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Abstract. This paper introduces a novel approach to temporal action
localization (TAL) in few-shot learning. Our work addresses the inherent
limitations of conventional single-prompt learning methods that often
lead to overfitting due to the inability to generalize across varying con-
texts in real-world videos. Recognizing the diversity of camera views,
backgrounds, and objects in videos, we propose a multi-prompt learning
framework enhanced with optimal transport. This design allows the model
to learn a set of diverse prompts for each action, capturing general charac-
teristics more effectively and distributing the representation to mitigate
the risk of overfitting. Furthermore, by employing optimal transport the-
ory, we efficiently align these prompts with action features, optimizing for
a comprehensive representation that adapts to the multifaceted nature
of video data. Our experiments demonstrate significant improvements
in action localization accuracy and robustness in few-shot settings on
the standard challenging datasets of THUMOS-14 and EpicKitchens100,
highlighting the efficacy of our multi-prompt optimal transport approach
in overcoming the challenges of conventional few-shot TAL methods.

Keywords: Temporal Action Localization · Few Shot Learning · Video
Understanding

1 Introduction

Temporal Action Localization (TAL) detects the onset and offset of actions and
their class labels in untrimmed and unconstrained videos. The necessity for
few-shot learning methods in temporal action localization (TAL) stems from
the inherent challenge of annotating video data. Unlike static images, videos
encompass temporal dynamics, requiring annotations for the presence of an action
and its precise timing within the video stream. This requirement significantly
increases the annotation burden, as annotators must watch videos in their entirety
to accurately label action instances. Given the vast amount of video content
generated daily and the wide variety of actions that can be performed, obtaining
a comprehensive, annotated dataset for training traditional machine learning
models is both time-consuming and costly. Few-shot learning emerges as a pivotal
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solution to this challenge by aiming to generalize from a limited number of
examples, thus reducing this dependency. However, because of the diversity of
video content with respect to camera angles, temporal speeds, and locations, it’s
hard to design a system that can generalize to multiple views for classification
while remaining discriminative in identifying the start and end of actions.

The moment a  golfer swings and hits a ball in front of a fairway with trees.

Fig. 1: Existing methods learn a single prompt to identify the location and class of a
given action, but multiple complimentary views can help with both class generalization
and temporal discrimination within the video. Green frames indicate the foreground
features.

Current approaches to few-shot learning for temporal action localization take
a meta-learning approach [34, 37], where each test video is aligned to a small
subset of the training data in many ‘episodes.’ These methods require learning
a model from initialization, with no priors, consuming large amounts of memory
and compute. Adapting a pre-trained image encoder from a large-scale vision-
language pre-trained (VLP) model such as CLIP [38] and Align [27] is one
conventional paradigm for training. However, these networks are prone to over-
fitting in the few-shot scenario, where we have as few as five samples per a class
to learn from. Furthermore, adapting image CLIP encoders to video ignores the
rich temporal dynamics that can offer vital clues for classification.

A recent training paradigm, prompt learning, has been used to reduce the number
of trainable parameters, where all parameters of the model are fixed, and a
learnable context vector is added to the prompt to improve the alignment between
the prompt and the image features. [8,15,60,61]. However, as demonstrated in [8],
single prompt learning methods will optimize towards the mean of all features in
the image. As previously stated, in a temporal action localization setting, we need
to determine the discriminative boundaries of an action. This means prompts
will likely have high cosine similarity over a wide standard deviation of temporal
features, leading to poor action boundaries. Instead, it would be beneficial to
consider multiple prompts for each action, which could encompass many views
over the video. For example, in Fig. 1, we show an illustrative comparison of a
handcrafted prompt, which will align with many frames in the video segment,



PLOT-TAL 3

and a collection of refined learnable context prompts that, when combined, can
learn more discriminative features.

To achieve this, we present a prompt-learning framework with optimal transport
(OT). OT is chosen as a learning strategy in few-shot temporal action localization
because it effectively aligns distributions, leverages the geometric structure of
the embedding space, handles variability in action characteristics, and offers
robustness against noise and outliers. Additionally, OT’s ability to formulate
a transport plan adapts to the distributional discrepancies between the visual
and textual modalities improving generalization over multiple temporal speeds
and contexts. Furthermore, the fine-grained matching facilitated by OT ensures
that the model can accurately identify and classify actions based on nuanced
differences in visual features while enhancing the model’s robustness to variations
in action appearance, execution speed, and contextual settings.

Our contributions are as follows.

– We introduce a new few-shot prompt-learning methodology for Temporal
Action Localization that removes the requirement for extensive episodic meta-
training.

– We demonstrate the effectiveness of optimizing multiple views to improve
discriminative boundaries in the action localization task.

– We present an efficient method of optimizing the transport maps between
multiple temporal views and prompts via a temporal feature pyramid to
account for various temporal speeds and action scales.

