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Abstract—We introduce a sliding window decoder based on
belief propagation (BP) with guided decimation for the purposes
of decoding quantum low-density parity-check codes in the
presence of circuit-level noise. Windowed decoding keeps the
decoding complexity reasonable when, as is typically the case,
repeated rounds of syndrome extraction are required to decode.
Within each window, we employ several rounds of BP with
decimation of the variable node that we expect to be the most
likely to flip in each round, Furthermore, we employ ensemble
decoding to keep both decimation options (guesses) open in a
small number of chosen rounds. We term the resulting decoder
BP with guided decimation guessing (GDG). Applied to bivariate
bicycle codes, GDG achieves a similar logical error rate as BP
with an additional OSD post-processing stage (BP+OSD) and
combination-sweep of order 10. For a window size of three
syndrome cycles, a multi-threaded CPU implementation of GDG
achieves a worst-case decoding latency of 3ms per window for
the [[144,12,12]] code. The source code of this work is available
online.1

I. INTRODUCTION

The recent progress in asymptotically good quantum low-

density parity-check (QLDPC) codes [1]–[4] renders them a

promising candidate for low-overhead fault-tolerant quantum

computing. Besides large blocklength codes, numerous short

to medium blocklength (N . 1000) QLDPC codes with dis-

tance near—or even exceeding—the square root of blocklength

have been proposed [5]–[7]. Their parity-check matrices are

carefully designed, and some of them have certain structures

that are promising for future use [8]–[10]. In particular, the

bivariate bicycle (BB) codes [7] are numerically shown to be

more resource-efficient than the planar surface codes [11].

Due to the noise in the syndrome measurement (SM) oper-

ations, the SM circuit is typically repeated for multiple cycles.

This comes at the price of a considerable increase in decoding

complexity. In this work, we employ a sliding window decoder

based on belief propagation guided decimation (BPGD) [12]

to handle streaming SM input.

The basic idea of window decoding is to use the syndrome

outputs of a small number of subsequent rounds (the window)

to determine the location of faults in the early part of the

window, and then slide the window forward by a few rounds

and repeat the process. An inner decoder is used on each

window which ideally finds the lowest-weight correction such

that the overall performance degradation compared to global

decoding remains tolerable. The advantage of this approach

is a lower decoding latency; no need to wait for a lengthy

1https://github.com/gongaa/SlidingWindowDecoder

decoding process that only begins after collecting the entire

set of syndrome data.

Sliding window decoders have been applied to surface

codes under circuit-level noise [11], [13], [14], where both

the SM circuit and measurements are assumed to be noisy.

Recently, it has also been applied to some QLDPC codes under

phenomenological noise [15] where only the measurements are

assumed to be noisy. In [15], belief propagation and ordered-

statistics decoding (BP+OSD) [5], [16] is used on each win-

dow to achieve the aforementioned low-weight requirement.

We propose to use an extended version of the BPGD [12]

algorithm as the inner decoder. BPGD interleaves BP runs

with a global variable node (VN) selection and subsequent

decimation of that VN. Compared to BP+OSD, the advantage

is a possibly lower worst-case runtime, as BPGD avoids

the need for Gaussian elimination. Furthermore, BPGD has

demonstrated performance comparable to BP+OSD on data

qubit noise decoding [12].

When applied to decoding circuit-level noise, however, we

find that the BPGD VN selection rule, which is to choose the

most reliable VN, becomes less efficient, since in this setting

there are significantly more possible fault locations than actual

fault occurrences. This motivates us to choose the most likely

VN to flip at each step, with the idea that this will lead to

BP convergence in fewer steps. Moreover, we use a short

history of posterior log-likelihood ratios (LLRs) from recent

BP iterations to choose the decimation value for the selected

VN. Thereby, we build up a main decimation path of low

depth. Lastly, we explore different decimation values (guesses)

along the main path and at very early steps, see Fig. 2. These

paths greatly improve the BP convergence speed and can run

in independent parallel threads. We call our modified version

of BPGD a guided decimation guessing (GDG) decoder. Note

that, despite its name, GDG is a deterministic decoder since

both options are explored, instead of a randomly chosen value

for the chosen VN. We carefully optimize the maximum

number of BP iterations and keep the number of paths small

for GDG to be useful in the real-time setting.

The remainder of the paper is organized as follows. BP

and BP+OSD decoding methods are reviewed in Section II-A,

followed by a review of the global decoding of circuit-level

noise [7] in Section II-B. Details of sliding window decoding

are given in Section III and of the GDG decoder in Section IV.

Additionally, in Appendix A and B, we apply both BP+OSD

and GDG to data qubit noise and single-shot syndrome noise

decoding to form comparisons.

http://arxiv.org/abs/2403.18901v1


II. CIRCUIT-LEVEL NOISE DECODING

We follow the standard circuit-based depolarizing noise

model [17], which is also considered in [7]. Each operation in

the (repeated) syndrome measurement circuit, including CNOT

gates, qubit initializations, measurements, and idle qubits, is

subject to noise. One can imagine the gates occurring at integer

timesteps starting at 1; then the possible fault locations are

half-integer timesteps for all qubits (i.e. between all gates),

including ancillas. The decoding on the much simpler data

qubit error model is discussed in Appendix A, where it is

assumed that the syndrome extraction circuit is noiseless and

faults only occur at timestep 0.5.

The circuit-level noise decoder outputs a Pauli correction

operator, to be applied to the output data qubits, upon ob-

serving all the noisy syndromes from multiple rounds and

taking into account all possible faults in the SM circuit. The

decoding fails if the correction operator and the actual error

differ by a non-trivial logical operator of the code. Here we

consider decoding using syndromes from X-type or Z-type

measurements separately. This is enabled by the CSS structure

[18], [19] of BB codes.

A. Decoding

Consider the Tanner graph [20] associated with a binary

linear code specified by a parity-check matrix (PCM) H. The

Tanner graph is bipartite and consists of check nodes (CNs)

and variable nodes (VNs) that each represent a row or a

column of H, respectively. The presence of one at column

i and row j of H indicates an edge from VN vi to CN cj .

Associated to this edge are messages in both directions, µi→j

and µj→i. In the following, we use the concept of VN and

column interchangeably. A binary variable can be associated

to each VN, indicating a fault on the corresponding qubit

or locations in the data qubit noise and circuit-level noise

scenarios, respectively.

In syndrome BP decoding, each CN cj receives a syndrome

(a check value) sj ∈ {0, 1}, and we denote the entire vectors of

syndromes s. Each VN vi receives as input a prior probability

pi of it being flipped, with associated log-likelihood ratio

(LLR) Λi = log 1−pi

pi
. We assume errors on VNs to be

independent. For BP initialization (timestep t = 0), the VN vi
to CN cj messages is µ

(0)
i→j = Λi.

