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Abstract

Retrieval Augmented Generation (RAG) is emerging as
a flexible and robust technique to adapt models to private
users data without training, to handle credit attribution, and
to allow efficient machine unlearning at scale. However,
RAG techniques for image generation may lead to parts of
the retrieved samples being copied in the model’s output. To
reduce risks of leaking private information contained in the
retrieved set, we introduce Copy-Protected generation with
Retrieval (CPR), a new method for RAG with strong copy-
right protection guarantees in a mixed-private setting for
diffusion models. CPR allows to condition the output of dif-
fusion models on a set of retrieved images, while also guar-
anteeing that unique identifiable information about those
example is not exposed in the generated outputs. In partic-
ular, it does so by sampling from a mixture of public (safe)
distribution and private (user) distribution by merging their
diffusion scores at inference. We prove that CPR satisfies
Near Access Freeness (NAF) which bounds the amount of
information an attacker may be able to extract from the
generated images. We provide two algorithms for copy-
right protection, CPR-KL and CPR-Choose. Unlike pre-
viously proposed rejection-sampling-based NAF methods,
our methods enable efficient copyright-protected sampling
with a single run of backward diffusion. We show that our
method can be applied to any pre-trained conditional diffu-
sion model, such as Stable Diffusion or unCLIP. In partic-
ular, we empirically show that applying CPR on top of un-
CLIP improves quality and text-to-image alignment of the
generated results (81.4 to 83.17 on TIFA benchmark), while
enabling credit attribution, copy-right protection, and de-
terministic, constant time, unlearning.

1. Introduction
Foundation model users may need to adapt large-scale Dif-
fusion Models to their use cases, like personalization, edit-
ing, content creation etc. However, fine-tuning the model
on the user data is often not an option. This is in part due to
the steep cost of fine-tuning models, but also because user

data is a mutable entity: new data is constantly added, and
low-quality data may often be filtered out. Moreover, data
owners may, at any point, change their mind and demand
that their data be removed.

Retrieval Augmented Generation (RAG) has emerged as
a promising method to handle these situations. Rather than
using the user data to fine-tune the model, supporting sam-
ples are retrieved from it at inference time to guide the gen-
eration of new samples. Data may be easily added or re-
moved from the retrieval data store without changes to the
model, and users may access different subsets of the data
based on their access-right. However, RAG methods are
double edged, direct access to retrieved reference images
often significantly improves the quality of generated sam-
ples but as we depict in Fig. 1, RAG models are prone
to copy information from the retrieved examples into the
model output, potentially resulting in significant leak of pri-
vate information. We formalize this observation in Sec. 5
and we show that applying RAG on top of a public model,
while retrieving private user data at inference time, cannot
satisfy even the weaker notion of privacy.

To remedy this, we introduce Copy-Protected Genera-
tion with Retrieval (CPR). CPR retrieves multiple private
examples from the private user data pool. Information from
all these samples is combined to generate a “private” diffu-
sion flow which uses common information of those samples
while discarding any unique and identifiable information.
The resulting private flow is then optimally combined with
the “public” flow generated by the base model to generate
new outputs which still benefit from the retrieved samples,
but minimize the risk of information leak.

In particular, we show that our method satisfies the re-
cently proposed notion of copyright protection using Near
Access Freeness (NAF) [62], a relaxation of differential pri-
vacy aimed at protecting specific attribute of the training
data. Differently from previously proposed methods like
[62] that realize NAF with a computationally expensive re-
jection sampling method, CPR does so by construction dur-
ing the generation. Hence making our method significantly
faster than the previous baselines and while also keeping
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Figure 1. RAG vs CPR image generation. Images generated using the given prompt for a fixed random seed using different methods.
Safe Model: Pre-trained model with no access to the retrievable data store, Retrieval-Score: Image generated using Eq. (7), Retrieval-Mix-
Score: Image generated using Eq. (8), CPR-KL, CPR-Min, CPR-Alt: Images generated using our algorithms in Algorithm 1 Sec. 5.2.1 and
Algorithm 2 Sec. 5.2.1. Images generated without CPR bear more resemblance to the retrieved image, compared to the CPR generated
images, which are different from the retrieved image, while preserving the underlying concept in the prompt (for example the astronaut
seems to be on Moon, Big Ben is more textured with different design).

inference cost deterministic.
Theoretically, we formally prove in Lemmas 1 and 2 that

CPR offers strong protection guarantees by ensuring that
the generated samples contain at most k-bits of unique in-
formation about retrieved samples, where k can be tuned
by the user as required by the application. Empirically, we
show that CPR can use private data to improve quality of the
generated images (81.4 → 83.17 TIFA score) while main-
taining privacy guarantees on the retrievable data.

