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Abstract

In this contribution, we present recent progress from the RBC/UKQCD
collaboration on the first calculation of the long-distance two-photon con-
tribution to the decay amplitude of a long-lived kaon into a pair of charged
muons.

1 Introduction

The KL → µ+µ− decay is considered as one of the golden rare kaon decay modes
for its experimental cleanness. The experimental value for the branching ratio,
Br(KL → µ+µ−) = 6.84(11)×10−9, has reached an accuracy of 1.6% two decades
ago [1], and could potentially serve as a precision probe for the Standard Model
(SM). The short-distance part of the decay amplitude due to exchange of W -
and Z-bosons has been determined to a 15%-precision in the SM [2]. However,
to make a meaningful comparison to experiment, one also needs a precise deter-
mination of the long-distance (LD) contributions to the amplitude, among which
the process exchanging two photons (Fig. 1) is known to contribute consider-
ably to the absorptive part. While the latter can be reconstructed from other
experimentally-measurable processes based on optical theorem, computing the
dispersive part non-perturbatively is much more challenging. In this work, we
present a formalism which allows the first-principles computation of both the dis-
persive and the absorptive parts of the two-photon LD contribution to the decay
amplitude from lattice QCD [3, 4, 5, 6, 7]. Part of these proceedings overlaps
with materials presented at the 2023 Lattice Symposium [7]. We refer the reader
to those conference proceedings for a more exhaustive list of references.
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Figure 1: The two-photon long-distance contribution to the KL → µ+µ− decay.

2 Formalism

Inspired by the successful calculations of the hadronic light-by-light scattering
contribution to the anomalous magnetic moment of the muon from lattice QCD [8,
9], we express the decay amplitude with quantities in coordinate space. We
perform a perturbative expansion to O(α2) in the QED sector and use an effective
weak Hamiltonian HW run down to an energy scale below the charm-quark mass
at O(GF), where α is the fine-structure constant and GF is the Fermi decay
constant. Starting from the Minkowski-space expression for the KL → µ+µ−

decay amplitude (cf. Fig. 1)

A(k+, k−) = 16π2α2

∫
d4u

∫
d4v Lµν(u− v) ⟨0 |T {Jµ(u)Jν(v)HW (0)}|KL⟩ ,

(2.1)
where Lµν is a QED kernel and the Jλ’s are electromagnetic (EM) currents, we
Wick-rotate the coordinate-space variables u and v so that the hadronic matrix
element can be evaluated in Euclidean space on the lattice. However, after ana-
lytic continuation, the kernel grows exponentially at large temporal separations,
leading to unphysical, exponentially growing contributions to the right-hand side
of Eq. (2.1). Fortunately, most of the intermediate states which can be inserted
between the operators are sufficiently massive to introduce stronger exponential
suppressions at large time separations to compensate the exponential growth of
the kernel. With the physical quark masses, the sources of unsuppressed unphys-
ical exponential growth in the analytically-continued amplitude are:

S1: π0 with zero spatial momentum, created from the KL by HW;

S2: Slow-moving ππ states propagating between the two EM currents with an
energy 2mπ < Eππ ≤ MK

1.

To extract the physical amplitude, one can compute Eq. (2.1) in Euclidean space
regulated in the IR by a finite temporal integration upper bound and subtract
the calculable unphysical contributions.

1These are ππγ states with 2mπ ≤ Eππγ ≤ MK if the photon contained in Lµν is also
identified.
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3 Numerical implementation

Our first goal is to apply the formalism to the 24ID physical-pion-mass ensemble
from the RBC/UKQCD collaboration. The parameters of this ensemble are given
in Tab. 1. In order to determine Eq. (2.1), we calculate the quantity on the lattice:

A(tsep, δmax, x) ≡
∑

u,v∈Λ,v0≤u0
v0−x0≤δmax

eMK(v0−tK) Lµν(u−v) ⟨T{Jµ(u)Jν(v)HW(x)KL(tK)}⟩ .