The message-passing algorithm proceeds iteratively, with

one timestep consisting of first CN updates and then VN

updates. At timestep t, the min-sum CN update rule computes,

for each CN cj , a message µj→i to each of its neighboring

VNs vi, with i ∈ N (j), where

µ
(t)
j→i = (−1)sj · min

i′∈N (j)\i
|µ

(t−1)
i′→j |

∏

i′∈N (j)\i

sign(µ
(t−1)
i′→j ). (1)

The VN update first calculates a posterior LLR Λ
(t)
i for VN

vi at timestep t by summing up the original LLR Λi with all

incoming messages from its CN neighborsM(i), i.e.,

Λ
(t)
i = Λi +

∑

j′∈M(i)

µ
(t)
i←j′ . (2)

Then the message µ
(t)
i→j is updated by subtracting the intrinsic

message from the posterior, i.e.,

µ
(t)
i→j = Λ

(t)
i − µ

(t)
i←j . (3)

Based on the posterior LLR at any timestep t, a decision

for the estimated error ê can be made locally for each VN i

êi =

{

0 if Λ
(t)
i > 0

1 if Λ
(t)
i ≤ 0.

(4)

When the Tanner graph contains loops, the posterior LLR

is only an approximated version of the true value; thus, it

is possible that the BP’s decision does not have the correct

syndrome even after an infinite number of decoding iterations.

Therefore, we stop BP as soon as ê satisfies the syndrome

equation Hê = s, or after some fixed number of iterations.

Since the prior LLRs on VNs need not be identical, which

will be especially relevant in circuit-level decoding, we use

the handy notation of the path metric (PM). It is defined to be

the sum of prior LLRs from the VNs that are estimated to one,

if the estimation has the correct syndrome, or ∞ otherwise.

PM(ê) =







∑

i: êi=1

Λi if Hê = s,

∞ if Hê 6= s.
(5)

A smaller path metric, therefore, corresponds to a higher

probability of the estimated error pattern.

In the later section, we will use a technique called VN

decimation, which is to fix the value of a VN and remove it

from the message-passing network. For example, if we choose

to decimate vi to 0, then this VN is no longer active and will be

excluded from the updates of its CN neighbors. If we choose

to decimate vi to one, the syndrome sj on all its CN neighbors

j ∈M(i) needs to be flipped, and the updated syndromes are

used in Eq. (1) for later CN updates. In our implementation,

instead of deleting a VN, we maintain a mask for the VN

status. The messages from and to a decimated VN remain in

the network, and all its CN neighborsM(i) ignore these stale

messages in their updates.

In data qubit noise decoding of quantum LDPC codes, BP

often outputs an error estimate ê which does not satisfy the

syndrome equation, this is usually termed non-convergence2

and exhibits an error floor in logical error rates. One reason is

due to the short loops present in the Tanner graph. The short

to medium block-length QLDPC codes usually have a girth

(the length of the shortest cycle) of four or six3.

A few classical tricks for loopy BP can be employed to

ameliorate this problem. A normalization/scaling factor α ≤ 1
can be multiplied to the right-hand side of Eq. (1) to prevent

over-amplified messages due to short cycles. The scaling

2Convergence and syndrome consistency are two different notions. The
former does not imply the latter. However, we force the latter to imply the
former by early stopping of BP once the syndrome equation is satisfied, in
the sense that the estimation based on posterior LLR no longer changes.

3Here we consider the PCMs HX and HZ for X and Z errors separately.
See Table (1) of [5] for the girth of some QLDPC codes. For quaternary BP
decoding on (HX ,HZ ), four-cycles are unavoidable [21].



factor is set to 1.0 in this work unless specified otherwise.

Another trick is to change the scheduling method. Instead of

all CNs applying the update rule in parallel in one BP iteration

(flooding scheduling), only one CN (serial scheduling) or a

fraction of CNs (layered scheduling) is updated before the

next VN update. Serial scheduling usually reduces syndrome

inconsistency with the same number of CN updates; however,

those updates are sequential, which affects latency. In this

work, we always use flooding scheduling within window de-

coding due to the potential latency constraint. Additionally, the

(normalized) min-sum rule is used for the CN update, which

is more hardware-efficient despite being an approximation.

Apart from short loops, symmetric trapping sets [22], [23]

also complicate the decoding of QLDPC codes. Various post-

processing methods have been proposed to break this sym-

metry, the most prominent being ordered-statistics decoding

(OSD) [5], [16]. If BP fails to converge after some fixed num-

ber of iterations, the columns of H are reordered according to

the posterior LLRs of the VNs from low to high (the most-to-

least likely of being flipped)4. Then the first rank(H) linearly

independent columns are selected and used to find an error ê

satisfying the syndrome constraint Hê = s. The unselected

values of ê, associated with the remaining columns of H,

are set to zero. This is the zeroth-order OSD (denoted as

BP+OSD-0). The combination sweep heuristic [16] for order-

λ OSD (denoted as BP+OSD-CSλ) additionally searches over

all weight-one configurations of all the unselected VNs, and

weight-two patterns of the first λ unselected VNs. BP+OSD

may still exhibit an error floor, and the behavior is affected by

the number of iterations, the scaling factor, and the scheduling

used for the BP preprocessing [24].

B. Circuit-level noise

In [7], along with the parity-check matrices for the bivariate

bicycle (BB) codes, a carefully designed gate ordering for the

noisy SM circuit is additionally proposed. The SM is repeated

for several rounds due to the unreliability of the measurements.

A corresponding PCM can be constructed, see Fig. 14 of [25]

for a graphical introduction to how such “circuit codes” are

created.

Contrary to data qubit noise, where a VN denotes an error

on a data qubit and a CN denotes a noiseless syndrome

measurement result, for circuit-level noise a VN denotes a

single fault in the entire (multi-round) SM circuit while a CN

denotes a detector, which is the XOR of the measurement

results of a given parity-check from two consecutive rounds.

The presence of one in column i and row j of the circuit code

PCM means the ith fault mechanism triggers the jth detector.

As an example, when repeating the SM circuit for R rounds,

consider one syndrome check c whose measurement results

from oldest to most recent in time are m1,m2, . . . ,mR. The

4The binary BP+OSD proposed in Section 3.1 of [5] ranks columns
according to reliabilities, i.e., the absolute value of posterior LLR, then solve
the equation on least reliable columns by first fixing the rest to their BP hard
decisions. [16] ranks according to likeliness of being flipped, i.e., the value
of posterior LLR, which is the approach we follow here.

resulting detectors associated with this check c are checking

m1,m2⊕m1,m3⊕m2, . . . ,mR⊕mR−1, which will be zero in

the absence of any faults. Now consider the VN that denotes a

single measurement flip in round r > 2 on this particular check

c. This VN has degree two because it triggers both detectors

mk−1 ⊕mk and mk+1 ⊕mk to one, and it does not trigger

detectors associated to other checks. In Fig. 1 showing the

circuit code PCM Hcirc, we group rows (detectors) by round.