Through this approach, we aim to significantly reduce the barrier to entry for TAL
applications, making it more feasible to apply these technologies to a broader
range of domains and datasets with limited annotations.

2 Related Work

2.1 Temporal Action Localization (TAL)

Methods in TAL can be separated into single- and two-stage. Where two-stage
methods generate a large number of proposal segments which are then passed to
a classification head [5,9,17,17,21,22,28,30,31,31,33,59]. These methods include
the use of graph neural networks [1, 51, 51, 57] and more recently, transform-
ers [7,42,48]. Recent progress in single-stage TAL has shown improvements in ac-
curacy and efficiency over two-stage methods, combining both action proposal and
classification in a single forward pass. Works inspired by object detection [32,39],
saliency detection [29], and hierarchical CNN’s [29, 54, 55] all combine proposal
and classification. Current SOTA methods in TAL utilize transformer-based [45]
feature pyramid networks (FPN’s) [11,40,49,58], which combine multi-resolution
transformer features with classification and regression heads.
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2.2 Prompt Learning

Prompt learning is a methodology that introduces learnable context prompts
to enhance generalization and robustness in various visual understanding tasks.
Initially introduced in few-shot image recognition by CoOP [61] and later ex-
panded upon by CoCoOp [62], prompt learning has demonstrated its efficacy in
improving open-world visual understanding. This approach has also found appli-
cations in action recognition [24] and video-to-text alignment [27], facilitating
tasks such as video-question answering. While the adaptation of visual-language
models for video has predominantly focused on video retrieval [2,15,16,19], there
have been very few works exploring how to leverage VIL models for temporal
action localization efficiently. In [49], the authors use prompt learning for several
video tasks, including temporal activity localization, but in a fully supervised
setting. Also, in [34,35], the authors use learnable prompts as part of a masked
transformer network for classifying video region proposals.

2.3 Few Shot Learning for Action Localization

In [52], the authors introduce few-shot action-class localization in time, where a
few (or at least one) positive labeled and several negative labeled videos steer the
localization via an end-to-end meta-learning strategy. The strategy uses sliding
windows to swipe over the untrimmed query video to generate fixed boundary
proposals. In [50], the authors temporally localize an action from a few positive
and negative labeled videos. They adopt a regional proposal network to produce
proposals with flexible boundaries. In [36] and [49], the authors propose the
challenge of zero-shot temporal action localization. However, these methods use
external class scores from Untrimmed Net [47] for labeling proposals, so it is hard
to evaluate their true potential in few-shot cases. In [34], the authors introduce
a few-shot prompt meta-learning using additional multi-modal learnable context
prompts with a transformer architecture. However, they train and evaluate on a 5-
way / 5-shot meta-learning strategy and also use score fusion for the classification
results.

2.4 Optimal Transport

The Optimal Transport (OT) problem, rooted in the work of Gaspard Monge in
the 18th century [46], seeks the most cost-efficient way of transporting mass from
one distribution to another. This problem has found profound applications in
various fields, including economics [20], fluid dynamics [10], and, more recently,
machine learning and computer vision [44].

Despite its conceptual appeal, the OT problem’s computational expense and sen-
sitivity to outliers limited its direct applicability, especially in high-dimensional
spaces common in machine learning and computer vision, until entropy regular-
ization to the OT problem [12]. This regularization term leads to a problem
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that can be efficiently solved using iterative scaling algorithms, notably Regu-
larization. Regularization yields a unique, stable solution and enables leveraging
parallel computing architectures, dramatically reducing computation time [3,13].
In [53], the authors employ optimal transport for efficient attention assignment
between optical flow, and RGB features to learn a structure matrix that captures
dependencies among modalities in each frame. In [8], the authors demonstrated a
novel application of optimal transport to align multiple prompts to feature maps
for few-shot image classification. The paper proposed formulating the local visual
features and multiple prompts as the samplings of two discreet distributions and
using OT to encourage fine-grained cross-modal alignment. The work extracts
feature maps as visual representations using the CLIP multi-head self-attention
layer outputs. In this work, we assess the feasibility of applying a similar method
to the task of temporal activity localization, where we can formulate the optimal
transport between temporal features and multiple prompts as the sampling of
two discrete distributions.

🔥
🔥 🔥

❄

Fig. 2: An overview of the approach. A.) We sample T overlapping segments of videos
V. B.) For each class label K, we randomly initialize N learnable vectors concatenated
with the class label. C.) Video features are extracted via a pre-trained 3D CNN encoder
(I3D ) while N prompts for each class k are also extracted via the pre-trained CLIP
text encoder. D.) We temporally downsample the features using max-pooling. E.) We
search the optimal transport plan between the N prompt features and video segments at
each temporal level. Following this stage, we sum all N vectors for each K. F.) At each
temporal level L, we compute the cosine similarity between each prompt vector Pk and
each video segment xi and then apply a threshold to retrieve action candidates. These
candidates are passed to the regression head, which minimizes the distance between
the start and end actions and each embedding. Only components with the fire symbol
are trained, and all others are frozen.
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3 Method

We propose a novel framework for Temporal Action Localization (TAL) in
untrimmed videos. Our approach integrates pre-trained feature extraction, adap-
tive prompt learning, and efficient feature-prompt alignment via the Sinkhorn
algorithm. An overview of the method is shown in Fig 2.

