λx) = x∗a∗ax + x∗a∗λx + λ∗x∗ax + λ∗x∗λx =

x∗[a∗ax + a∗λx + λ∗ax + λ∗λx] = x∗[a∗ax + λa∗x + λ∗ax + λ∗λx] = x∗0 = 0, ∀x ∈ R. That is

ax + λx = 0, ∀x ∈ R. This gives [a,λ] = 0. Hence the involution ∗ is proper.

(4) ∶ Let R be a weakly Rickart ∗-ring a ∈ R and e = RP (a). Then ae = a and ay = 0
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implies that ey = 0 for y ∈ R. We prove that ē = RP (ā). Consider āē = [a,0][e,0] =
[ae,0] = [a,0] = ā. Let ȳ = [b,µ] and āȳ = 0. Then [a,0][b,µ] = [ab + µa,0] = 0. This gives

(ab + µa)x = 0, ∀x ∈ R. That is a(bx + µx) = 0, ∀x ∈ R. This implies that (eb + µe)x =
0 ∀x ∈ R. Therefore [eb + µe,0] = 0. That is [e,0][b,µ] = 0. This gives ēȳ = 0. Therefore

ē = RP (ā). �

The following theorem gives a more general partial solution to Problem 1, we give the

solution in which we replace integral domain K by any commutative ring.

Theorem 2.9. Let R be a weakly Rickart ∗-ring and K be a commutative ∗-ring with unity

such that R is a ∗-algebra over K satisfying condition (3) of Theorem 2.4. Then R can be

embedded in a Rickart ∗-ring with preservation of right projections.

Proof. Let R̂1 = R1/N = {[a,λ] ∣ (a,λ) ∈ R1} and R̂1 has unity element u = [0,1]. By

Lemma 2.7, it is enough to show that every self-adjoint element of R̂1 has the right projec-

tion. Let [a,λ] ∈ R̂1 be a self-adjoint element. If λ = 0 then e = RP (a) and by Theorem

2.8 ē = RP (ā). Suppose λ ≠ 0. Then by Lemma 2.6 there exists a largest projection g

such that ag = −λg. Now we show that RP ([a,λ]) = [−g,1]. Note that [−g,1] is a pro-

jection. Also, [a,λ][−g,1] = [−ag − λg + a,λ] = [a,λ]. Moreover [a,λ][b,µ] = 0 if and

only if [ab + µa + λb,λµ] = 0 if and only if abx + µax + λbx + λµx = 0, ∀x ∈ R if and only if

a(bx+µx)+λ(bx+µx) = 0, ∀x ∈ R if and only if (a+λex)(bx+µx) = 0 where ex = LP (bx+µx)
if and only if (a + λex)ex = 0, ∀x ∈ R if and only if aex = −λex, ∀x ∈ R. Since g is the

largest projection such that ag = −λg. Therefore ex ≤ g. This gives exg = gex = ex. Therefore[a,λ][b,µ] = 0 if and only if (ex−g)ex = 0, ∀x ∈ R if and only if (ex−g)(bx+µx) = 0, ∀x ∈ R if

and only if −g(bx+µx)+ex(bx+µx) = 0, ∀x ∈ R if and only if −gbx−µgx+bx+µx = 0, ∀x ∈ R

if and only if [−gb − µg + b,µ] = 0 if and only if [−g,1][b,µ] = 0. Hence R̂1 is a Rickart

∗-ring. �

3. Unitification of Weakly p.q.-Baer ∗-rings

We recall the following examples of p.q.-Baer ∗-rings. This also shows how the class of

p.q.-Baer ∗-rings is different than the class of Rickart ∗-rings.

Example 3.1 ([3, Exercise 10.2.24.4]). Let A be a domain, An = A for all n = 1,2,⋯,

and B be the ring of (an)∞n=1 ∈ ∏∞n=1An such that an is eventually constant, which is a

subring of ∏∞n=1An. Take R =Mn(B), where n is an integer such that n > 1. Let ∗ be the

transpose involution of R. Then R is a p.q.-Baer ∗-ring which is not quasi-Baer (hence not

a quasi-Baer ∗-ring). Also, if A is commutative which is not Prüfer, then R is not a Rickart

∗-ring.