The top block of rows (the rows that the top H0 occupies) are

detectors like m1 associated to all checks, then the next block

of rows are m2 ⊕m1 like detectors, and so on. The bottom

block of rows are the most recent detector values.

Further in Fig. 1, one can see that there are two kinds

of faults. One kind triggers detectors in the current round

(block of rows) only; these faults form the columns of H0.

An example is a fault on a data qubit immediately prior to

a round of syndrome extraction, which causes check values

to change only in that round. The other kind of fault triggers

detectors in consecutive two rounds, constituting the columns

of
[

H1

H2

]

. Single measurement faults are an example, as well

as the various faults in the middle of the SM circuit. The latter

are captured by only a subset of the syndrome checks in the

occurring round, but can be fully captured by all subsequent

rounds. Using the same argument, one can see that no single

fault triggers detectors from more than two rounds, thanks to

the sparsification created by the XOR operation.

Fault mechanisms can be combined if they trigger the same

set of detectors, have the same noiseless syndrome at the end,

and induce the same logical error. A simple example is an

X-flip on the target qubit before and after a CNOT gate. The

columns of such equivalent fault mechanisms are merged, and

a new prior probability is calculated for the new VN. In this

linearized model [7], the possible correlation between columns

is ignored, meaning the different single fault mechanisms are

assumed to happen independently. Given all the detector values

and the final noiseless syndrome, the decoder aims to find

the most probable set of faults that explains the measurement

result. Then the correction operator on the data qubits can be

determined by adding up the effects on the output data qubits

caused by each selected fault.

Several undesired structures in the circuit code Tanner

graph harm its BP performance. An X-flip on the control

qubit propagates to both control and target qubits after the

CNOT. Consider the triplet of columns representing these

three single-fault mechanisms. The XOR of any two columns

equals the other, which creates numerous short cycles. The

aforementioned measurement fault triggers two detectors and

corresponds to a VN of degree two, which is known to

cause high error floors in BP decoding [26]. To alleviate the

syndrome inconsistency problem, BP+OSD is employed in

[7] to perform global decoding of the fault mechanisms that

happened in d rounds of noisy syndrome measurements, where

d is the code distance. This method is not likely to fulfill the

latency constraint, due to the large PCM of the circuit code

and the high worst-case runtime of OSD.

In this work, we use the sliding window decoder that is



suitable for handling measurement data coming in a streaming

fashion. In fact, the XOR of check results from consecutive

two SM rounds can be seen as naturally creating a spatially-

coupled LDPC (SC-LDPC)-like code, and the sliding window

decoder is a standard decoding technique for classical SC-

LDPC codes [26].

III. SLIDING WINDOW DECODING

We demonstrate the sliding-window decoding of the bivari-

ate bicycle (BB) code family implemented using the proposed

syndrome measurement (SM) circuit in Fig. 7 of [7]. X-

type and Z-type check operators are decoded separately as

in [7], though circuit-level depolarizing noise is assumed.

Correlations between X and Z errors could be considered;

however, we find that in this case fewer fault mechanisms

can be combined, and the PCM of the circuit code becomes

significantly larger. In particular, we find the resulting PCM

has roughly eight times more columns.

We implement a memory experiment in the Z basis in Stim

[27], using the repeated SM circuit from Fig. 7 of [7]. We

find that this family of codes possesses a general description

of their corresponding circuit codes in terms of the shape of

H0,H1,H2, see the caption of Fig 1.

In the (3,1)-sliding window decoding of this circuit code,

three rounds of detector values are handled in a window and

the window moves downward by one round each time. Inside

each window, an inner decoder is applied, e.g., BP+OSD-CS10

or GDG. The decisions for the columns not contained in the

next window are committed, and the detector values for the

next window are updated.

For example, assume detector values s1, s2, s3, . . . are ob-

served, where each si is associated to the ith block of rows.

We first use the first window (green) PCM Hwin to solve the

following syndrome equation (and all subsequent ones) over

the binary field,





H0 H1

H2 H0 H1

H2 H0 H1











ê0

ê1

...






=





s1

s2

s3



 . (6)

Here ê0 and ê1 are the estimated VN patterns associated with

the columns of leftmost H0 and H1 respectively, and they

are the columns that we commit to before moving to the next

window.

It is clear that if an inner decoder gives a solution that

satisfies this equation, then

[

H0 H1

]

[

ê0

ê1

]

= [s1] (7)

is naturally satisfied. BP+OSD can always find such a solution,

however, by applying plain BP alone to this window decoding

problem, we empirically observed that the convergence is

weak for the BB code family. Importantly, if Eq. (7) is not

satisfied, then the overall syndrome equation

Hcirc





ê0

ê1...



 =





s1

s2...



 (8)

can never be satisfied, regardless of subsequent window de-

coding.

By committing to ê0 and ê1, we need to update s2 used for

the next window by s
′
2 = s2 + H2ê1, then use s

′
2, s3, s4 to

decode the next window. If all partial equations like Eq. (7)

hold with respect to newly committed columns and (updated)

syndrome, then Eq. (8) will also be satisfied, and vice versa.

When employing our GDG decoder for window decoding,

we always count Eq. (8) failures into logical errors, besides

requiring the overall logical errors caused by the chosen VNs

to match the one that Stim [27] returns.

More concretely, consider a simulation for protection of the

logical Z information in a JN,K, dK code that encodes K
logical qubits. A logical Z observable matrix [25] L consisting

of K rows and the same number of columns as Hcirc can be

constructed as follows. Imagine adding K checks associated

to the logical operators to the very end of the multi-round

SM circuit. For the single-fault represented by column i of

Hcirc, propagate it to the end of the SM circuit, just before

the logical checks. Put a one in the ith columns and jth row of

L if this final error string does not commute with (triggers) the

logical check j. For numerical simulation, Stim [27] provides

K bits l1, . . . , lK indicating the values of the final logical

checks, along with the detector values mentioned earlier. We

decode using the detector values only and determine if our

final estimation satisfies

L





ê0

ê1...



 =





l1...
lK



 (9)

and Eq. (8). The decoding is deemed successful if both

equations are satisfied.

In classical SC-LDPC code decoding, BP is used on each

window, and usually a small number of iterations of BP

already leads to convergence. As mentioned above, this is not

the case for Hcirc of the BB family. Therefore, we apply

BP+OSD-CS10 to each window and benchmark the perfor-

mance against the global decoding over distance d rounds of

SM, see Fig. 3.