3.1 Problem Definition

In addressing few-shot TAL, our framework aims to learn a generalizable represen-
tation for each action instance tuple, (si, ei, ai), where si represents the starting
time or onset of the action instance, ei denotes the ending time or offset of the
action instance, and ai specifies the action category or label. We use minimal
annotated examples, optimizing for the accurate classification of action types
and precise localization of their temporal boundaries. Integrating pre-trained
feature extractors minimizes the model’s dependency on extensive training data,
aligning with the resource-intensive nature of video processing tasks.

Considering an untrimmed input video as V, we represent it as a set of feature
vectors tokenized as V = {x1, x2, . . . , xT }. Each xt corresponds to discrete time
steps, t = {1, 2, . . . , T}. Notably, the total duration T is not constant and may
differ across videos. For illustrative purposes, xt can be envisaged as a feature
vector extracted from a 3D convolutional network at a specific time t within the
video. The primary objective of TAL is to identify and label action instances
in the input video sequence V. These instances are collectively denoted as Y =
{y1, y2, . . . , yN}, where N signifies the total number of action instances in a given
video. This value can be variable across different videos.

The parameters must adhere to the conditions: si, ei ∈ {1, . . . , T}, ai ∈ {1, . . . , C}
(with C indicating the total number of predefined action categories), and si < ei,
which ensures the starting time precedes the ending time for every action instance.

In the few-shot setting, we aim to learn some general representation of each
action instance yi using only a limited number of annotations that we can later
classify the action onsets, offsets, and class labels of unseen videos. Since video
understanding tasks are typically resource and data-intensive, we also want to
minimize the number of trainable parameters in the model.

3.2 Feature Extraction and Representation

Given the untrimmed input video V, we extract a sequence of feature vectors
{x1, x2, . . . , xT } corresponding to each time step t, using a 3D convolutional
network. The extraction process is formalized as:

xt = fCNN(vt), t = 1, 2, . . . , T, (1)
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where vt denotes the input from the video at time t, and fCNN represents the
3D convolutional network function.

To further refine these features and incorporate contextual information, we apply
a 1D convolutional layer:

x′t = fconv(xt), t = 1, 2, . . . , T (2)

Where fconv denotes the convolutional operation which is designed to enhance
the local temporal feature representation as demonstrated in [41,43,58].

3.3 Adaptive Prompt Learning

To ensure we can align with multiple views in various temporal dimensions, we
introduce additional learnable prompts for each class in the few-shot training set.
For each action category k, we generate N prompts Pk = {Pk1, Pk2, . . . , PkN},
each consisting of the class label and nctx context vectors, encoded as:

Pki = fCLIP(labelk, ctxk1, . . . , ctxknctx), (3)

Where fCLIP signifies the encoding function from a pre-trained CLIP model,
integrating the semantic content of the action categories into the model.

3.4 Optimal Transport with Sinkhorn Algorithm

We aim to align each class’s N learnable prompts with the most similar video
features in cosine similarity. This is performed via optimal transport with the
Sinkhorn Algorithm [12] to ensure the method is tractable and efficient.

To align the refined video features {x′1, x′2, . . . , x′T } with the adaptive prompts
Pk for each action category k, we employ the Optimal Transport (OT) met-
ric as a critical tool. The OT metric quantifies the discrepancies between two
distributions, which, in our context, are the distributions of video features and
prompt embeddings. Formally, let us denote the distributions of video features
and prompts as:

U =

T∑
t=1

utδx′
t

and Vk =

N∑
i=1

vkiδPki
, (4)

where δx′
t

and δPki
represent Dirac delta functions centered at the video feature

x′t and prompt embedding Pki, respectively. The vectors u and vk are normal-
ized such that

∑T
t=1 ut = 1 and

∑N
i=1 vki = 1, ensuring they represent discrete

probability distributions.

The cost matrix C, with elements Cti, defines the cost of transporting mass from
video feature x′t to prompt embedding Pki. The cost is typically inversely related
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to the similarity between x′t and Pki, such as Cti = 1− sim(x′t, Pki). The goal of
OT is to find a transport plan T that minimizes the total transport cost:

dOT(U, Vk|C) = min
T

⟨T,C⟩, subject to T1N = u, T⊤1T = vk, T ∈ RT×N
+ .