The rest of the paper is organized as follows. In Sec. 2
we provide a study of the relevant related works in RAG and
privacy. In Sec. 3 we define the necessary notations, and in
Sec. 4 show how to perform RAG with pre-trained text-to-
image diffusion models by formulating inference over mix-
ture of public-private distribution. In Sec. 5 we provide our
CPR algorithm, along with its theoretical guarantees, pro-
vide empirical evaluation of our method in Sec. 6, followed
by some discussion in Sec. 7.

2. Related Works

Retrieval Augmented Generation Retrival Augmented
Generation (RAG) methods have been successfully applied
to large language models (LLMs) [24, 31, 42, 45, 54]. RAG
has been shown to outperform even LLMs trained jointly on
the training set and the retrievable data pool. RAG have also

been explored for image synthesis [2, 7, 9, 50, 53, 67, 69].
However, rather than reusing existing models, current meth-
ods require training of retrieval-specific architectures which
— unlike the standard text-to-image diffusion models [46,
47, 49, 68] — can be prompted with several retrieved im-
ages along with conditional information, such as text, as
inputs. Instead, we explore RAG using more generic pre-
trained text-to-image diffusion models. [2, 50, 69] train a
diffusion-based image retrieval model that can be prompted
with latent image embeddings, while [9, 67] use autoregres-
sive generative models inspired from LLMs.

Image Manipulation Several recent works [4, 18, 25, 35,
40, 41, 51, 63] have provided methods for image manipu-
lation, editing by either fine-tuning or changing the cross-
attention values at inference. With an appropriate retrieval
function, and database such methods can be used to per-
form retrieval augmented generation by merging diffusion
scores [12, 23, 38]. However, the manipulation methods
significantly lower inference speed. Instead, we opt to use
the unCLIP model [47] to generate a backward flow us-
ing the retrieved images, and merge it with the flow gen-
erated by a base text-to-image diffusion model at inference
[12, 23, 38, 49].

Privacy Recent works [5, 6, 56, 57] have shown that such



models are able to memorize their training data. This raises
several privacy challenges, including:

Unlearning: Machine unlearning [3, 20] enables users
to delete their data from the weights of trained models
[17, 43]. [3, 14, 19, 23, 34, 39] provide training methods
which makes unlearning efficient, for example by break-
ing the dataset into multiple shards and training separate
models on each, followed by ensembling at inference. De-
spite their improved privacy utility trade-offs compared to
a single model, such approaches still require frequent re-
training/fine-tuning. On the other hand, we propose split-
ting the training dataset into a core safe dataset [21] used to
train a core model, and a user owned private data store used
to retrieve samples. This allow instantaneous forgetting of
any private sample without having to retrain the model. This
strategy also improve performance (alignment), and enables
easy continual learning by simply adding new data to the
data store. Moreover, privacy of data which are never re-
trieved is completely preserved, unlike unlearning or dif-
ferential privacy [15, 22] methods which mix information
about the entire dataset in the weights.

Copyright Protection: Memorization in foundation mod-
els also increases the risk of copying, style mimicry and
copyright [5, 6, 52] at inference. [62] proposed a definition
for copying in generative models using near access free-
ness (NAF), and provided the CP-∆ algorithm for copy-
protected generation. CP-∆ uses two generative models,
trained on two disjoint splits of the data, and then at in-
ference samples from the product and the minimum of the
two distributions. However, using it directly out-of-the-box
for diffusion models is challenging. Instead, they propose
another algorithm, CP-k, based on rejection sampling. Dif-
fusion models however tend to have slow inference speed,
and adding rejection sampling further aggravates the speed
problem. To address this, we introduce CPR, which pro-
vides a method to sample using CP-∆ (satisfies NAF) in a
single run, without the need for rejection sampling.