Though each window deals with a much smaller PCM com-

pared to global decoding over d rounds, fulfilling the stringent

latency constraint is still challenging. Before proceeding to the

next section where we introduce the GDG decoder, we make

a few comments on the windowed approach.

Each window is extremely wide, i.e., the number of columns

is much larger than the number of rows. To improve efficiency,

we merge the columns of the bottom right (full-rank) matrix

H1 in each window to an identity matrix and recalculate

priors. Secondly, inspired by OSD-0, we notice that certain

columns can be dropped (decided to zero) after BP posterior

LLR ranking. For a window of w′ rows, instead of testing

for linear dependency and choosing the first rank(H) ≈ w′

columns as in OSD-0, we skip the test and simply choose the

first 2w′ columns for post-processing. This method is always

used together with GDG in the next section. As it turns out, the

first 2w′ columns are almost always enough for the syndrome



H0 H1

H2 H0 H1

H2 H0 H1

. . . . . . . . .

H2 H0 H1

H2 H0 H1

H2 H0

























































Hcirc =

Fig. 1. (3,1) sliding window decoding of the circuit code PCM Hcirc. For
the BB code family with circuit in [7], H0 has shape w× 3w, H1,H2 both
have shape w× 9w, where w = N/2 is the number of detectors used in one
round for a block-length N code.

to be in their span. This means OSD-0 will decimate the

remaining columns to zero as well.

It is also observed that running BP+OSD (not just OSD)

on the remaining w′ × 2w′ PCM can slightly improve the

performance of decoding on the original PCM. The improve-

ment is not shown in this paper for brevity but is available

online. Restricting OSD-CS10 to the first 2w′ columns after

ranking improves worst-case runtime as well, since an order-

λ combination-sweep OSD tests weight-one patterns for all

columns, not just the first λ unchosen columns.

IV. GUIDED DECIMATION GUESSING DECODING

Decimation [28]–[30] is a technique to improve convergence

of iterative decoding by sequentially fixing VNs via hard

decisions. It was recently used by [12] for decoding QLDPC

codes subject to data qubit noise. There, after some BP

iterations, the VN with the largest absolute value of posterior

LLR (the most reliable) is decimated according to its sign. This

process is repeated for R steps. However, if R is limited to 50
for the blocklength 882 code, an error floor is observed at low

physical error rates, see Fig. 4 of [12]. When investigating the

cause, we found that in most of the steps the selected VN is

decimated to zero, because the most reliable posterior LLR is

usually positive, due to most messages being positive at low

error rates.

This behavior inspired us to instead select the VN with

the smallest posterior LLR (the most likely to flip) and again

decimate according to the sign of the LLR. In this way, the

decoder becomes more effective in the low error rate regime.

The rationale is as follows. Imagine an error e with Hamming

weight wt(e) occurred. Then, we expect the smallest posterior

LLR at each step to be negative and a one to be decided for

the decimated VN. After wt(e) number of decimation steps,

BP should have converged and recovered e. The average wt(e)
decreases when the physical error rate gets lower, and BP thus

should take fewer steps to converge.

In numerical experiments, however, we find that the small-

est posterior LLR is not necessarily negative at each step.

Convergence can nevertheless usually be achieved by always

following the sign and allowing decimation to proceed until

possibly no VNs left, but the downside is that the estimated

error sometimes has a very large weight. This effect accumu-

lates when sliding the window multiple times and manifests in

the high logical error rate in the end. On the other hand, the

runtime is not guaranteed when taking a lot of steps to find

a large-weight solution. To address the challenge of finding a

low-weight solution that has the correct syndrome in a fixed

number of steps, we propose two key techniques to increase

convergence speed. One is to select and decimate VN based

on their posterior LLR history so that the guidance we follow

is more reliable. The other is to employ guessing, i.e., trying

both decimation values.

A. History-based decision

When plotting the LLR posterior against the number of

BP iterations, we find that some VNs exhibit an oscillating

behavior. They oscillate at a period of four, which is the girth

of the circuit code Tanner graph. Therefore, we use a buffer

to store the posterior LLRs from the latest four iterations, and

always use this history to make decimation decisions.

We use a ternary mask vn_status for each VN with −1
indicating this VN is not yet decimated (active), and 0/1 for

being decimated to 0/1 (inactive). After decimating a VN to

1, the syndromes of its neighboring CNs are flipped. When

running BP, the inactive VNs no longer update messages, and

CNs simply ignore stale messages left behind by their inactive

VN neighbors. For the time being, assuming we are in low

error mode in Alg. 1, where all the active VNs with degrees

larger than two enter the VN selection. This mode is used

for physical error rate p ≤ 0.002 for all codes in Fig. 3. For

larger p, we find it beneficial to leave the low error mode and

immediately hard-decide VNs with a very positive or negative

history to zero or one, without including them into the VN

selection.

In Alg. 1, if there are any VNs whose four most recent LLRs

are all negative, then the VN with the most negative sum is

chosen and decimated to one. In the absence of such VNs,

we decimate the VN with the smallest sum of its four most

recent LLRs to the value indicated by the sign of the sum. In

particular, we also skip VNs whose degree is less than three, as

this was found to improve performance. We believe the reason

is that degree two or one VNs are just relay or observer nodes

[31] and themselves do not carry reliable information. In the

circuit code window PCM Hwin, the degree one and two VNs

stand for the measurement faults, which should not be decoded

to one with priority.

B. Guessing

We call the above decision path the main branch and it is

shown in red in Fig. 2. When limiting the main branch to 25
steps and employing it as the inner window decoder for the

N = 144 code, we observe error suppression, i.e., the logical

error rate per round can be smaller than the physical error rate.

We can further improve the performance by guessing. That

is, for a small number of variable nodes, we consider both

possible decimated values and perform ensemble decoding.

When closely investigating the LLR history, we observed that

sometimes the history of the selected VN oscillates around

zero. This naturally leads us to explore the side branches



Algorithm 1 Select a VN to decimate and compute the favored

value based on LLR history

Input Depth D
Output Chosen VN index g, favored guess value f

1: procedure SELECT-VN(D)

2: Lmin ←∞
3: gmin ← −1
4: L̃min ←∞ // for all negative LLR history

5: g̃min ← −1
6: for all VN vi do

7: if vn_status[i] 6= −1 then // decimated

8: continue

9: if deg(vi) ≤ 2 then

10: continue

11: // history: last 4 iter. of Eq. (2)

12: Λhist = [Λ
(t−3)
i ,Λ

(t−2)
i ,Λ

(t−1)
i ,Λ

(t)
i ]

13: Lsum ← sum(Λhist)
14: if not in low error mode then

15: b← AGG-DEC(Λhist, D) // Alg. 3

16: if b 6= −1 then // Λhist reliable

17: vn_status[i]← ê[i]← b
18: continue // vi quits selection

19: if Lsum < Lmin then

20: Lmin ← Lsum

21: gmin ← i
22: if Λhist ≤ 0 and Lsum < L̃min then

23: L̃min ← Lsum

24: g̃min ← i
25: // select one VN and favored value for it to guess

26: if g̃min 6= −1 then

27: g ← g̃min

28: f ← 1
29: else

30: g ← gmin

31: f ← sign(Lmin)
32: return g, f

(blue squiggles in Figure 2), which are decision paths that

directly split off from the main branch. These decimate a VN

contrary to the sign of the LLR history only at one point, where

the branch splits, and all subsequent decisions follow the

sign. These side branches improve convergence in ensemble

decoding significantly, and by incorporating them into the

inner window decoder, we achieve BP+OSD-0 performance.