(5)

Due to the computational intensity of solving this problem, we apply the Sinkhorn
Algorithm [12] with entropic regularization for efficient optimization. The regular-
ization introduces an entropy term h(T ) = −

∑
t,i Tti log Tti to the optimization

objective:

dOT,λ(U, Vk|C) = min
T

⟨T,C⟩ − λh(T ), subject to T1N = u, T⊤1T = vk. (6)

The Sinkhorn algorithm iteratively adjusts T to satisfy the constraints efficiently,
using updates based on matrix scaling operations. The iterative process converges
to an optimal transport plan T ∗, representing the optimal alignment between
video features and prompts. This alignment guides identifying and classifying
action instances by optimally matching video segments to their corresponding
semantic labels.

3.5 Temporal Pyramid and Feature Integration

Since actions can occur at a wide range of speeds and temporal intervals, we
utilize a temporal feature pyramid network [43] to optimize prompt alignments
over multiple temporal scales. To do so, we construct a temporal pyramid from
the refined features {x′1, x′2, . . . , x′T } by applying a max-pooling operation at each
level of the pyramid with a stride of 2, effectively halving the temporal dimension
at each step:

X ′
l = MaxPool(X ′

l−1), l = 2, . . . , L, (7)

where X ′
l represents the set of features at level l of the pyramid. This hierarchical

structure is crucial for integrating temporal information across different scales,
enabling the nuanced capture of action dynamics from coarse to fine temporal
resolutions.

3.6 Multi-Resolution Temporal Alignment

For each level of the temporal pyramid, we employ the Optimal Transport (OT)
metric to align the video features at that scale, {x′1,l, x′2,l, . . . , x′T,l}, with the
adaptive prompts Pk corresponding to each action category k. This alignment
is performed separately at each level l of the feature pyramid, allowing for a
multi-scale analysis sensitive to the temporal granularity of actions.

Incorporating the notion of pyramid levels into the OT framework allows for
a hierarchical approach to feature matching, accommodating various scales of
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feature distribution alignment. At each pyramid level l, we define the OT problem
as follows:

dOT,λ(Ul, Vk,l|Cl) = min
Tl

⟨Tl, Cl⟩ − λh(Tl), (8)

subject to Tl1N = ul, T
⊤
l 1T = vk,l, for each pyramid level l. Here, Cl represents

the cost matrix at level l, encapsulating the dissimilarity between the distribu-
tions of video features Ul and prompts Vk,l at this specific scale. This formulation
ensures that the transport plan Tl minimizes the cost of transporting the distribu-
tion Ul to Vk,l while conforming to the constraints that ensure the distributions’
masses are preserved.

We then adopt the same two-stage optimization process as proposed in [8]:

Inner Loop Within the inner loop, for each level l of the temporal pyramid, we
fix the feature sets Fl and prompt sets Gk,l, and minimize the OT distance to
optimally align Gk,l to Fl. The cost matrix Cl is computed to reflect the cosine
similarity between the features and prompts at that scale:

Cl = 1− F⊤
l Gk,l. (9)

This minimization results in an optimized transport plan T ∗
l and the correspond-

ing OT distance dOT,l(k).

Outer Loop In the outer loop, with the transport plans T ∗
l determined for

each level of the pyramid, we update the learnable vectors across all scales. This
holistic optimization ensures that our model can adaptively align video features
with textual prompts at varying temporal resolutions, enhancing its ability to
localize and classify actions within untrimmed videos accurately.

3.7 Decoder Architecture

Following the multi-scale alignment of video features with adaptive prompts
through the Optimal Transport framework, our decoder architecture is designed
to leverage these aligned features for sequence labeling and action boundary
detection. Unlike conventional CNN-based decoders, our approach utilizes the
optimally aligned video features across each scale of the temporal pyramid to
predict a sequence of action labels Ψ = {ψ̂1, ψ̂2, . . . , ψ̂T }.
For each temporal scale l, the decoder generates a probability distribution for
action classifications using a sigmoid activation function:

Cl = σ(x′t,l), (10)

where x′t,l denotes the aligned video feature at time t and scale l.
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Furthermore, to accurately predict the start and end times of actions, a lightweight
regression mechanism is employed:

Ol = ReLU(Wo · x′t,l), (11)

where Wo represents trainable weights for the regression task.

By integrating the optimally aligned features from multiple scales of the temporal
pyramid, the decoder architecture effectively enhances the model’s capability to
recognize and localize actions, considering the diverse temporal scales inherent
in video data. This multi-scale, feature-aligned approach ensures superior perfor-
mance in both action classification and localization tasks, addressing the chal-
lenges posed by the temporal variation and complexity of actions in untrimmed
video content.

3.8 Learning Objective

The learning objective aims to minimize the total loss, encompassing TAL’s
(Temporal Action Localization) classification and localization aspects. This is
achieved through a combination of Focal Loss for handling class imbalance in
action classification and DIoU Loss for improving the accuracy of action boundary
predictions:

Ltotal =

T∑
t=1

(
Lcls(ĉt, ct) + 1(ct>0)Lreg(ôst , ôet , ost , oet)

)
(12)

Where Lcls is the classification loss computed using Focal Loss, Lreg is the re-
gression loss computed using DIoU Loss, ĉt and ct represent the predicted and
true action categories, respectively, and ôst , ôet , ost , oet denote the predicted and
true start and end times of actions. The indicator function 1(ct>0) ensures that
regression loss is only applied to positive samples, i.e., time steps where an action
is present.

