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Abstract. Continual learning aims to learn from a stream of continu-
ously arriving data with minimum forgetting of previously learned knowl-
edge. While previous works have explored the effectiveness of leveraging
the generalizable knowledge from pre-trained models in continual learn-
ing, existing parameter-efficient fine-tuning approaches focus on the use
of a predetermined or task-wise set of adapters or prompts. However,
these approaches still suffer from forgetting due to task interference on
jointly used parameters or restricted flexibility. The reliance on a static
model architecture may lead to the allocation of excessive parameters
that are not essential or, conversely, inadequate adaptation for down-
stream tasks, given that the scale and distribution of incoming data
are unpredictable in continual learning. We propose Self-Expansion of
pre-trained models with Modularized Adaptation (SEMA), a novel fine-
tuning approach which automatically decides to reuse or add adapter
modules on demand in continual learning, depending on whether dras-
tic distribution shift that could not be handled by existing modules is
detected at different representation levels. We design each adapter mod-
ule to consist of an adapter and a representation descriptor, specifically,
implemented as an autoencoder. The representation descriptor functions
as a distributional shift indicator during training and triggers adapter
expansion. For better usage of the adapters, an expandable weighting
router is learned jointly for mixture of adapter outputs. By comparing
with vision-transformer-based continual learning adaptation methods, we
demonstrate that the proposed framework outperforms the state-of-the-
art without memory rehearsal.

Keywords: Continual learning · fine-tuning · self-expansion

1 Introduction

While deep learning models, such as Vision Transformer (ViT) [16], have achieved
magnificent success in many computer vision tasks, they are mostly trained with
fixed datasets and might not be able to handle real-world scenarios with dy-
namic requirements where data distribution and tasks can change over time. To
⋆ D. Gong is the corresponding author.
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address the difficulty of maintaining all seen data and repeatedly re-training the
model, continual learning (CL) aims to learn incrementally from a continuous
data stream [15, 52, 62]. CL faces the notorious challenge of catastrophic for-
getting [42], where acquiring new knowledge leads to the erasure of previously
learned information. Many CL approaches, such as those utilizing experience
replay (ER) [7, 8, 69] and diverse regularization techniques [35, 74], have been
investigated and shown considerable results in reducing forgetting.

While most CL methods [6,42,70] root in the “training-from-scratch” paradigm,
recent works have started to explore the potential of integrating pre-trained
foundation models into CL as robust feature extractors [45, 79], or adapting
them to downstream tasks through parameter-efficient fine-tuning with prompts
and/or adapters [14, 60, 65, 66, 79, 80]. On the other hand, these methods en-
able continual fine-tuning of pre-trained models on real-world downstream tasks
arriving in a streaming manner. Existing approaches primarily employ a fixed
set of prompts or adapters shared by all tasks, which provides limited adap-
tation to downstream tasks and causes foreseeable forgetting due to interfer-
ence [45, 65, 66, 79]. The model capacity for adaptation is also limited by the
fixed size of the prompt/adapter pool [14, 65, 66]. Some methods add task-wise
parameters periodically for tackling forgetting [60], which are mainly restricted
to prompts and lack of effectiveness and flexibility. While some works investigate
the use of sub-network modules to alleviate task interference, they mostly con-
fine themselves to pre-defined per-task modules or rely on later pruning, with
limited flexibility [11,30,51,58]. Recent development in dynamic expansion archi-
tecture [48, 61] has demonstrated its potential in continual learning to prevent
forgetting by growing capacity for novel tasks, which are restricted to simple
applications due to the complex model designing.

To address the above issues, we propose SEMA, a continual learning approach
based on Self-Expansion of pre-trained models with Modularized Adaptation,
which can be integrated into transformer-based pre-trained models. With adapters
inserted into transformer blocks at different layers, we efficiently align the pre-
trained model with the distribution of downstream tasks. Through the flexible
expansion of new adapters at arbitrary layers, our method can effectively accom-
modate drastic distribution shifts in incoming tasks without overwriting previ-
ously learned knowledge and retain performance on old tasks. Unlike previous
methods manually adding task-oriented adapters [30,79] or prompts [60], SEMA
is proposed to automatically decide whether to reuse existing adapters or add
new ones, as shown in Fig. 1. It enables the model to perform much better by
slightly expanding the parameter size on the demand in moderation. The key
challenge arises from two perspectives: i) when and where (i.e., which layer)
would an adapter expansion be considered necessary to perform; ii) how to best
combine the acquired knowledge from different adapters.

We introduce modular/modularized adapters that can be identified and reused
to solve new tasks, selectively adding and learning a subset of new adapters for
unseen knowledge in these tasks. Specifically, we design the modular adapter as
a pair of a functional adapter and a representation descriptor. In addition to
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the adapter that functions as an adaptation features generator, the represen-
tation descriptor is responsible for capturing the feature distribution relevant
to the coupled adapter at the corresponding layer. It serves as an indicator of
the distribution shift at the representation level instead of only the input image
level, to detect novel patterns in data. For example, cat images and dog im-
ages have more shared features than car images; a SEMA model only trained
on cat images tends to expand more new adapters when training on car images
than dog images. We implement the representation descriptors with autoencoder
(AE) [25] and train them to model the distribution of the relevant input fea-
ture of the corresponding task. SEMA expands itself by adding a new adapter
to supplement the existing model, when detecting significant distribution shifts
according to the expansion signal from the representation descriptors. To effec-
tively use and obtain mixture of the added adapters, we design an expandable
weighting router to mix the adapters, which are simultaneously expanded and
learned as the adapter modules themselves are expanded. Learning the mixture
through the expandable router also mitigates concerns associated with the in-
direct learning of mixture patterns, as opposed to weighting the adapters based
on the distributional similarity estimated by representation descriptors.

We summarize our contribution as follows:

– We propose a novel continual learning approach via self-expansion of pre-
trained models with modularized adapters, i.e. SEMA. It learns and reuses
modules, while adding new ones at specific layers exclusively for samples with
new patterns. It incorporates automated strategies to determine expansion
necessity and location and to facilitate the learning of new adapters. SEMA
operates without the need for rehearsal.