Finally, inspired by the pattern exploration of unchosen VNs

in high-order OSD, we add the tree branches (green squiggles

in Figure 2) emanating from the leaves of a depth-4 guessing

tree5. They explore all the decimation values of the first four

decisions. After splitting, they all proceed following the sign.

The tree branches help in finding a more probable (smaller

path metric) estimated error pattern and they bridge us to

5Following line 22-24 of Alg. 2, the id labeled for tree branches in Fig. 2
is only a demonstration for a guessing tree where the favored value at each
step is one, which is not always the case in reality.
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Fig. 2. The decision tree for the BPGDG algorithm. VN selection and
decimation are made after each step, where one step is defined to be six
BP iterations. The red path is the main branch. The solid dots (red or black)
are the only places where guessing is allowed. No splitting from the main
branch into side branches (blue) after reaching depth 10. No guessing for
the tree branches (green) after depth 4. The main branch terminates after
25 steps (Dmax = 25), regardless of convergence. The side branches are
allowed to run 10 more steps after their split-off at depth Dsplitt, i.e.,
Dmax = Dsplitt + 10. The tree branches are also allowed to run 10
more steps after splitting from their neighbors at depth 4, which means
Dmax = 4 + 10 for all tree branches.

BP+OSD-CS10 performance. We name the resulting decoder

a guided decimation guessing (GDG) decoder.

Let us summarize the differences between GDG and BPGD

[12] decoder. First, we change the VN selection rule and make

decisions based on LLR history. Second, we allow guessing

on the main decision branch and at very early steps. The

guessing tree has a similar spirit to guessing decoding on

classical erasure channel [32], [33] and later AWGN channel

[34]. However, to our knowledge, no prior work has proposed

the side branches, which is the key to convergence for our VN

selection rule. It is probably because prior works decimate the

most reliable VNs and guessing is unnecessary.

C. Simulation

In Fig. 3, we show the performance of using the (3,1) sliding

window to decode the BB codes on circuit-level noise. All BP

runs involved use min-sum update, flooding scheduling, and

scaling factor α = 1.0. As described at the end of the previous

section, for each window we first run BP on the original PCM

for eight or sixteen iterations if N ≤ 144 or N = 288, rank

columns according to the sum of LLR posteriors from the

latest four iterations, and apply GDG to the first 2w′ columns.

For N ≤ 144, the decision tree with parameters shown

in Fig. 2 is used as the inner decoder. The GDG critical

path is 150 = 25 · 6 BP iterations. The worst-case runtime

of each window is measured to be ∼ 3ms for N = 144
with a multi-thread implementation on an Intel i9-13900K

CPU, while 200 BP iterations + OSD-CS10 on the original

PCM takes ∼ 20ms or ∼ 10ms on the shortened PCM in
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Algorithm 2 Belief Propagation Guided Decimation Guessing

Input Parity-check matrix H, syndrome s

Output Estimated error ê

1: for all decision paths in Fig. 2 do

2: for all VN vi do // initialization status mask

3: vn_status[i]← −1 // not yet decimated

4: for D ← 1, . . . , Dmax do

5: ê← run BP for 6 iterations

6: if Hê = s then

7: calculate path metric for ê with Eq. (5)

8: break

9: // get VN index g and favored guess value f
10: g, f ← SELECT-VN(D) // Alg. 1

11: if is main branch then

12: vn_status[g]← ê[g]← f
13: else if is side branch then

14: if D 6= Dsplitt then

15: vn_status[g]← ê[g]← f
16: else

17: vn_status[g]← ê[g]← 1− f
18: else // tree branch

19: if D > 4 then

20: vn_status[g]← ê[g]← f
21: else

22: // decimate accord. to the binary repr. of id

23: b← the Dth bit of id ∈ [2, 15]
24: vn_status[g]← ê[g]← b+ (−1)bf
25: return the ê with the smallest path metric

the worst-case. Note that runtime on CPU is not indicative

of performance on specialized hardware. Since we use BP

with flooding scheduling, GDG is expected to benefit from

the inherent parallel CN/VN updates on FPGA or GPU,

though the VN selections (argmin operations) may become

the bottleneck. Similarly, the rank(H) pivot findings6 in OSD

are the bottleneck operations on ASICs. In this sense, GDG

may still have a runtime advantage when parallelization is

considered, since the number of required argmin operations

decreases with physical error rates. For the N = 288 code,

a maximum depth of 40 is used for the main branch, and

the side/tree branches are allowed to run for 20 more steps

after splitting at depth 20 or 5. With the same decision tree

parameters applied to (5, 2)-sliding window GDG decoding for

N = 144, we get a slightly better logical error rate than the

global decoding in Fig. 3, indicating order 10 is not sufficient

enough for global OSD-CS decoding. Our global OSD-CS

decoding curves match those in Fig. 3 from [7] quite well,

except for the N = 288 code. The performance degradation

is possibly also due to our insufficient OSD-CS order. We

also tried (4, 1)-window GDG for N = 288, it is significantly

closer to the global decoding curve in Fig. 3 than the one from

(3, 1) decoding. The specific tree parameters and performance

are available online.

D. Do not waste guesses

After each step of decimation, the remaining Tanner graph

can have degree one CNs. The single VN connected to such a

CN can be uniquely decoded as the current syndrome of this

CN. This peeling step is repeated until no degree one CN is

present. Peeling adds a small overhead to the various decision

paths, but it crucially prevents GDG from wasting decision

steps on these apparently decidable VNs.

As shown in Fig. 3, when used as the inner decoder

of a (3,1)-sliding window decoder, the GDG decoder gives

favorable performance for physical error rates p ≤ 0.002. For

slightly higher physical error rates, there is a higher chance

that the number of single-fault mechanisms that occurred is

larger than the maximum depth of the GDG. To improve

6This argument is for higher-order OSD. For OSD-0, there is no need to
do full Gaussian elimination, adding in columns can stop once the syndrome
is in the span of the selected ones, see Alg. 2 of [5].