4 Evaluation

We evaluate our method against two standard benchmark datasets for Temporal
Activity Localization and report our results. Unless otherwise stated, we randomly
select five samples for each class in each dataset, train for 100 epochs, and evaluate
over the whole test set. In the few-shot setup, this is referred to as 5-shot, C-way.
In THUMOS’14 [23] this is 5-shot 200-way, and for EPIC-Kitchens [14] it is
5-shot 300-way for nouns and 5-shot 97-way for the verb partition.
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4.1 Datasets

THUMOS’ 14 The THUMOS’14 dataset [23] is a benchmark dataset for the
Temporal Action Localization (TAL) task, deriving from the THUMOS challenge.
It is specifically designed to evaluate the ability of algorithms to identify and
temporally localize actions within untrimmed videos accurately. The dataset fea-
tures 5600 temporally annotated actions over 200 untrimmed training videos and
213 untrimmed test videos. We extract overlapping segments from the training
videos to evaluate the dataset using the I3D network pretrained on Kinetics
400. The video consists of real-world videos with shot changes and diverse cam-
era and object views. For features we encode 16 frames per a time step with a
stride of 8 following exising TAL feature extraction setups [11,34,36,37,58]. The
3D CNN for THUMOS’14 features is Inception I3D [6] network pretrained on
Kinetics-400. [63]

EPIC-Kitchens 100 EPIC-Kitchens 100 [14] is an egocentric dataset containing
two tasks: noun localization (e.g., door) and verb localization (e.g., open the door).
It has 495 and 138 videos, with 67,217 and 9,668 action instances for training
and inference, respectively. The number of action classes for nouns and verbs is
300 and 97. We follow all other methods [11,30,43,57,58], and report the mean
average precision (mAP) at different intersections over union (IoU) thresholds
with the average mAP computed over [0.1:0.5:0.1]. We use the features provided
by existing works in TAL [30, 51, 58]. Features are extracted using a SlowFast
network [18] pre-trained on Kinetics-400 [63]. During extraction we use a 32-frame
input sequence with a stride of 16 to generate a set of 2304-D features.

4.2 Comparative Methods

To the best of our knowledge, no current methods approach the task of few-shot
temporal action localization with multiple prompt learning for each class. In [34],
the authors present a multi-modal setup with single prompt learning. However,
they train the network in a meta-learning setup, train and test on disjoint sets,
and use score fusion (combining scores from UntrimmedNet [47]). Therefore, we
assess our method’s effectiveness against SOTA prompt learning frameworks and
apply them to the task of TAL. First, for CoOP [61] we initialize 16 learnable
ctx tokens for each prompt. We also include two further baselines. Baseline I
removes the optimal transport component labeled section (e) in Fig. 2 by taking
the mean of the N learnable prompts to form one prompt for further processing
in section (f). We also apply a linear probe (Baseline II - LP) as outlined in [38]
and [8] replacing sections (e) and (f) with local self-attention and a CNN layer
directly to the pre-trained I3D embeddings.
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Table 1: Performance comparison of our proposed method PLOT-TAL on the THU-
MOS dataset against baselines.

Method mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 Avg (mAP)

Baseline I (avg) 37.3 32.93 26.88 18.17 8.83 24.82
Baseline II (lp) 51.98 46.5 36.79 25.62 14.66 35.11
CoOP 48.73 43.67 36.64 27.24 16.97 34.65
PLOT-TAL CLS 53.46 48.93 38.2 30.2 18.8 38.24
PLOT-TAL Verbose 56.42 50.54 42.48 32.35 21.17 40.59

4.3 Results

This section evaluates our approach against existing methods for both few-shot
temporal action localization and prompt learning. To compare with previous
works, we report the mean average precision (mAP) at various intersections
over union for all results. In Tab. 1, we show results for 5-shot 20-way TAL on
the THUMOS’14 dataset for our approach PLOT-TAL CLS. Adding additional
class prompts can improve performance over a single prompt by a large margin
(↑ 5.9). We also show how it’s possible to achieve higher accuracy by handcrafting
prompts (Verbose). In this setting, we use GPT-3.5 [4] to produce additional
descriptions of the actions that will replace the class label.

The Baseline I method represents performance when we add additional prompts
but exclude optimal transport, demonstrating how optimal transport is highly
effective at aligning the features (↑ 15.77). While Baseline II based on the
work of [38] and [8] has an average performance of 5% less than our method,
demonstrating the importance of the sections (e) and (f).