– To achieve SEMA, our approach involves crafting modular adapters compris-
ing a functional adapter and a representation descriptor. The representation
descriptor captures the distribution of pertinent input features, serving as
a signal generator for expansion during training. The expandable weighting
router is introduced for adapter mixture.

– We performed extensive experiments to verify the performance and scrutinize
the behavior of the self-expansion approach we proposed.

2 Related Work

Continual Learning (CL). The mainstream taxonomy classifies continual
learning methods into three categories: replay-based methods, regularization-
based methods and architecture-based methods [15, 62]. Replay-based methods
aim to alleviate catastrophic forgetting by retaining a memory buffer to store
the information from old tasks for future replay [7, 9, 43, 52]. With simple intu-
ition and effectiveness in preventing forgetting, these methods are limited by the
size of the memory buffer and may also raise privacy concerns. An alternative
approach is to implicitly maintaining a generative model for producing pseudo-
samples with similar distribution to old classes [12,34,53,54,59]. Regularization-
based methods penalize significant changes to important parameters for seen
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Fig. 1: Illustration of the expansion process. (a) The pretrained model with L trans-
former blocks is provided for adaptation. (b) At the start of training, each transformer
block is equipped with one router and one adapter module, including one functional
adapter and its paired representation descriptor. All modules are activated for training.
(c) All modules and the router are frozen after the training on Task 1. When Task 2
arrives, the representation descriptor in the L-th block observes a feature distribution
shift and generates expansion signal. A new module is added in the L-th block and
available for training. The router is expanded. (d) As Task 3 arrives, expansion signal
is triggered in the L− 1-th block. After sufficient training, the newly added module is
frozen and detection for distribution shift in later blocks is executed. When both rep-
resentation descriptors in the L-th block consider the incoming feature as an outlier,
expansion signal will again be triggered and a new module is added for training.

tasks [2,3,35,47,74,75], or consolidate the knowledge learnt from previous tasks
with knowledge distillation [26, 37, 42, 77]. Instead of using all available param-
eters for all tasks, architecture-based methods allocate a subset of parameters
dedicated to each task, which can be performed with task masking [33,44,57,67]
or dynamic architecture [4,29,40,41,48,61,70–73]. These methods tend to achieve
optimal performance with less forgetting as isolating the parameters reduces task
interference during training.

Parameter-Efficient Fine-Tuning (PEFT). Parameter-efficient fine-tuning
methods train a small set of additional parameters rather than the entire pre-
trained model, which reduce the demands placed upon computational resources.
Prompting applies learnable prompts that modifies the inputs to provide the
model with more instructions [31, 39]. LoRA [28] injects low-rank matrices to
approximate weight updates and avoids additional inference latency via re-
parameterization, which has been further utilized as experts with mixture mod-
eling in recent works [17, 21, 64, 68]. Adapters introduced by [27], along with
its variants [10, 32], insert lightweight learnable modules into the transformer.
To enhance the efficacy of adapter learning, [22] investigates different insertion
forms, and [13,50,55] explores the potential of adapter compositions.
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CL with Vision Transformer. Recent works adopt ViT as the backbone in
the continual learning system to exploit its robust representational ability. With-
out any tuning, ViT can serve as a feature extractor for prototypes, which can
be used for classification with distance measurement [46, 49, 79]. PEFT tech-
niques are also widely used to adapt ViT to CL tasks, including adaptation and
prompting. L2P [66], which first applies visual prompt tuning [31] in CL, and Du-
alPrompt [65] uses fixed prompt pool(s) and learn the distribution of new tasks
with incremental tuning. The prompt learning process is further improved by [60]
with an attention mechanism and input-conditioned weights. Similar to prompt-
ing in CL, some works also explore the use of a fixed set of adapters [14, 18] or
task-oriented expansion [78] for better transfer of ViT to downstream CL tasks.
Furthermore, [20] builds a unified framework which allows incorporation of both
prompting and adapter-based methods.

3 Methodology

3.1 Problem Definition

Continual learning constructs a scenario where the model is required to learn
from sequentially arriving tasks [15]. Consider a sequence of T tasks (D1,D2, ...,DT ),
where Dt = {(xt

i, y
t
i)}

nt
i=1 is the dataset containing nt data samples for t-th task.

Only samples from Dt
train are accessible during the training of t-th task [63],

if without additional experience replay process [9]. In class-incremental learn-
ing, the classes in different tasks are non-overlapping, specifically, with the label
space of t-th task denoted by Yt, Yt ∩ Yt′ = ∅ for t ̸= t′. The goal is to learn a
model fθ that performs well on all seen tasks and classes, with the objective to
minimize classification loss:

Lt
CE = E(x,y)∈Dtℓ(fθ(x), y), (1)

where ℓ(·, ·) denotes the cross entropy loss.

3.2 Overview

We propose a modular framework (i.e., SEMA) with a self-expansion mechanism
for adding adapters at arbitrary layers for novel distribution in continual learning
tasks, as shown in Fig. 1 and 2. To achieve modular learning process towards
balanced transfer and forgetting [5, 48], we design the modular adapter as a
pair of functional adapter f(·) and a representation descriptor g(·), where the
representation descriptor capturing the distribution of the relevant data of the
adapter at the corresponding network layers(see Sec. 3.3).

As shown in Fig. 1, SEMA expands the adapters only if a distribution shift
that existing adapters cannot handle is observed (indicated by the expansion
signal from the representation descriptor), which is processed at each layer.
This active self-expansion process enables adding new adapters on-demand, and
avoids addition of too many adapters with later pruning. Learned adapters are
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frozen and reusable, alleviating forgetting and engaging knowledge transfer. The
newly added modular adapter (f(·), g(·)) is trained on the task that triggered
the expansion. Activation weights of each adapter in the transformer block at the
same layer is determined by a weighting router that can dynamically grow while
encountering adapter expansion. A simple linear head is used for classification
trained with cross entropy loss.

3.3 Formulation of Modular Adapter

Each adapter module consists of a functional adapter f(·) (as part of the for-
ward process) coupled with a representation descriptor g(·) that captures the
distribution of the task which triggers addition of its corresponding adapter (as
a detector for novel knowledge and only used during training time). An adapter
can be added at different layers based on the specification distribution shifts
appearing on the representations.