Example 3.2 ([3, Exercise 10.2.24.5]). Let R be a ∗-ring. If R is a right (or left) p.q.-Baer

ring and ∗ is semiproper, then R is a p.q.-Baer ∗-ring. Hence, if R is biregular and ∗ is

semiproper, then R is a p.q.-Baer ∗-ring.

Example 3.3 ([6, Example 1.7]). Let R = {[a b

c d
] ∈M2(Z) ∣ a ≡ d, b ≡ 0, and c ≡ 0 (mod 2)}.

Consider involution ∗ on R as the transpose of the matrix. In [4, Example 2(1)], it is shown

that R is neither right p.p. nor left p.p. (hence not a Rickart ∗-ring) but rR(uR) = {0} = 0R
for any nonzero element u ∈ R. Therefore R is a p.q.-Baer ∗-ring.
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Recall the following result which gives the condition on m and n so that the matrix ring

Mn(Zm) is a Baer ∗-ring and hence a Rickart ∗-ring.

Corollary 3.4 ([13, Corollary 7]). (i) Mn(Zm) is a Baer ∗-ring for n ≥ 2 if and only if

n = 2 and m is a square free integer whose every prime factor is of form 4k + 3.

(ii) Zm is a Baer ∗-ring if and only if m is a square free integer.

The following example shows that the right projections in a ∗-ring need not be central

covers.

Example 3.5 ([6, Example 2.8]). Let A = M2(Z3), which is a Baer ∗-ring (hence a p.q.-

Baer ∗-ring and a Rickart ∗-ring) with transpose as an involution. There is an element

x ∈ A such that RP (x) is not equal to C(y) for any y ∈ A.

The following is a partial solution of the Problem 2 given in [6].

Theorem 3.6 ([6, Theorem 4.6]). A weakly p.q.-Baer ∗-ring R can be embedded in a p.q.-

Baer ∗-ring, provided there exists, a ring K such that,

(1) K is an integral domain with involution,

(2) R is a ∗-algebra over K,

(3) For any λ ∈ K − {0} there exists a projection eλ ∈ R that is an upper bound for

the central covers of the right annihilators of λ, that is, for t ∈ R, if λ t = 0 then

C(t) ≤ eλ.
Let R̃ denote the set of all projections in a ∗-ring R. In a weakly p.q. Baer ∗-ring,

following is called the condition (β): For any 0 ≠ λ ∈ K,∃ eλ ∈ R̃ such that λx = 0 implies

that C(x) ≤ eλ, where K is a commutative ∗-ring with unity.

Lemma 3.7. Let R be weakly p.q. Baer ∗-ring which is a ∗-algebra over a commutative

∗-ring K with unity satisfying condition (β). Then for any a ∈ R and 0 ≠ λ ∈K there exists

a largest central projection g such that ag = λg.

Proof. On the similar line of Lemma 2.6. �

The following result leads to the solution of Problem 2.

Theorem 3.8. With notation as defined earlier

(1) The mapping a→ ā = [a,0] is an algebra homomorphism of R into R̂1.

(2) If L(R) = {x ∈ R ∶ xy = 0, ∀y ∈ R} = {0} then the mapping a→ ā is injective and we

may regard R as embedded in R̂1.

(3) If the involution ∗ is semi-proper then [a,λ] = 0 if and only if [a∗, λ∗] = 0. Hence

[a,λ]∗ = [a∗, λ∗] defines involution in R̂1.

(4) If R is weakly p.q. Baer ∗-ring, a ∈ R,C(a) = e then C(ā) = ē in R̂1.

Proof. (1) is trivial.
(2) To prove φ ∶ R → R̂1 given by φ(a) = ā is injective. Let φ(a) = φ(b). Then ā = b̄, that

is [a,0] = [b,0]. This gives ax = bx,∀x ∈ R. Therefore (a − b)x = 0, ∀x ∈ R. This gives

a − b = 0. Hence a = b.

(3) Suppose R has semi-proper involution, therefore for a ∈ R, a∗Ra = 0 implies that a = 0.