In Fig. 3, we demonstrate how the optimal transport improves performance at
higher IoU thresholds than single prompt or linear probe methods. At low IoU
thresholds, the predicted segment only needs to overlap with a small section
of the ground truth, meaning that single prompt methods and linear probes
achieve relatively good performance as they distribute the attention between
prompts and features across the temporal domain. However, as we increase the
IoU threshold, we can see that our PLOT-TAL method becomes more effective,
demonstrating the network’s higher discriminative ability.

In Tab 2, we show results on the EPIC Kitchens verb and noun partitions, showing
a small improvement over single prompt methods for the noun classes (↑ 1.19)
but achieve a larger performance boost for the verb classes (↑ 2.96).

This demonstrates the effectiveness of the additional prompts in discriminating
between temporal features, while for nouns, the features are primarily spatial
and can be localized well with a single prompt. In Tab. 3, we compare with other
SOTA methods for few-shot temporal action localization, which utilize meta-
learning and perform few-shot localization at a 5−shot, 5−way setting, whereas
our results are from the 5-shot, 20-way configuration. Not only is the 5-shot,
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Fig. 3: mAP over various IoU thresholds for the THUMOS’ 14 dataset. We show that
the additional prompts improve tray performance over a single learnable prompt, as in
CoOP.

Table 2: Performance comparison on EPIC-Kitchens dataset for noun and verb recog-
nition.

Epic-Kitchens Noun (mAP) Epic-Kitchens Verb (mAP)

Method 0.1 0.2 0.3 0.4 0.5 Avg 0.1 0.2 0.3 0.4 0.5 Avg

Baseline I 14.3 13.5 13.1 10.3 9.3 12.1 21.2 19.9 18.0 15.2 11.9 17.3
Baseline II 18.0 15.4 14.1 12.2 9.5 13.9 22.5 21.3 19.2 17.1 13.3 18.7
CoOp 16.1 15.0 13.8 11.8 9.5 13.3 18.5 17.6 16.3 14.6 12.5 15.9
PLOT-TAL cls 17.9 16.7 15.1 12.7 10.0 14.5 21.8 20.9 19.4 17.6 14.6 18.9

20-way few-shot setting more challenging, but PLOT-TAL also benefits from
being trained end-to-end without the requirement for pre-training and episodic
adaptive contrastive learning as in current meta-learning approaches.

In Tab. 4, we perform an ablation experiment on the number of learnable prompts
N . The results show the optimum number of prompts is N = 6, while with an
increased number of prompts, e.g., N = 10, we can achieve better results in the
more difficult IoU thresholds. This is due to the increased temporal discriminative
ability of the additional prompts.

4.4 Visualisation Results

In Fig. 4, we show the normalized transport cost for each frame and N embedding
for the class label ‘Cricket Shot’. This figure shows how each of the N prompts
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Table 3: Additional comparisons with existing Meta-Learning (ML), Prompt Learning
(PL), and End to End (E2E) methods for few-shot temporal action localization on the
THUMOS’14 dataset. ML results are not directly comparible due to different training
and testing partitions and experimental setups.

Method Approach Shot/Way Avg (mAP)

Common Action Localization [56] ML 5/5 22.8
MUPPET [34] ML + PL 5/5 24.9
Multi-Level Alignment [26] ML 5/5 31.8
Query Adaptive Transformer [37] ML 5/5 32.7

CoOP [62] E2E + PL 5/20 34.65
PLOT TAL CLS E2E + PL 5/20 38.24
PLOT-TAL Verbose E2E + PL 5/20 40.59

Fig. 4: The normalized transport cost of each N prompt for the class ‘Cricket Shot’
after training. Prompt one aligns with global information, while the other prompts
learn additional, complementary views. In the transport cost algorithm, a lower value
indicates closer alignment.
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Table 4: Ablation experiment varying the number of additional learnable prompts for
each class.

N prompts 0.3 0.4 0.5 0.6 0.7 avg

N=4 55.88 50.21 43.06 31.97 21.16 40.46
N=6 56.42 50.54 42.48 32.35 21.17 40.59
N=8 53.60 48.72 41.74 31.68 20.70 39.29
N=10 54.96 50.27 43.45 32.53 21.44 40.53
N=12 53.74 48.25 41.02 30.57 20.06 38.73
N=14 54.25 48.94 40.90 30.78 18.86 38.75
N=16 53.66 48.28 41.04 30.84 20.15 38.79

diverge and focus on different elements and views within the videos. For example,
we can see that N1 or Prompt 1 learns global information across all frames. This
shows how, in a single prompt framework, we may distribute alignment across
all frames and lose disciminative ability, since it learns global information over
the whole video. In the figure, we can note that Prompt 4 appears to learn
background information and is more closely aligned to frames where we can see
the stadium stands. Prompts 2 and 3, however, indicate a closer alignment with
objects related to the class of ‘cricket shot’, including when the cricket strip is
in the shot and there are people on the field.