Algorithm 3 Aggressive Decimation

Input LLR history Λhist of one VN, depth D
Output Decimation value for this VN

1: procedure AGG-DEC(Λhist, D)

2: PA ← −3 if on main branch else 0
3: PB ← −12 if on main branch else −10
4: PB ← −16 if D = 1
5: PC ← 30
6: PD ← 3
7: if Λhist < PA and sum(Λhist) < PB then

8: return 1
9: if (Λhist > PC and D ≤ 4) or

10: (Λhist > PD and ∃ ≥ 3 unsatisfied CN neigh.) then

11: return 0
12: // otherwise Λhist not reliable enough for decision

13: return -1

convergence with the same maximum depth, we leave the low

error mode and use Alg. 3 aggressive decimation in Alg. 1. For

each VN, if its LLR history is very positive or very negative,

it is simply decimated to zero or one, without performing any

guessing. Line 10 of Alg. 3 is inspired by [34], which says

VNs that are connected to many unsatisfied CN neighbors

are places that lack information. Some effort was spent on

finding PA, PB , PC , PD at p = 0.003 for the N = 144 code

by first looking at posterior LLR distribution in value and then

fine-tuning. The same parameters are later applied to all other

codes and p, without any further tuning. It is also important

to mention that we always clip the VN to CN messages to

[−50, 50]. The clipping values especially affect PC .

We also tried Alg. 3 in hindsight for p ≤ 0.002. However,

it causes slight error floors because some VNs are decimated

to zero too early. Furthermore, the BP preprocessing iteration

on the original window PCM is kept low (8 or 16), otherwise

error floors appear. The intuition is that GDG prefers negativity

in the messages, and longer BP runs that do not eventually

converge ruin the negativity in the message-passing network,

especially at low p, where most messages are positive.

V. CONCLUSION

We introduce the GDG decoder in this work and use it as

the inner decoder of a sliding window decoder for BB codes

under circuit-level noise. In particular, we limit the critical

path of this decoder to 150 BP iterations on each window for

(3,1)-decoding of the N = 144 code, and nevertheless GDG

achieves excellent logical error rates. However, GDG is not

a general-purpose decoder like OSD. Rather, it is designed

for the sub-threshold region. The average number of error

weights should be smaller than the maximum step for GDG

to be utilized to its full potential. For QLDPC codes, the error

floor [35] is a conundrum, and GDG awaits special hardware

implementation to investigate its error floor behavior.

Furthermore, we design GDG for syndrome decoding, not

codeword decoding, e.g. as in Steane error correction [36]. We

believe a similar VN selection rule for codeword decoding can

be developed based on the history of sign(Λi) · Λ
(t)
i . Lastly,

though we draw an analogy to classical SC-LDPC window

decoding, we did not exploit their key feature of reusing BP

messages from the previous window in the overlapping region

to initialize the next window. This would be possible for the

GDG decoder, using the BP internal messages from the branch

with the minimum path metric, whereas no soft information

can be retained for the next window when using BP+OSD.

We leave such investigations for future work.
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APPENDIX A

DATA QUBIT NOISE

In Fig. 4, we show the logical error rate of employing GDG

or BP+OSD on data qubit noise. Here we focus on the X type

of noise only and assume each data qubit is subject to i.i.d.

bit flip with probability pd. This equals the classical binary

symmetric channel BSC(pd). The scaling factor used for GDG

is always set to 0.625. For OSD methods, the best scaling

factor is chosen among {0.5, 0.625, 0.8, 1.0}. The HX and

HZ have girth 6 for these BB codes, when decoding X and

Z separately, though we still use a history length of 4 for GDG

as in the main text. The three methods are run over the same

set of generated noise, and for the N = 288 at pd = 0.02,

OSD-CS10 shows an error floor while GDG does not.

We did not perform simulation on data depolarizing chan-

nels, where each data qubit independently and identically

experiences a random X , Z , or Y = iXZ type of error, each

with probability p/3 for some p ∈ [0, 1]7, as a quaternary BP

(BP4) version for GDG should be designed and compared to

BP4+OSD8.
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Fig. 4. Data qubit noise, X-noise only. Solid lines are GDG in low error
mode with main branch maximum depth 40, side or tree branches do not split
after depth 20 or 5 and are allowed to proceed for 30 more steps. Scaling
factor 0.625. Dashed and dotted lines are BP+OSD-CS10 and BP+OSD-
0 respectively. BP preprocessing for both OSD methods is 100 iterations.
Scaling factor 0.5 is used for N ≤ 144 and 0.625 is used for N = 288.

APPENDIX B

SINGLE SHOT SYNDROME NOISE

In the main text, so far we have been investigating using

BB codes as a fault-tolerant memory. The simulation we

performed is also an emulation of the memory experiment.

The final round of the noiseless syndrome measurement can

be obtained by measuring (collapsing) all the data qubits

at the end and followed by classical syndrome calculation.

However, when an error correction code is used in a real-time

experiment, it is not clear how to obtain noiseless syndrome,

since the data qubits shall not be collapsed before a non-

Clifford gate and we have to deal with measurement noise.

The lift-product construction [1] creates a naturally over-

complete PCM. The GHP codes in [5], 2BGA codes [6] and

7As a rule of thumb, decoding on Depolarize(p) is easier to decode than
BSC(2p/3) since the correlation between X and Z can be exploited.

8An implementation can be found in our repository online. Addition-
ally, our TensorFlow implementation of BP4+OSD-0 can be found in
https://github.com/gongaa/Feedback-GNN/blob/main/examples/OSD.ipynb.

https://github.com/quantumgizmos/ldpc
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Fig. 5. Logical error rate for the J288, 12, 18K code at data qubit X-
noise pd = 0.03 ∼ 0.06 and i.i.d. syndrome bit-flip with probability
ps ∈ [10−5, 10−3]. The dotted lines are the lower bound pL(pd) + 864 ·
p2s + 2592 · pd · p2s.

the BB codes [7] are small special cases. In this section, we

investigate the syndrome protection offered by the syndrome

code in the single-shot noisy syndrome measurement setting

for the J288, 12, 18K BB code.

In Fig. 5, assume the data qubit noise is subject to e ∼
BSC(pd) and the syndrome noise is subject to s

′ ∼ BSC(ps).

Throughout we assume ps < pd, otherwise it makes no

sense to perform measurements. The observed syndrome is

thus HXe + s
′ and the decoding ê is deemed successful if

H
⊥
Z (ê+e) = 0. The row span of H⊥Z contains HX by the CSS

constraint, and thus ê needs to have the same syndrome as e

for the decoding to be correct. In Tanner graph construction,

we add one virtual VN to each CN, the flipping of such a

virtual VN implies a syndrome flip on the associated CN. The

effective PCM is then [HX |I]. The prior LLR to the virtual

and original VNs are log 1−ps

ps
and log 1−pd

pd
, respectively. For

the J288, 12, 18K code with the PCMs specified in [7], there

are 288 original VNs of degree three and 144 virtual VNs of

degree one. We employ BP+OSD-CS10 and GDG to decode ê.