The adapter f(·) is used to close the representation gap between the pre-
trained model and the downstream task. We implement f(·) as a lightweight
adapter [10] contains a down-projection layer with parameters Wdown ∈ Rd×r,
a non-linear activation ReLU [1], and a up-projection layer with parameters
Wup ∈ Rr×d.

We insert the adapter in parallel to the MLP module inside each transformer
block in ViT. Given the input of MLP module as xℓ (with a slight abuse of
notation) in the Transformer block at ℓ-th layer, the output of one adapter
module is formulated as:

f(xℓ) = ReLU(xℓ ·Wdown) ·Wup. (2)

In [79], a similar adapter formulation is used to conduct adaptive fine-tuning
only on the first task data. The controlled adaptation can perform well for other
tasks with similar distribution, relying on the strong generalization ability of the
pre-trained models. Unlike it, we explore how to enable the model to learn new
tasks continually.
Representation descriptor. In this work, we implement the representation
descriptors as AEs [25] for modeling the characteristics of the data encountered
by the adapter. The AE model gℓt (·) added at layer ℓ triggered by task t consists
of an encoder pθℓ

t
and a decoder qϕℓ

t
. It is trained on the input data correspond-

ing to the task that triggered adapter expansion. Training of the representation
descriptor at layer ℓ added at task t can be achieved by minimizing the recon-
struction loss:

LRD(x
ℓ, xℓ

recon) = ||xℓ − xℓ
recon||2. (3)

The trained representation descriptor is used as an indicator of the data
distribution that the corresponding adapter can handle. If new tasks/data con-
tain significant distribution shifts, the features cannot be well-reconstructed by
already trained descriptor, indicating new adapters are required. It can also iden-
tify the reusable adapters for the new data where the learned representation can
be directly generalized on. We thus use the reconstruction error to generate the
expansion signals.
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3.4 Expandable Weighting Router for Mixture Usage of Adapters

For effectively identifying the proper adapters to use as well as mixing and
reusing all learned adapters, we propose to learn an expandable weighting router
jointly with the automatically added modules. Specifically, we employ a simple
linear layer (similar to [17]) as the expandable weighting router to dynamically
determine the weighting of outputs generated by each adapter. For the ℓ-th layer
of the model (at arbitrary training step) with M ℓ added modules/adapters, we
define the routing function as hl(·;Wr) : Rd → RMℓ

, where Wr ∈ Rd×Mℓ

denotes
the weight matrix of the router function. Given an input of adapter module (also
the input of MLP module) as xℓ, the mixture weight of i-th adapter is computed
with:

wℓ
i = softmax(hℓ(xℓ))i. (4)

The output xℓ
o of the transformer block at ℓ-th layer with M ℓ adapter modules

is obtained with:
xℓ
o = MLP(xℓ) +

∑Mℓ

i=1 w
ℓ
i · fi(xℓ), (5)

where fi(x
ℓ) is the output of i-th adapter. Note that the weight matrix of router

Wr will be expanded simultaneously when expansion signal is triggered and new
adapter is added to the network. To prevent the weighting router from catas-
trophic forgetting, we freeze the weight matrix and make the router only partially
trainable with the newly added weight matrix, which corresponds to the compu-
tation of contribution of the new adapter. Although module-wise representation
descriptors are used to indicate the representations encountered by the specific
adapter, they are learned separately from the adapters and independently from
each other. Thus, the responses of AE-based representation descriptors cannot
be used easily for the mixture of adapters or to produce better results.

3.5 Self-Expansion Strategy

To avoid rewriting and forgetting the learned knowledge in a modularized net-
work, the most straightforward approach is to keep the old modules frozen and
add new modules to learn new knowledge (if required).
Task-oriented expansion. Considering parameter efficiency, we use the task
identification available in training as prior knowledge in self-expansion. In the
task-oriented expansion, at most one adapter will be added in each task (per
layer) if the data triggers an expansion signal. Each layer of the ViT is equipped
with one adapter at the initial step for the first task in CL. Then, automatic
self-expansion is adopted in the subsequent tasks.
Multi-layer expansion. While each transformer block is initialized with one
adapter module, tuning at different stages (layers) leads to the accommodation
of different types of distribution shifts, and less tuning on some layers promotes
inter-class knowledge sharing [19,38]. We thus let the model automatically decide
whether to expand at arbitrary layers separately. In class-incremental learning,
considering the distribution shifts mainly happen at the semantic level, we let
the expansion focus on the last few transformer blocks.
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Fig. 2: Overview of the adaptation process. Representation descriptors estimate the
distribution similarity between incoming features and previous task, and trigger expan-
sion signals. The representation descriptors are trained to fit the feature distribution of
the corresponding task via only LRD, without being influenced by the gradient back-
propagated from the classification loss. MHSA denotes the multi-head self-attention
module in the transformer block.

z-score based expansion signal. Instead of inserting new adapters for every
new task, we add adapters only when the distribution of incoming tasks is de-
termined to be dissimilar from all past tasks to achieve parameter efficiency. For
each representation descriptor, the running statistics of mean µrecon and stan-
dard deviation σrecon of reconstruction error is computed. The expansion signal
is triggered if the statistical z-score of mean reconstruction error erecon of current
batch

z =
erecon − µrecon

σrecon
(6)

is greater than the predefined expansion threshold z′. Once the expansion signal
is received, a new adapter module will be inserted into the transformer block and
start training. By default, we prioritize the addition of modules to transformer
blocks closer to the input and only consider expansion at later blocks after the
training of all newly inserted adapters is finished.

Training added adapter and expanded router. Once module expansion
is performed, training of the newly added modules is executed. We decouple
the training of the new adapter and representation descriptor with two separate
stages, where the new adapter is trained with old frozen adapters, with weighting
computed by the router, via optimizing classification loss and the representation
descriptor is trained by optimizing LRD. After the training is finished, the new
adapter, router and representation descriptors are frozen and the model starts
checking for the expansion signal for the next transformer block. In this phase,
no parameter updates are allowed. We provide the pseudo-code of the training
phase in Algorithm 1.