4.5 Number of Learnable Context Tokens

Each prompt has several learnable context tokens as described in [60] and [49].
These context tokens are randomly initialized so that for the class ‘Basketball
Dunk’ with 4 ctx tokens, the full prompt will be

P = {X,X,X,X,Basketball Dunk} (13)

In Fig. 5 and Tab. 5, we show the effect of varying the number of learnable ctx
tokens appended to each prompt. For each N prompt, nctx tokens are randomly
initialized. The figure shows that the optimum number of tokens is between 10
and 20. As per the existing literature [60,61], we select 16 tokens for all methods
unless otherwise stated and train and test using the 5-shot, 20-way setup as
described in the paper.

4.6 Visual Feature Embeddings

To evaluate the effectiveness of adding motion information via optical flow, we
also performed additional experiments using only the RGB embeddings, the
optical flow embeddings, and RGB CLIP embeddings from a ViT-B-16 encoder,
with results shown in Tab. 6. The results show that the CLIP embeddings
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Fig. 5: mAP over various IoU thresholds for the THUMOS’ 14 dataset with variable
number of additional context tokens appended to each N prompt.

Table 5: Ablation experiment on the number of context tokens on the THUMOS’14
Dataset.

Ctx Tokens 0.3 0.4 0.5 0.6 0.7 avg
1 52.25 46.94 40.73 31.26 20.17 38.27
10 54.94 49.55 42.49 31.14 20.08 39.64
16 56.42 50.54 42.48 32.35 21.17 40.59
20 53.39 48.38 42.19 33.00 20.78 39.55
30 50.27 45.54 38.30 29.64 18.83 36.52
40 53.55 47.30 40.35 31.06 19.46 38.34
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perform better than the RGB embeddings from the I3D network ↑ 2.67. This is
because of the implicit alignment between the image and text encoder embeddings
before temporal convolution. However, when combined with optical flow, the
performance is improved by a large margin of ↑ 7.56, demonstrating the improved
classification ability of the network when we add additional temporal information
via optical flow.

Table 6: Comparison of mAP scores for various visual input embeddings on the
THUMOS’14 dataset.

Embeddings 0.3 0.4 0.5 0.6 0.7 avg (mAP)
CLIP 46.99 42.09 34.26 25.34 15.82 32.90
RGB 43.13 38.76 31.71 23.15 14.46 30.24
Optical Flow 26.03 23.10 19.54 14.07 8.93 18.33
RGB + Flow 55.88 50.21 43.06 31.97 21.16 40.46

4.7 Prompt Engineering

We demonstrate how including crafted prompts can help to boost performance. In
Tab. 7, we show the prompts generated by GPT 3.5 with the prompt - ‘Generate
prompts for a temporal action localization task for the following class IDs. The
prompts should include objects, the action, and some indication of the moment
when the action occurs. We anticipate that further prompt engineering strategies
will yield improved results.

5 Implementation Details

Here we share additional information about the implementation of the model
architecture.

5.1 Feature Extraction

Features are extracted from a pre-trained I3D network [63] trained on the Kinetics-
600 dataset [25,63] in a supervised setting. We extract the optical flow and RGB
output embeddings, which are then concatenated to form a 2048×T embedding,
where T is the total number of video segments. Each video segment refers to 16
frames sampled at 30 FPS with a stride of 4 frames. This is the standard feature
extraction pipeline used in all previous TAL works [41,58]. To deal with variable
frame lengths T , we pad all samples to T = 2048, which accounts for the length
of all videos. During training, we include a mask to represent the zero-padded
regions and apply the mask after each operation.
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Table 7: GPT generated descriptions for PLOT-TAL Verbose on THUMOS’14 Dataset.

ID Description
7 The precise moment a baseball player winds up and releases the ball

towards the batter
9 The instant a basketball player leaps into the air to forcefully slam the

ball through the hoop
12 The exact moment the cue stick strikes the cue ball, initiating the

billiards shot
21 The moment a weightlifter hoists the barbell from the ground to over-

head in one fluid motion
22 The split second a diver leaps off the cliff edge, beginning their descent

into the water below
23 The moment a cricket bowler releases the ball towards the batsman

with a swift arm motion
24 The precise moment the batsman swings the bat to strike the cricket

ball
26 The instant a diver jumps off the board, tucking and twisting before

plunging into the pool
31 The moment a frisbee is caught by a leaping player, securing it firmly

in their hands
33 The exact moment a golfer swings the club, making contact with the

ball to send it flying
36 The moment an athlete spins and releases the hammer, propelling it

into the air
40 The split second an athlete takes off over the high jump bar, attempting

to clear it without touching
45 The precise moment the javelin is thrown, with the athlete’s arm ex-

tending forward in a powerful motion
51 The instant an athlete sprints and leaps into the air to cover the maxi-

mum distance before landing in the sand pit
68 The moment an athlete plants the pole in the box and vaults over the

bar, pushing themselves upwards
79 The exact moment the shot is put from the neck, using one hand, in a

pushing motion through the air
85 The moment a soccer player strikes the ball with their foot aiming to

score a penalty kick
92 The precise moment a tennis player swings their racket to strike the

incoming ball
93 The instant an athlete spins and releases the discus, hurling it into the

designated sector
97 The moment a volleyball player jumps and forcefully spikes the ball

over the net towards the opponent’s court
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5.2 Training