(3.1)
In the above, tsep ≡ x0 − tK needs to be taken large in order to project onto
the KL ground state. The exponential factor here guarantees that the expression
gives the same answer at large tsep up to statistical fluctuations. In practice, we
exploit translational invariance to average Eq. (3.1) computed at different fixed
reference points x to reduce the statistical error. The upper bound δmax limits
the time through which the intermediate π0 state can propagate, allowing the
exponential growth caused by this state to be studied and its removal verified.
For this work, only two of the ∆S = 1 operators are considered [10]

HW(x) =
GF√
2
V ∗
usVud(C1Q1 + C2Q2) ,

where the Vab’s are CKM matrix elements and C1,2 the Wilson coefficients ob-
tained from a non-perturbative matching procedure [11].

L3 × T × Ls mπ [MeV] MK [Mev] a−1 [GeV]

243 × 64× 24 142 515 1.023

Table 1: Parameters of the 24ID ensemble.

With this ensemble, the first excited ππγ state is expected to be already more
energetic than the kaon; therefore, we anticipate that there will be no unphysical
divergence due to the states (S2). As a consequence, the only unphysical contri-
bution to be subtracted from Eq. (3.1) is that from the zero-momentum π0 (S1),
given by:

1

2mπ

∑
u,v∈Λ,v0≤u0

0≤v0−x0≤δmax

e(MK−mπ)(v0−x0)
〈
0|Jµ(u)Jν(v)|π0

〉
Lµν(u− v)

〈
π0|HW(v)|KL

〉
,

(3.2)

up to a normalization constant. To verify that the ππγ-intermediate states do not
introduce exponential growth, we perform calculations at different cutoffs Rmax

on the temporal separation of the two EM currents, ie. |u0 − v0| ≤ Rmax.
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Figure 2: Different Wick-contraction topologies. From left to right: Type 1, 2,
3, 4 (connected) and 5 (disconnected). The dashed lines correspond to the KL

interpolator, the filled dots to the EM currents and the crosses to HW.

4 Preliminary results on the connected diagrams

We first compute the quark-connected contributions as they are expected to have
less statistical fluctuations than their disconnected counterparts (see Fig. 2). A
series of strategies to efficiently evaluate Eq. (3.1) for these contraction topologies
at several values of tsep and Rmax have been established and implemented. Only
for the time-orderingHW is earlier than the two EM currents can an unphysical π0

state occur, as can be seen in Fig. 2. In this case, it is possible to create a π0 only
if there are no more than two quark lines between HW and the two EM currents
at a given time. Therefore, only the Type-3 and -4 diagrams can produce an
unphysical π0 among the connected contributions. We will comment on selected
results for the Type-1 and Type-3 diagrams for the real part of Eq. (3.1), displayed
in Fig. 3 and Fig. 4. Similar features are observed for the Type-2 and Type-4
diagrams. A more detailed description of the computational setup can be found
in Ref. [7] and is the subject of a forth-coming publication.

The Type-1 results in the left panel of Fig. 3 reach a plateau in δmax rapidly
as expected, due to the absence of the unphysical π0. The good agreement be-
tween results from different tsep’s suggests that the KL ground state is correctly
produced and the results at different tsep can be averaged over to further reduce
the statistical error. In the right panel, we show results with different Rmax. The
central values of these results lie consistently on top of each other, which confirms
that there is no unphysical ππγ-state contribution in the allowed kinematics.

The Type-3 results in the left panel of Fig. 4 exhibit a clear exponential
growth due to the unphysical intermediate π0 contribution. After subtracting
the quantity given in Eq. (3.2) from the data, we can identify a clear plateau
formed from rather small δmax across different Rmax and tsep values (right panel
of Fig. 4), luckily before the signal deteriorates quickly as we move to larger δmax.