The same parameters as in Fig. 4 are used for both decoders.

Next, we discuss how to obtain the lower bound for the

logical error rate in Fig. 5. The first term pL(pd) is the logical

error rate in the absence of syndrome error9, which we obtain

from Fig. 4. The second term 864 · p2s =
(

3
2

)

· 288 · p2s
comes from the configurations in Fig. 6(a) where weight-two

syndrome error happens on the three CNs neighbors of an

original VN. The third term 2592 · pd · p2s originates from a

weight-one data qubit error and weight-two syndrome error

in configuration Fig. 6(b). This term requires careful counting

for the coefficient.

Consider the HX = [A|B] matrix of the N = 288 BB

code, where A = x3 + y2 + y7, B = y3 + x + x2 and

x = S12 ⊗ I12, y = I12 ⊗ S12, S12 is the cyclic permuting

matrix. The syndrome code for HX is its column span. Its

shape 144 × 288 implies that each column is a codeword

of length 144 and the syndrome code is spanned by its

288 linearly dependent columns, each of weight-three. The

9Here we ignore wrong decoding with a wrong denoised syndrome but
accidentally lead to the correct answer.
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Fig. 6. Tanner graph of the data and syndrome noise decoding, only showing
relevant VNs/CNs. The VNs on the left of CNs are data qubits, and the VNs
on the right of CNs are virtual nodes for syndrome noise. The red and blue
configurations cause the same syndrome. If the red configuration happens, a
maximum likelihood decoder will choose the more probable blue one because
pd > ps and get the denoised syndrome wrong, introducing logical errors.

syndrome code can be written as the ideal (b1, b2) in the

quotient ring R = F2[x, y]/(x
12 = 1, y12 = 1). The two base

polynomials b1 = y5 + y10 + x9 and b2 = y9 + x10 + x11 are

the first columns of matrix A and B respectively. A monomial

xayb present in the polynomial indicates a one at position

12a + b. Then the 288 columns of HX are just b1 · xayb

and b2 · xayb, 0 ≤ a, b ≤ 11, and it is easy to see they

all have weight three. Since the syndrome code is a linear

code, the distance is upper bound by three. Indeed, the column

span of A and B each has distance three, while the column

span of HX = [A|B] has distance two. Importantly, this does

not imply weight one syndrome errors will cause decoding

failure. In fact, to denoise a weight-one syndrome noise to a

weight-two syndrome codeword, an additional 14 VNs need

to be flipped as well. For the number of configurations in

Fig. 6(b), we need to count the number of weight-three

syndrome codewords caused by three original VNs. They are

b21 = y10 + y20 + x18 = y5 · b1 + y10 · b1 + x9 · b1 or b22
and their 144 shifts by xayb. Therefore, all together there are
(

3
2

)

·
(

3
1

)

· 2 · 144 = 2592 such configurations.

The above arguments hint that a higher level of syndrome

protection may be achieved by a larger distance of the syn-

drome code, which is upper bound by the column weight of the

PCM. The J254, 28, 14 ≤ d ≤ 20K code in [5] is also a bicycle

code and the generator polynomials for A and B are a(x) =
1+x15+x20+x28+x66 and b(x) = 1+x58+x59+x100+x121,

where x is the cyclic permuting matrix of size 127. Its

syndrome code has distance five since g(x) | gcd(a(x), b(x))
and g(x) = g1(x)·g2(x) = (x7+x+1)·(x7+x5+x3+x+1) is

the generator polynomial of the [127, 14, 5] BCH code10. The

first dominant term to the logical error rate can be obtained

similarly to Fig. 6(a) and is 254 ·
(

5
3

)

· p3s. Simulation with

GDG shows that this code can achieve ∼ 10−7 logical error

rate at pd = 0.01 and ps = 10−4. On the contrary, the logical

error rate for the J288, 12, 18K code at ps = 10−4 is at least

864 · p2s ≈ 10−5.

It should be mentioned that GDG can handle soft syndrome

10The distance lower bound follows from the BCH bound. Assume
g1(α) = 0, then α2, α4 are also roots. Further, since g1(α) | g2(α3), α3 is
also a root of g(α).



information as well, instead of using log 1−ps

ps
as the prior

LLR for the virtual VNs in BSC(ps), an input-dependent LLR

can be used, see Eq. (1) of [37] for Gaussian syndrome noise.

Moreover, in Fig. 4(a) of [37], a phase transition was observed

when sweeping the standard deviation of the Gaussian noise,

despite using a different decoding method on a different code.

APPENDIX C

GDG IMPLEMENTATION

We use the mod2sparse library for sparse matrix manip-

ulation, the same library was used by the BP+OSD package

[38] by Roffe et al. To handle decimations, we additionally

maintain a status snapshot containing ternary masks for VNs

(decided with 0/1, undecided) and CNs (active with 0/1,

resolved). In message passing, CN/VN updates simply ignore

messages coming from inactive neighboring VNs/CNs.

To facilitate intermediate peeling steps, we also maintain

a vector for CN degrees, which is updated whenever VN

decimation is performed and hence is a part of the status

snapshot. Peeling stops when all CN degrees are larger than

one. It is possible that contradictions happen during peeling,

e.g., two degree-one CNs want to set contradicting values for

their common VN neighbor. In this case, the current decision

path is immediately killed and it returns PM ∞.

There is also a vector for VN degrees so that degree one or

two VNs can be easily skipped in Alg. 1. This vector never

needs to be updated, since decimation, no matter induced by

VN selection or peeling, does not cause the degree of active

VN to change.

In Fig. 2, since previous decisions affect the later, different

decision paths at the same depth may not decimate the same

VN. Moreover, BP iterations are reused as much as possible.

For example, the two neighboring tree branches share the first

few decisions, and each side branch has some overlap with

the main branch. In this case, at the splitting step, the status

snapshot is saved and the selected VN is decimated to the

favored value first. After this direction is finished, the status

snapshot is reloaded and decimation in the other direction is

performed. As only the CN/VN status is saved but not the

BP messages for the unfavored direction, the message-passing

network has to be re-initialized.

We target an Intel i9-13900K CPU that has 32 logical cores

during development. For the multi-thread implementation,

apart from the main thread associated to the main branch,

we have tree threads that each handle two neighboring tree

branches, and side branches each handling a side branch.

Each thread is set affinity to one CPU logical core. This

assignment enables us to use 32 threads for the N = 288 code.