Self-Expansion of Pre-trained Models with Mixture of Adapters 9

Algorithm 1 Training of our model
Given Components: Pre-trained ViT f with B transformer blocks, sets of trained
adapters f = {f1, ..., fB}, expandable weighting router h, number of training epochs
M
Input: train data Dt

train

Output: Updated model
1: function TrainModule(Dt

train, fnew, gnew, h,M)
2: for e=1,...,M do
3: for mini-batch b in Dt

train do
4: Update fnew, h with cross-entropy loss
5: for e=1,...,M do
6: for mini-batch b in Dt

train do
7: Update gnew with Eq. (3)
8:
9: for sample batch in Dt

train do
10: for l=0,...,B do
11: for each adapter in l-th transformer block do
12: Compute z-score z of reconstruction error using Eq. (6)
13: if all z-scores exceeds expansion threshold then
14: Add new adapter fnew and representation descriptor gnew

15: TrainModule(Dt
train, fnew, gnew, h,M)

16: Freeze adapters, representation descriptors and router weight matrix

4 Experiments
4.1 Setting and Implementation Details

Datasets. The experiments are conducted on common datasets used for adapta-
tion of pre-trained ViT in the conventional class-incremental learning, including
CIFAR100 [36], ImageNet-R [23], ImageNet-A [24] and VTAB [76].
Baselines. We compare our framework against representative ViT-based fine-
tuning methods, including fully fine-tuning of the adapter, L2P [66], Dual-
Prompt [65], CODA-P [60], SimpleCIL [79] and ADAM with Adapter [79]. All
baselines are originally designed for rehearsal-free continual learning and exper-
imented without any memory buffer in this paper.
Training details. We adopt ViT-B/16 model [16] pre-trained on ImageNet-
1K [56], which is a commonly used pre-trained weight, as the backbone for
all baselines and our method. Discussions on other pre-trained weights will be
offered in the supplementary materials. We train the adapters with 5 epochs,
followed by the training of representation descriptors with 20 epochs, both with
a batch size of 32. SGD is used as the optimizer with the initial learning rate
set to 0.005 and 0.01 for adapters and representation descriptors, respectively,
decaying with cosine annealing. For all datasets, module expansion is enabled
only in the last 3 transformer blocks by default.
4.2 Experimental Results

We evaluate the performance of our method by comparing with several ViT-
based fine-tuning works in continual learning. We use the average accuracy of
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Table 1: Comparision with ViT-based fine-tuning methods in class-incremental learn-
ing. AN denotes the average accuracy of all seen tasks after training on the last task
and Ā denotes the average performance during training on all tasks.

Method CIFAR-100 ImageNet-R ImageNet-A VTAB
Ā AN Ā AN Ā AN Ā AN

Finetune Adapter 47.88 30.9 38.51 24.22 29.78 17.64 59.98 43.5
L2P 84.77 77.87 70.67 62.90 47.16 38.48 81.19 80.83
DualPrompt 86.60 80.43 62.33 61.97 59.54 50.23 82.89 79.79
CODA-P 91.55 86.11 75.00 70.02 47.29 35.02 79.88 81.58
SimpleCIL 82.31 76.21 67.59 61.35 60.05 49.24 85.29 83.61
ADAM 90.55 85.62 75.84 69.10 60.15 49.24 85.29 83.61

SEMA 91.37 86.98 81.75 74.53 64.53 53.32 91.26 89.64
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Fig. 3: Incremental performance of different methods on class-incremental learning
benchmarks. All models adopt ViT-B/16-IN1K as the backbone.

all tasks [8] and average incremental accuracy [52] as our evaluation metrics,
denoted as AN and Ā respectively. As shown in Tab. 1, our method significantly
outperforms the recent state-of-the-art methods in terms of average accuracy,
which is the most important metric in continual learning, on all datasets. We
also achieve better average incremental accuracy in most cases. We further re-
port the comparison of incremental accuracy in Fig. 3. Although approaches like
CODA-P exhibit strong performance on CIFAR-100 and VTAB, their effective-
ness might diminish on datasets containing adversarial samples similar to those
found in ImageNet, due to its reliance on embeddings produced by ViT. Also,
having only one adapter trained on the first task limits ADAM’s ability to adapt
to future tasks with intra/inter-task distribution shifts, as shown by ImageNet-R
and VTAB. With dynamic expansion strategy, SEMA consistently outperforms
other parameter-efficient fine-tuning methods in CL throughout the incremen-
tal training stages, especially on datasets which could not be well-handled by
ViT (ImageNet-A) or with large inter-task distribution shifts (VTAB), demon-
strating its capacity in accommodating to downstream tasks with various data
distributions.

4.3 Ablation Studies and Analysis

Ablation studies on module expansion and adapter weighting. Tab. 2
thoroughly compares SEMA against non-expandable adaptation and its other
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Table 2: Performance comparison of SEMA with non-expandable adaptation and other
variants. No Expansion denotes the case where only one adapter is used in both train-
ing and inference and no adapter expansion is allowed. Average Weighting and Random
Weighting replace the routing strategy with average or random weights. Random Se-
lection and Top-1 Selection selects only one adapter in both training and inference,
whilst Top-1 Sel. Inf. executes normal training as SEMA but inference with only the
top-1 choice among the adapters.

Method ImageNet-A VTAB
Ā AN Ā AN

SEMA 64.53 53.32 91.26 89.64

No Expansion 61.20 49.9 86.21 83.66

Average Weighting 56.88 44.31 90.84 89.14
Random Weighting 62.95 49.77 88.87 85.17
Random Selection 61.70 50.36 90.82 88.51
Top-1 Selection 62.00 50.56 90.83 88.61

Top-1 Sel. Inf. 61.96 50.36 90.95 88.84

variants. No Expansion is an equivalent version to ADAM, which uses only one
adapter in each transformer layer, with slight difference in implementation de-
tails. SEMA significantly outperforms No Expansion, with the self-expansion
strategy which allows the model to dynamically add new adapters to accommo-
date novel tasks with distribution shifts, alleviating the limitation of inadequate
adaptation capacity provided by a single adapter.