Now, [a,λ] = 0 if and only if ax + λx = 0, ∀x ∈ R. Also, for any r ∈ R, (x∗a + λx∗)r(a∗x +
λ∗x) = x∗ara∗x + x∗arλ∗x + λx∗ra∗x + λx∗rλ∗x
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= x∗{a(ra∗x)+λ(ra∗x)}+x∗{a(rλ∗x)+λ(rλ∗x)} = x∗0+x∗0 = 0. Therefore [a,λ] = 0 if an

only if (x∗a + λx∗)R(a∗x + λ∗x) = 0 if and only if (a∗x + λ∗x) = 0 if and only if [a∗λ∗] = 0.
Hence [a,λ]∗ = [a∗λ∗] defines an involution in R̂1.(4) Let R be weakly p.q. Baer ∗-ring, a ∈ R and C(a) = e. Consider āē = [a, e][e,0] =
[ae,0] = [a,0] = ā. Also, āR̂1[b,µ] = 0 if and only if āēR̂1[b,µ] = 0 if and only if āR̂1ē[b,µ] =
0 if and only if [a,0]R̂1[eb + µe0] = 0 if and only if [a,0][x,λ][eb + µe,0] = 0 if and only if

[a(x +λe)(eb +µe),0] = 0 if and only if a(x+ λe)(eb +µe) = 0 if and only if aR(eb +µe) = 0
if and only if e(eb + µe) = 0 if and only if eb + µe = 0 if and only if (eb + µe)x = 0, ∀x ∈ R if

and only if [eb + µe,0] = 0 if and only if [e,0][b,µ] = 0. Therefore C(ā) = ē. �

Now we give the more general partial solution to the Problem 2, in which we replace

integral domain K by any commutative ring with unity.

Theorem 3.9. Let R be a weakly p.q. Baer ∗-ring and K be a commutative ∗- ring with

unity such that R is a ∗-algebra over K satisfying condition (β). Then R can be embedded

in a p.q. Baer ∗-ring with preservation of central covers.

Proof. Let R̂1 = R1/N = {[a,λ] ∣ (a,λ) ∈ R1}. Note that u = [0,1] is a unity element of

R̂1. We show that R̂1 is p.q. Baer ∗-ring. It is enough to show that for every element

x ∈ R̂1 there exists a central projection e ∈ R̂1 such that: (1) xe = x, (2) xR̂1y = 0 if and

only if ey = 0. Let x = [a,λ] ∈ R̂1. If λ = 0, let C(a) = e. By Theorem 3.8, C(ā) = ē.

Suppose λ ≠ 0, then by Lemma 3.7 there exists the largest central projection g such that

ag = −λg. Clearly [−g,1] is a central projection. Also, [a,λ][−g,1] = [−ag + a − λg,λ] =
[a,λ], that is xe = x with e = [−g,1], x = [a,λ]. Suppose [a,λ]R̂1[b,µ] = 0. Therefore

[a,λ][r,0][b,µ] = 0 for all r ∈ R. This gives [arb + λrb + µar + λµr,0] = 0 for all r ∈ R. This

implies arbx+ λrbx+ µarx+ λµrx = 0 for all r, x ∈ R. That is ar(bx +µx) + λr(bx+ µx) = 0
for all r, x ∈ R. Therefore (ar + λrex)(bx + µx) = 0, where ex = C(bx + µx). This gives

(a+λex)r(bx+µx) = 0 for all r ∈ R. That is (a+λex)R(bx+µx) = 0. Therefore (a+λex)ex = 0.
Hence aex = −λex. Since g is a largest central projection such that ag = (−λ)g, therefore
ex ≤ g. Therefore (1− g)ex = 0. This gives (1 − g)ex(bx+µx) = 0. Thus (1− g)(bx +µx) = 0
for all x ∈ R. Hence bx + µx − gbx − µgx = 0 for all x ∈ R. Therefore [−gb − µg + b,µ] = 0,
that is [−g,1][b,µ] = 0. Hence R̂1 is a p.q.-Baer ∗-ring

�
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[11] Lia Vaš, Class of Baer ∗-rings defined by a relaxed set of axioms, J. Algebra, 297 (2006,)470-473.
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