We train each model for 100 epochs, except for when we increase the number of
shots above 15, in which case we train for 200. We randomly initialize the ctx
embedding vectors and append them to the start of the prompt. All models are
trained with a batch size of 2 on a single NVIDIA RTX 3090 24GB GPU. The
memory required for training the model on THUMOS’14 with a batch size of 2
and when N = 4 is 5GB. We include a summary of the method in Algorithm 1.

Algorithm 1 Overview of TAL-PLOT method
Input: Untrimmed input video V
Output: Action instances Y = {y1, y2, . . . , yN}
1: Feature Extraction and Representation:
2: for t = 1 to T do
3: Extract feature vector xt = fCNN(vt) using a 3D CNN
4: Refine features x′

t = fconv(xt) with a 1D convolutional layer
5: end for
6: Adaptive Prompt Learning:
7: for each action category k do
8: Generate N prompts Pk = {Pk1, Pk2, . . . , PkN} using fCLIP

9: end for
10: Optimal Transport with Sinkhorn Algorithm:
11: for each action category k do
12: Align features {x′

1, . . . , x
′
T } with prompts Pk using OT

13: end for
14: Temporal Pyramid and Feature Integration:
15: Construct temporal feature pyramid X ′

l with max-pooling
16: Multi-Resolution Temporal Alignment:
17: for l = 1 to L do
18: Align features at level l of the pyramid with Pk

19: end for
20: Decoder Architecture:
21: Use aligned features to predict action labels Ψ and boundaries Ol

22: Learning Objective:
23: Minimize total loss Ltotal with Focal Loss and DIoU Loss
24: return Y

5.3 Optimal Transport

As discussed in the main paper. The optimal transport is optimized in a two-stage
process as proposed in [8] where we find the transport cost between the video
features and prompts in the inner loop. After converging the Sinkhorn algorithm,
we use the backward pass to update the learnable prompts. For the parameters,
we follow the setup in [8] where δ = 0.01, λ = 0.1, and we perform 100 iterations
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within the inner loop. We generate results over 4 random seeds and report the
average. Further details are provided in Algorithm 2.

Algorithm 2 Optimal Transport Sinkhorn Algorithm for Few-Shot TAL
Input: Untrimmed input video V, pretrained model features fCNN, number of prompts

N , entropy parameter λ, maximum number of iterations Tin, Tout

Output: Optimized prompt parameters {ωn}Nn=1

1: Initialize prompt parameters {ωn}Nn=1

2: for tout = 1 to Tout do
3: Obtain a visual feature set F ∈ RM×C with the visual encoder fCNN(xt)
4: Generate prompt feature set Gk ∈ RN×C for each class with textual encoder

g(labelk, ctxk1, . . . , ctxknctx)
5: Calculate the cost matrix Ck = 1− F⊤Gk for each class
6: Calculate the OT distance with an inner loop:
7: Initialize v(0) = 1, δ = 0.1,∆v = ∞
8: for tin = 1 to Tin do
9: Update u(tin) = u/(exp(−C/λ)v(tin−1))

10: Update v(tin) = v/(exp(−C/λ)⊤u(tin))
11: Update ∆v =

∑
|v(tin) − v(tin−1)|/N

12: if ∆v < δ then
13: Break
14: end if
15: end for
16: Obtain optimal transport plan T ∗

k = diag(u(t)) exp(−Ck/λ)diag(v(t))
17: Calculate the OT distance dOT(k) = ⟨T ∗

k , Ck⟩
18: Calculate the classification probability pOT(y = k|x) with the OT distance
19: Update the parameters of prompts {ωn}Nn=1 with cross-entropy loss LCE

20: end for
21: return Optimized prompt parameters {ωn}Nn=1

6 Limitations

Several trade-offs must be considered when implementing optimal transport in
this model architecture. Introducing N prompts for each class, k leads to more
trainable parameters than single prompt training methods such as CoOP. The
model’s training and inference time is also increased linearly with the number
of prompts added. The effectiveness of verbose prompts and additional prompt
engineering could yield improved results. Optimising these components is left to
future work.
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7 Conclusion

This paper demonstrates a novel application of Optimal Transport to few-shot
temporal action localization (FS-TAL). Our results show the effectiveness of
aligning multiple prompts during training over several temporal resolutions. This
performance increase is due to the increase in views (via multiple prompts) and
the discriminate alignment via optimal transport, thus improving performance
over single prompt methods.
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