Average Weighting, Random Weighting, Random Selection, Top-1 Selection
are four variants of SEMA, where we remove the expandable weighting router
during both training and inference time while keeping the dynamic expansion
mechanism with representation descriptors for capturing distributional shifts
in incoming tasks. Instead of weighting the contribution of adapters via the
routing function, Average Weighting and Random Weighting assign average or
randomly generated weight to each adapter respectively. Both methods benefit
from additional parameters introduced by adapter expansion and outperforms
No Expansion on VTAB. However, they fail to perform well on ImageNet-A
with non-ideal adapter weights, showing that merely increasing the model pa-
rameters does not necessarily lead to performance gain. Random Selection and
Top-1 Selection purely selects one of the adapter for training and inference, with
random choice or the top-1 choice produced by the router, which do not mix
the outputs of multiple adapters on the same layer. Top-1 Sel. Inf. executes the
same routing strategy during training but only selects the top-1 adapter deter-
mined by the router. While these selection methods are able to obtain better
performance than Random Weighting and No Expansion, SEMA outperforms
them by training and inference with mixture of adapters weighted through the
expandable router that allows SEMA to gain benefits from outputs of different
adapters.
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Analysis on dynamic expansion process. We visualize the dynamic ex-
pansion process of the last transformer layer on ImageNet-A dataset with the
minimum value of z-scores computed with all existing representation descriptors.
As shown in Fig. 4, the expansion signal is triggered for Task 2 with distribution
shift estimated by z-score over the threshold, and a new adapter is added for
training. With the training of the newly added representation descriptor, the z-
score gradually decreases and falls below the expansion threshold. As the z-score
stays below the threshold from Task 3 to Task 8, no adapter is added during
this period until the expansion signal is triggered by Task 9. This showcases
that SEMA refrains itself from performing adapter expansion for each incoming
task and only adds adapters while significant distribution shifts have been de-
tected by the representation descriptor. Hence, SEMA is an efficient adaptation
methods that only requires expansion while necessary.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of tasks

0.6

0.7
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0.9

1.0

1.1

M
in

z-
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or
e

Adapter expansion
Initialized adapter

Fig. 4: Example of dynamic expansion pro-
cess of ImageNet-A. The expansion thresh-
old is 1 and expansion is performed for the
2nd, 9th and 17th task at the last layer.

Expansion threshold. In Fig. 5,
we explore the effect of expansion
threshold on the classification accu-
racy and number of adapters added
to the network with ImageNet-A and
VTAB. As shown in Fig. 5a and
Fig. 5b, lower expansion thresholds
enable more frequent adapter expan-
sion which results in larger model ca-
pacity and potentially better perfor-
mance. However, when the expansion
threshold is over 1.5, it is unlikely
for data in ImageNet-A to be con-
sidered as an outlier to previous task
distribution hence expansion is not
performed throughout the incremen-
tal training process. High expansion
threshold minimizes the chance for expansion, which might lead to insufficient
adaptation in some cases. Similarly, in Fig. 5d, with low expansion threshold
such as 1 and 2, expansion is executed for every task at the last tranformer
block layer, which also brings a little boost in performance (Fig. 5c). The exper-
iments show that SEMA is robust in the choice of expansion threshold. It can
perform well in a large range of settings for the hyperparameter. A proper ex-
pansion threshold in a wide range can lead to a balance between the performance
gain and the parameter size.

Analysis of multi-layer expansion. In Fig. 6, we explore the effects on accu-
racy by implementing expansion across varying numbers of the final transformer
blocks, ranging from last 2 layers (#11-#12) to last 4 layers (#9-#12). It is
intuitive that allowing dynamic expansion in deeper layers enables greater adap-
tation to different downstream tasks, resulting in higher performance. However,
as shown in Fig. 6b and Fig. 6d, permitting expansion in early transformer layers
also increases the overall number of added adapters, without significant boost in
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Fig. 5: Analysis of the impact of expansion threshold with (a)(b) ImageNet-A and
(c)(d) VTAB. (a) and (c) show that SEMA can produce good accuracy stably with
slight variation w.r.t. varying expansion threshold. (b) and (d) reports how the number
of added adapters (on the specific Transformer layers #10, #11, #12) changes with the
varying threshold value, corresponding to (a) and (c), respectively. It shows that the
proposed method is insensitive to the threshold. While adding more adapters may lead
to higher accuracy, a proper threshold can achieve a balance between the performance
and model size.

performance as earlier layers tend to behave in a similar manner despite distri-
bution shifts. Also, enforcing addition of too many adapters may cause difficulty
in training, especially in early transformer layers.
Ablation studies on adapter variants. To further validate the efficacy of
our dynamic expansion mechanism, we extend our experiment to assess other
variants of adapters. By default, we use AdaptFormer, a commonly used adap-
tation formed by two linear layers with one activation in between. We extend
our evaluation to replace it with Convpass [32], a convolutional adapter designed
specifically for visual tasks. As shown in Tab. 3, our proposed approach is robust
to the selection of adapter methods, showing the broad applicability and effec-
tiveness of our dynamic expansion strategy across different adapter methods.
Hidden dimension in AE. We test different values for hidden dimensions in
the AE as representation descriptors. The AE-based representation descriptors
enable the capture of the characteristics of the data for decision-making on
whether to add a new adapter during continual training. According to Fig. 7,
the proposed method can perform well with a wide range of settings on AE’s
hidden dimension. We use 128 as the default setting in our implementation.
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Fig. 6: Analysis of the effect of multi-layer expansion, with (a)(b) ImageNet-A and
(c)(d) VTAB. By enabling automatic self-expansion on multiple Transformer layers,
SEMA can achieve better performance than restricting that on a single layer.

Table 3: Assessment of different types of adapters. AdaptFormer is our default adapter
whilst Convpass is a convolutional variant designed specifically for ViT. Both adapters
achieve consistently good performance on ImageNet-A and VTAB with SEMA.