Tree threads run independently from the main thread after

copying the column-permuted PCM, starting from the root of

the decision tree. Side threads copy columns and wait until the

main thread writes to it the status snapshot. It is also possible

to decouple the side threads from the main thread. They

can run from the root and compute the overlapping decision

paths themselves due to the deterministic nature of guided

decimation. By this means, inter-core communication can also

be minimized. However, we did not follow this approach due

to the P-core and E-core differences in this Intel CPU. Side

threads are assigned to the slower E-cores for the N = 288
codes.

The single-thread version is more straightforward. It first

proceeds with the main branch and saves the snapshots along

the way. After completion of the main branch, it reloads

each snapshot and runs BP, again saving the snapshot if

guessing is still allowed. It terminates when all the snapshots

are consumed. Since the BP messages are not retained by

reloading snapshots, the single-thread version re-initializes BP

more often in the guessing tree region. Moreover, some early-

stop heuristics are implemented for the single-thread version,

improving amortized runtime but causing further differences

to the multi-thread version.

APPENDIX D

STIM CIRCUIT IMPLEMENTATION

Our Stim [27] circuit implementation nearly follows the

surface code memory experiments. When doing the memory

experiment in the Z or X basis, all the data qubits are

initialized in |0〉 or |+〉 state. If R rounds are specified by

the user, including the noisy encoding round, the noisy SM

circuit is repeated R times. Finally, a noiseless round of SM

is added to capture the final error. We implement this step by

measuring all the data qubits in the Z or X basis and doing

classical syndrome calculations afterward. Different from the

surface code implementation, we do not add flips before this

final data qubit measurement. Another difference is that we

always use RX or MRX, instead of applying noisy Hardamard

gates before and after R or MR gates, as it is the practice in

[17]. The above differences in circuit creation do not cause

changes in the parity-check matrix of the circuit code when

X and Z are decoded separately. They only affect the prior

probabilities, and GDG is robust to these changes. The logical

error rate per round pL is calculated from the total logical

error rate PL,R as pL = 1− (1− PL,R)
1/R.

It is important to mention that we always require both Eq.

(8) and Eq. (9) to hold for the decoding to be successful.

This stricter requirement may lead to a slight overestimation

of the logical error rate for GDG due to potential syndrome

inconsistency in Eq. (8). OSD remains unaffected because it

has no consistency issue thanks to Gaussian elimination. To

see why overestimation can happen for GDG, assume GDG

fails Eq. (8) because its estimated fault pattern and the actual

one differ only by some measurement faults. Measurement

faults have no end effect, that is to say, the estimated fault

propagates to the same final error string as the actual fault,

which of course introduces no logical error. Note that in this

case, the estimated fault should satisfy Eq. (9).

However, we believe the overestimation of GDG logical

error is negligible, because it is very rare (less than one percent

of the total failure cases) that GDG gives an estimation that

fails Eq. (8) but satisfies Eq. (9). Even when it happens, OSD-

CS10 usually induces a logical error when decoding them,



therefore we tend to believe these rare cases are inherently

not decodable.

A more formal definition of the two logical error criteria and

the relation between them is as follows. Consider a memory

experiment in the Z basis. Call the actual final X-type error

string x, which is captured by the noiseless Z-type checks HZ

added to the end. The estimated final X-type error x̂ does not

introduce a logical error if and only if x̂ and x differ by an X-

type stabilizer. This criterion can be written as H
⊥
X(x+ x̂) =

0. The row span of H
⊥
X contains HZ , and H

⊥
X\HZ is the

logical Z operator LZ . Therefore, both HZ(x + x̂) = 0 and

LZ(x + x̂) = 0 need to be satisfied. The second equation is

just a rephrased version of Eq. (9), but Eq. (8) strictly implies

the first equation.

Another subtle thing is that, in Fig. 1, the top left H0

is actually H
′
0 due to the encoding round difference. The

columns of H′0 are contained in H0 and H
′
0 has shape w×2w.

The 2w columns come from fault equivalently happening

individually on L- or R-data before all CNOT gates in Fig.

7 of [7]. In later SM round, H0 has w more columns than

H
′
0, they originate from the fault happening just before the

block CNOT gates in round 6 on X-checks in Fig. 7 of [7].

One can see this kind of fault propagates to two faults on L-

data qubits before the next cycle starts, and cannot be caught

by Z-check measurements in the current cycle.

APPENDIX E

MISCELLANEOUS DISCUSSIONS

For the J288, 12, 18K code, a noticeable performance degra-

dation between our global decoding curve in Fig. 3 and Fig.

3 from [7] is observed. This is possibly due to the insufficient

OSD-CS order used by us. Furthermore, in Fig. 3, the (3,1)-

sliding window decoder also has a larger factor of performance

loss compared to shorter block-length codes, since the window

size 3 is too small compared to the code distance 18. In Fig.

7, one can see that a (4,1)-sliding window decoder manages

to bridge the performance gap by half in logarithmic scales.

For this high physical error rate 0.005, the GDG on the last

window is replaced by BP+OSD-CS10 in both sliding window

decoders, which gives roughly a factor of two performance

improvement when SM is repeated for 3 rounds. However,

the improvement gradually decreases to almost no effect for

18 rounds.

Throughout our simulation, we find that GDG outperforms

BP+OSD-CS10 on all the previous windows, in terms of

path metric, but cannot guarantee absolute convergence in the

last window where noiseless SM is present, leading to slight

performance loss. Replacing GDG with BP+OSD-CS10 in the

last window usually gives a little performance boost (less than

20 percent) for the N ≤ 144 codes, but this boost gets smaller

when more SM rounds are used. We did not try to improve

GDG on the last window in this work, but it is certainly worth

investigating for future work.

Another possible improvement to GDG is automorphism

ensemble decoding. In Appendix B, when decoding the 216

weight-two syndrome codewords, whose minimum weight

solution consists of 14 VNs, GDG only succeeds in two of

them. In data qubit decoding, the Tanner graph is highly

symmetric and a lot of VNs have the same history, a better

heuristic for guided decimation should be developed to break

ties.
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Fig. 7. Logical error rate per round when changing the number of syndrome
measurement rounds for the J288, 12, 18K code at physical error rate 0.005.
BP+OSD-CS10 is used for global decoding. For the (3,1) or (4,1) sliding-
window decoding, GDG is used on all but the last window and BP+OSD-
CS10 on the last window.


	Introduction
	Circuit-level noise decoding
	Decoding
	Circuit-level noise

	Sliding Window Decoding
	Guided Decimation Guessing Decoding
	History-based decision
	Guessing
	Simulation
	Do not waste guesses

	Conclusion
	References
	Appendix A: Data qubit noise
	Appendix B: Single shot syndrome noise
	Appendix C: GDG implementation
	Appendix D: Stim circuit implementation
	Appendix E: Miscellaneous discussions