5 Recent developments on the disconnected part

Since CKM2023, there has been some progress worth reporting on our attempt
to reduce the statistical noise on the quark-disconnected part. Our sampling
strategy requires swapping the rôles of x and v in Eq. (3.1) using translational

4



-250

-200

-150

-100

-50

	0

	50

-4 -3 -2 -1 	0 	1 	2 	3 	4 	5

PreliminaryRe
A

T1
Q

1

δmax

tsep=6
tsep=8

tsep=10
tsep=12
tsep=14
tsep=16

Plateau.	fit

-200

-180
-160

-140

-120

-100
-80

-60

-40

-20
	0

	20

-4 -3 -2 -1 	0 	1 	2 	3 	4 	5

PreliminaryRe
A

T1
Q

1

δmax

Rmax=7
Rmax=8
Rmax=9

Rmax=10
Rmax=13

Figure 3: Left: AT1Q1 at fixed Rmax = 7. Right: AT1Q1 at fixed tsep = 6

	100

	1000

	9 	10 	11 	12 	13 	14 	15

Preliminary

(-1
)	x

	R
eA

T3
Q

2

δmax

Nhits=32,Nev=1e3
Nhits=16,Nev=1e3

Nhits=8,Nev=1e3
Nhits=4,Nev=1e3

Nhits=64,Nev=5e2
Nhits=64,Nev=0

-10

-5

	0

	5

	10

	15

	20

	0 	1 	2 	3 	4 	5 	6 	7 	8

PreliminaryRe
A

T3
Q

2

δmax

R7	,tsep6
R7	,tsep10
R7	,tsep14

R10,tsep6
R10,tsep10
R10,tsep14

R13,tsep6
R13,tsep10
R13,tsep14

Figure 4: Left: AT3Q2 in log-scale with different hits and low modes. The dis-
played results are computed with the all-to-all propagator method [12], where
‘Nhits’ and ‘Nev’ correspond to the number of stochastic sources and low-modes
used. Right: AT3Q2 after subtracting π0

invariance to make the latter our new reference point. In our first series of cal-
culations, the disconnected part was constructed with 512 existing point-source
propagators, each with a distinct reference point. The statistical noise was about
an order of magnitude larger than that from the connected diagrams with the
same number of configurations averaged over the same number of reference points.
To bring it to a comparable level of statistical noise, we have been putting effort
into accumulating data on more reference points, but with propagators which
are partly obtained by solving the Dirac equation with a low-precision conjugate
gradient (CG) inversion. With the latter, we can increase the statistics and thus
reduce the error with significantly less computing time providing that the fluctua-
tion of the incurred bias compared to utilizing higher precision solves is negligible
compared to the statistical noise [13, 14]. Our preliminary study displayed in
the left panel of Fig. 5 shows that the bias fluctuates about an order of magni-
tude less than the data with propagators computed with high-precision CG in
the relevant region of δmax. In the right panel of Fig. 5, we can see that the error
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Figure 5: Left: bias of the data computed from propagators with looser stopping
condition compared to the original data on 512 source points. Right: Comparison
between data computed on different numbers of source points.

on the averaged data is halved as we quadruple the number of reference points,
suggesting that this is an effective error reduction scheme. Typically, we observe
that the computing time to reach a CG-residue of 10−4 is about three-times less
than needed for a CG-residue of 10−10 on the 24ID ensemble.

6 Summary and outlook

In this contribution, we summarize the ongoing effort on calculating the long-
distance contribution to the KL → µ+µ− decay amplitude from lattice QCD
using a coordinate-space based formalism. In particular, this important ampli-
tude, which must be known if we are to compare the second-order Standard
Model weak interaction prediction with experiment, can be determined from first
principles with our method. The difficulties arising from analytically continu-
ing the amplitude from Minkowski space to Euclidean space are addressed with
well-established numerical strategies for the quark-connected part. Following the
achievable precision, we expect the disconnected part to dominate the total error
budget. Since the CKM2023 Workshop, promising error-reduction strategies to
deal with this more challenging quark-disconnected part have been developed.
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