Method ImageNet-A VTAB
Ā AN Ā AN

AdaptFormer 64.53 53.32 91.26 89.64
Convpass 63.48 51.74 90.68 88.62
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Ā

(a) ImageNet-A

16 32 64 128 256
Hidden dimension in AE

88

89

90

91

92

A
cc

ur
ac

y
(%

)

AN

Ā
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Fig. 7: Ablation on representation descriptor on (a) ImageNet-A and (b) VTAB.
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5 Conclusion
In this paper, we propose a novel self-expandable modularized adaptation ap-
proach for continual learning. SEMA learns to reuse and add modules in an
automated manner without memory replay. We incorporate an efficient expan-
sion strategy with detection for feature distribution shifts in different layers
of transformer-based models, successfully mitigating the forgetting problem of
jointly using the fixed set of parameters. Experiment results demonstrate the
outstanding performance of SEMA to datasets with different levels of distri-
bution shifts. One limitation is that we perform expansion at most once per
layer for each task for parameter efficiency concerns, which may constraint the
flexibility of model expansion.
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A More Details about SEMA

A.1 More Details of SEMA Training

At the start of the training, each transformer block at different layers is equipped
with one adapter module containing one adapter and one representation de-
scriptor, as well as an expandable weighting router. After the first task, for the
incoming new tasks, SEMA monitors the representations of each batch of sam-
ples at each layer with the AE-based representation descriptor. New adapters
are added if a significant enough representation/distribution shift is detected at
each layer. Adding the adapters expands the model’s representation ability for
handling the new patterns. For simplicity, we allow the expansion at the task
level, which means at most one time of expansion can happen for each task. As
shown in Fig. 1 and Fig. 8, the detection and expansion operation starts from the
transformer blocks closest to the input. Once a distribution shift that could not
be handled by all adapters in a certain block is observed, the detection phase
is paused, and an expansion signal is triggered in this block. A new adapter
module will be added to the block where the expansion signal is triggered, with
an expansion of the weighting router, and activated for training. After sufficient
training, the detection phase will be restarted for later blocks. If no distribution
shift is reported for a task in any transformer blocks, no adapter module will
be added, and no training of adapters is required for this task. We provide a
detailed example of the training and expansion process in Fig. 8.

A.2 More Discussions on the z-score-based Expansion Signal

In our self-expansion strategy, we use the statistical z-score of reconstruction
error to determine whether the expansion signal should be triggered. z-score
serves as a good outlier detector. A high absolute value of z-score reflects that
the feature is greatly different from others in the feature space. The z-score is
computed with

z =
erecon − µrecon

σrecon
,

where erecon is the mean reconstruction error of current batch and µrecon and
σrecon are mean and standard deviation of past reconstruction errors respectively.
We only evaluate z-score of large batches instead of evaluating on a per-sample
basis since the latter approach easily leads to unstable training and expansion,
due to the fact that there is a high chance encountering outlier samples with
high z-score in a task. We prefer to add limited number of adapters according
to the distribution shifts of tasks, instead of samples, for parameter efficiency
concerns. Furthermore, µrecon and σrecon are calculated with reconstruction error
of the last 500 samples during training as reconstruction error data collected in
earlier training stages may not properly reflect the distribution of reconstruction
error on the representation descriptor after complete training.
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Fig. 8: Detailed illustration of the training process. (a) The pretrained model with
L transformer layers is provided for adaptation. (b) At the start of training, each
transformer layer is equipped with one expandable weighting router and one adapter
module, including one functional adapter and its paired representation descriptor. All
modules are trainable at this stage. (c) All modules and routers are frozen after the
training on Task 1. When Task 2 arrives, a detection of distribution shift is performed
with all frozen representation descriptors in each transformer layer for all batches in
Task 2. Since no distribution shift is observed, module addition is not performed and all
modules are frozen. (d) As Task 3 arrives, the detection for distribution shift is executed
again and distribution shift is observed in the L-th layer. Expansion signal is triggered
and an adapter module is added in the L-th layer with expanded router. Training
for the newly added adapter and router is performed. Since the addition is performed
at the last transformer layer, no further detection for distribution shift is required.
(e) When Task 4 arrives, expansion signal is triggered in the L − 1-th layer during
the detection phase. After sufficient training, the newly added module is frozen and
detection for distribution shift in later layers is executed. When both representation
descriptors in the L-th layer consider the incoming feature as an outlier, expansion
signal will be triggered. A new module is added for training in the L-th layer while all
other modules are frozen.

We have provided a detailed illustration of the dynamic expansion process
with z-score in Fig. 4, which displays the movement of the minimum z-score
across all adapters on the last transformer layer. As expansion is only executed
if the incoming data distribution is not similar with any of the seen distribu-
tions in the past tasks, we compute the z-scores of all adapters and extract
the minimum value. If the minimum z-score is still higher than the expansion
threshold, then the incoming data is considered to be different from all seen dis-
tributions and expansion is deemed to be necessary. Once the expansion signal
is triggered, the detection of distribution shift is immediately stopped, and the
new adapter and representation descriptor are added for training. After train-
ing the representation descriptor, the reconstruction error of AE decreases and
the z-score computed with the newly trained representation descriptor will be
below the threshold. Hence, expansion signal will only be triggered again by fu-
ture tasks with significant distribution shifts whose minimum z-score among all
representation descriptors exceeds the expansion threshold.
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B More Details about Implementation and Evaluation

B.1 Details of Datasets

CIFAR-100 contains 100 classes with 500 training samples and 100 testing
samples per class.
ImageNet-R contains renditions of 200 ImageNet classes, which is a challeng-
ing CL benchmark introduced by with great intra-class diversity.
ImageNet-A contains real-world images filtered from ImageNet in an adversar-
ial manner which are hard to be classified by models pre-trained with ImageNet.
VTAB consists of 50 classes from 5 domains with 10 classes from each domain.

To construct class-incremental setting, for results reported in Tab. 1, all
datasets are splitted in a manner where each task consists of 10 distinct classes.

B.2 Implementations of Compared Methods

For SimpleCIL and ADAM, we use the official implementation at https://
github.com/zhoudw-zdw/RevisitingCIL. For other prompting methods, namely
L2P, DualPrompt and CODA-P, we adopt the open-source implementation from
PILOT toolbox, available at https://github.com/sun-hailong/LAMDA-PILOT.
In our experiments, we adhere to the hyperparameter configurations as specified
in the original publications for each of the compared methods.

B.3 Details on Evaluation Metrics

Denote the accuracy of the i-th task after training on the N -th task as Ai,N .
The average accuracy AN represents the average accuracy of all seen tasks after
training on the N -th task:

AN =
1

N

N∑
i=1

Ai,N ,

which is often considered as the most important evaluation metric in continual
learning.

The average incremental accuracy Ā is the average accuracy along incremen-
tal stages, defined as:

Ā =
1

N

N∑
t=1

At.

Forgetting FN measures the extent of catastrophic forgetting along incre-
mental training stages, defined as:

FN =
1

N − 1

N−1∑
i=1

fN
i ,

where fN
i represents the forgetting on the i-th task after training on the N -th

task, defined as:
fN
i = max

j∈{1,..,N−1}
Ai,j −Ai,N .

https://github.com/zhoudw-zdw/RevisitingCIL
https://github.com/zhoudw-zdw/RevisitingCIL
https://github.com/sun-hailong/LAMDA-PILOT
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C More Experiment Results and Ablation Studies

C.1 Influence of Pre-trained Weights

In the main paper, we experiment SEMA and other methods with ViT-B/16-
IN1K in Tab. 1. To study the influence of pre-trained weights, we further ex-
periment SEMA with another commonly used pre-trained ViT weight, i.e., ViT-
B/16-IN21K. We evaluate the performance using average accuracy AN and av-
erage incremental accuracy Ā. As shown in Tab. 4, SEMA consistently outper-
forms prompting and adaptation methods in class-incremental learning. This
indicates that our model is robust in performance regardless of different choices
of pre-trained weights.

Table 4: Experiments on four class-incremental learning benchmarks with ViT-B/16-
IN21K weight. AN denotes the average accuracy of all seen tasks after training on the
last task and Ā denotes the average performance during training on all tasks.

Method CIFAR-100 ImageNet-R ImageNet-A VTAB
Ā AN Ā AN Ā AN Ā AN

L2P 89.51 85.02 74.49 65.82 46.67 39.30 79.17 63.56
DualPrompt 90.39 85.64 73.67 68.88 58.45 48.78 88.11 77.58
CODA-P 91.01 86.20 70.36 65.32 50.73 37.06 85.13 85.85
SimpleCIL 87.13 81.26 61.92 54.33 60.50 49.44 85.99 84.38
ADAM 92.18 87.47 75.08 67.30 60.53 49.57 85.95 84.35

SEMA 92.23 87.84 77.84 69.60 62.50 51.35 91.99 90.86

C.2 Further Analyses on the Effectiveness of Self-Expansion

The proposed method SEMA enables the model to add parameters and expand
its capacity on demand. It allows the model to handle samples that could not be
handled before by adding a small number of parameters. In continual learning,
this process helps to alleviate forgetting by avoiding the interference from new
patterns while encouraging knowledge reuse, comparing to some methods [60,
65] that add parameters sequentially by task. Unlike these methods, adding
parameters linearly w.r.t. number of seen tasks/classes, SEMA adds parameters
sublinearly at a very restricted rate. To further analyze the effectiveness of this
self-expansion process, we conducted comparisons with other related methods
and the “expansion-by-task” variant of SEMA, in this section.

Unlike previous prompt-tuning methods such as DualPrompt and CODA-P
which incrementally expands prompts by task, SEMA efficiently performs ex-
pansion on a sub-linear basis only where distribution shifts occur. To evaluate
the effectiveness of our expansion strategy, we provide a comparison with an
“expansion-by-task‘ variant of SEMA which incrementally adding one adapter on
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Fig. 9: Analysis on added parameters (in Millions) during model deployment on
ImageNet-A. We compare with methods using fixed number of prompts like L2P, and
methods like DualPrompt and CODA-P that incrementally expand like SEMA but with
prompts and on a linear basis according to tasks. Expansion by task adds adapters for
every incoming task, whilst SEMA executes expansion on demand, which increments
parameters on a sub-linear basis. Specifically, SEMA added more parameters (with
expansions at more layers) at Task 9 than other steps with expansion.

the layers that allow expansion for each incoming task in Tab. 5. Adding adapters
on a per-task basis results in comparable performance as SEMA, however, the
number of parameters added is significantly higher, especially while encounter-
ing longer task sequence as illustrated with ImageNet-R and ImageNet-A (20
tasks). Note that adding too many unnecessary adapters may cause task inter-
ference and result in increased difficulty in the training of expandable weighting
routers, which leads to a slightly worse performance as shown in Tab. 5. Thus,
we demonstrate that our expansion strategy is efficient in both controlling the
size of added parameters regardless of the length of task sequence, encouraging
knowledge reuse and reducing potential task interference in adapter weighting.

We additionally compare the size of added parameters with prompt-tuning
continual learning methods in Tab. 6. While L2P uses a fixed size of prompt
pool with small amount of added parameters, the fixed size of trainable parame-
ters limit its capability to adapt to more distribution shifts in continual learning
and comes with higher chance of forgetting. Compared to other methods which
incrementally add prompts for each task, such as CODA-P and DualPrompt,
SEMA involves much less added parameters during deployment (representation
descriptors are only used for expansion in training and are discarded in deploy-
ment) while achieving better performance, demonstrating the efficiency of our
dynamic expansion strategy which only adds parameters while necessary. We fur-
ther illustrates the advantage in parameter controlling with sublinearly adding
parameters on demand in Fig. 9.



26 H. Wang et al.

Table 5: Comparison of added parameters used in model deployment and average
accuracy with different expansion strategies. Expansion by Task adds one adapter for
every new task. SEMA only expands if a distribution shift is detected by the represen-
tation descriptor.

Dataset Expansion by Task SEMA
Params (M) AN Params (M) AN

CIFAR-100 1.066 86.86 0.645 86.98
ImageNet-R 1.904 74.08 0.617 74.53
ImageNet-A 1.904 52.80 0.560 53.32
VTAB 0.647 89.09 0.554 89.64

Table 6: Number of added parameters used in model deployment compared with other
prompt-tuning continual learning methods, measured in Millions. L2P uses a fixed size
of prompts. DualPrompt and CODA-P adds prompts sequentially by task. SEMA adds
the smallest number of parameters, comparing to methods which allows expansion in
training, with its dynamic expansion strategy.

Type Method CIFAR-100 ImageNet-R ImageNet-A VTAB
Params (M) AN Params (M) AN Params (M) AN Params (M) AN

Fixed Param Size L2P 0.123 77.87 0.200 62.90 0.200 38.48 0.085 80.83

Expandable Param Size
DualPrompt 1.022 80.43 1.098 61.97 1.098 50.23 0.983 79.79

CODA-P 3.917 86.11 3.994 70.02 3.994 35.02 3.878 81.58
SEMA 0.645 86.98 0.617 74.53 0.560 53.32 0.554 89.64

C.3 Further Discussions on the Weighting Router

Routing relying on representation descriptor. In SEMA, we use the rep-
resentation descriptor to detect novel patterns that only trigger the expansion
signal in a discrete way, while the weighting router is used to mix the adapters.
Although the weighting router can naturally encourage more reuse and com-
bination of knowledge from the learned adapters, the AE-based representation
descriptors can also provide the identity information of each sample w.r.t. the
adapters. We thus study the potential of only using the AE-based representation
descriptors and the corresponding reconstruction error for routing. Since the rep-
resentation descriptors are not directly involved in the training of adapters with
cross-entropy loss, there exists a gap between the objective of training represen-
tation descriptors and obtaining the ideal mixture pattern for classification. As
shown in Tab. 7, while routing with the reconstruction error of representation
descriptors achieves sound performance on most datasets due to the good repre-
sentation ability of AEs and their reconstruction errors, it is still outperformed
by SEMA which learns in a more optimal manner with expandable weighting
routers.
Analyzing adapter usage with a controlled special case. We use a special
case under control to show how the learned adapters and weighting router can be
used to handle different tasks. Considering that multiple facts can influence the
adapter usage of different samples in a complex way, we conducted the controlled
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Table 7: Comparison between routing with expandable weighting router and repre-
sentation descriptor (RD).

Method CIFAR-100 ImageNet-R ImageNet-A VTAB
Ā AN Ā AN Ā AN Ā AN

SEMA 91.37 86.98 81.75 74.53 64.53 53.32 91.26 89.64

Routing with RD 90.91 83.61 81.02 74.13 61.80 50.36 90.83 88.53
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Fig. 10: Adapter usage with a controlled special case on VTAB. We limit the expansion
of adapters and only add two adapters for clear and simplified visualization. We report
the usage proportion of each adapter with the highest weighting per task, in the last
transformer layer. Below, we provide visual illustrations of sample images from each
VTAB task.

experiments by only allowing adding two adapters for the Transformer block at
the last layer. VTAB dataset [76] is used considering its visibly diverse data
distributions. In this way, it can be clearly visualized how the different adapters
may be added and used by different samples in Fig. 10. With two adapters,
Adapter 1 and Adapter 2 are trained with Task 1 and Task 2 respectively. Due
to the similarity in data distribution between Task 1 and Task 4, Task 4 largely
employs Adapter 1 during inference. Tasks 3 and 5, which comprise natural
images, exhibit a preference for Adapter 2, instead of Adapter 1 which mainly
contains satelite knowledge. For Task 2 that consists of texture image data,
both adapters can be used to handle this kind of low-level data. Hence, we show
that our expandable weighting router can effectively choose optimal adapters
according to different data distributions.
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Table 8: Per-image inference time of each method measured in milliseconds.

Method Inference Time (ms)
CIFAR-100 ImageNet-R ImageNet-A VTAB

L2P 9.44 9.53 9.86 9.46
DualPrompt 9.44 9.51 9.84 9.44
CODA-P 9.45 9.47 9.85 9.43
ADAM 9.95 10.03 10.36 9.45

SEMA 4.48 7.39 9.01 7.38

C.4 Results on Inference Time

We evaluate the inference efficiency and report the average inference time of each
image measured in milliseconds in Tab. 8. We show that SEMA is an efficient
adaptation approach in continual learning as it significantly outperforms other
methods on all datasets.

The inference latenty of the listed prompting continual learning methods is
caused by the extra procedure of processing the image with a frozen pre-trained
model for the query function. Similarly, ADAM requires extra feature extraction
with a frozen pre-trained model for the concatenation of pre-trained features and
adapted features. SEMA relieves the dependency on frozen pre-trained model as
we focus on the intermediate feature distribution of each transformer block. The
inference time of SEMA is related to the number of adapter modules added into
the ViT, which can be regulated by adjusting the expansion threshold.

Table 9: Average accuracy(%) at each incremental stage on 10-task ImageNet-R.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

L2P 86.36 66.99 65.54 66.81 64.25 64.66 63.64 64.88 63.86 62.72
DualPrompt 84.03 78.35 75.87 74.02 71.76 70.45 69.44 69.23 68.35 66.75
CODA-P 90.71 88.27 84.12 82.31 79.87 78.74 77.67 77.69 76.41 75.25
SimpleCIL 79.10 72.22 70.01 68.29 65.83 64.36 64.10 63.22 62.42 61.35
ADAM 91.87 84.94 82.36 80.02 77.76 76.46 75.61 74.97 73.99 73.15

SEMA 93.61 90.08 86.97 84.71 82.58 81.26 80.23 79.57 78.68 78.00

C.5 Additional Results on 10-Task Setting

Apart from Tab. 1 which reports ImageNet-R and ImageNet-A with 20-task
setting, we conduct further experiments on 10-task setting where each task con-
tains 20 classes. We report the average accuracy AN at each incremental stage
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Table 10: Average accuracy(%) at each incremental stage on 10-task ImageNet-A.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

L2P 70.29 59.44 55.46 53.72 49.35 50.77 49.06 48.48 45.81 45.56
DualPrompt 77.71 71.94 66.39 62.89 57.91 57.74 56.20 53.53 51.47 51.42
CODA-P 70.86 70.00 62.82 61.46 57.31 56.51 53.52 51.52 49.53 49.11
SimpleCIL 76.00 70.83 65.13 61.60 58.03 56.92 54.06 51.84 49.68 49.24
ADAM 76.57 70.83 65.13 61.75 58.26 57.03 54.15 52.00 49.75 49.37

SEMA 82.29 76.94 73.11 68.77 65.76 65.23 62.89 61.30 59.50 58.46

in Tab. 9 and Tab. 10. SEMA outperforms all other methods in all incremen-
tal stages, which demonstrates that our method is competitive regardless of the
length of tasks in continual learning.
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