3. Preliminaries

Let p0(x0) be a data distribution over images, which we
seek to model using a diffusion model [27, 58, 60]. Score
based diffusion models models [60] define a (variance pre-
serving) forward flow through a SDE, which transforms the
distribution p0(x0) at time t = 0 in a reference distribution
p1(x1) = N(0, I) at time t = 1:

dxt = −1

2
βtxtdt+

√
βtdωt (1)

where xt is the diffused input at time t, dωt is a standard
Wiener process, and βt are time varying coefficients (in
practice implemented through linear or cosine scheduling),
which determine the transition kernel and amount of noise

added over time. The intermediate result pt(xt) of the diffu-
sion process at time t equivalently expressed as the result of
applying a Gaussian kernel pt(xt|x0) = N (xt; γtxo, σ

2
t I)

to p0(x0), resulting in pt(xt) =
∫
x0

pt(xt|x0)p0(x0)dx0,

where γt = exp(− 1
2 ·

∫ t

0
βtdt) and σ2

t = 1− γ2
t .

The forward process in Eq. (1) can be inverted through a
corresponding backward process [37, 60]. In particular, this
process can be used to generate samples of p0(x0) starting
from a sample of p1(x1) = N(0, I):

dxt =
(
− 1

2
βtxt −∇xt

log pt(xt)
)
dt+

√
βtdωt (2)

where ∇xt log pt(xt) is the score function of data distribu-
tion at t. Efficiently computing the score function is dif-
ficult. Instead, it can be approximated ∇xt

log pt(xt) ≈
sθ(xt, t) using a deep network sθ(xt, t), i.e., a diffusion
model. In practice, diffusion models are often trained to
take additional inputs sθ(xt, t, c) in order to model a condi-
tional distribution p0(x0|c), where the conditioning c pro-
vides additional information about the sample to generate,
such as textual prompts [11, 26]. Given samples of the joint
distribution p0(x0, c), a diffusion model sθ(xt, t, c) can be
trained by minimizing the score-matching objective:

E(x0,c)∼p0(x0,c)Et

[
∥sθ(xt, t, c)−∇xt

log pt(xt|x0)∥
]

(3)

Directly generating samples using the backward flow mod-
eled by sθ(xt, t, c) can result into poor alignment [12, 27,
58]. This can be improved through classifier-free guidance
[26], which uses the modified score:

sθ(xt, t, ϕ) + λ(sθ(xt, t, c)− sθ(xt, t, ∅)),

where the hyper-parameter λ controls the guidance scale,
and ∅ denotes that no conditioning is fed to the model.

4. Mixed-Privacy RAG
In this section, we introduce a method for privacy-enabled
RAG that is based on the notion of mixed-privacy [21, 22].

Let D = {xi, ci}Ni=1 ∼ p(x, c) be a safe training
dataset — meaning that samples are considered public
in the differential-privacy sense (see [21, 22]). We as-
sume D is used to train a core public diffusion model
sθ(xt, t, c), that accepts c as conditioning information. We
shall also assume that c is the output of a CLIP encoder
c = CLIP(<prompt>) fed with either a text prompt or
an image prompt. Furthermore, let Dprivate = {xi, ci}Mi=1

be a private dataset which may require frequent unlearning,
or may require privacy or copyright protection. We shall
consider Dprivate as our data store for retrieval.

Retrieval At inference time, given a user prompt ctest
we retrieve a set of m relevant examples Dretr =



Number of Retrievals

1 3 5

Model
Safe 

Model
Retrieval

-Score

Retrieval
-Mix-
Score CPR-KL CPR-Min CPR-Alt

Retrieval
-Score

Retrieval
-Mix-
Score CPR-KL CPR-Min CPR-Alt

Retrieval
-Score

Retrieval
-Mix-
Score CPR-KL CPR-Min CPR-Alt

TIFA 
(COCO) 85.5 74.46 84.47 86.68 85.89 86.73 80.07 86.01 84.46 85.91 86.44 80.93 86.1 86.76 86.57 86.58
TIFA 
(Non-
COCO) 77.43 58.81 76.66 79.57 78.1 79.72 67.77 78.25 79.02 78.27 78.80 69.21 78.46 78.94 78.66 78.81
TIFA 
(Avg) 81.4 66.45 80.49 83.16 81.92 83.17 73.81 82.06 82.67 82.02 82.57 74.96 82.21 82.78 82.25 82.63

Table 1. Improved text-to-tmage alignment with retrieval: We compute the TIFA score [29] which measures the text-to-image alignment
on a set of prompts (Higher is better). We use a subset of MSCOCO [36] (2k images with high aesthetic score) as the private data store.
We show that simply using the retrieval-score (in Eq. (7)) is not enough to improve alignment, instead using the retrieval-mixture-score
(in Eq. (8)) is important to generate aligned and well composed images. CPR-KL, CPR-Min, CPR-Alt, meaningfully improve the text-to-
image alignment across different retrieval settings compared to the base model while protecting the private data store.

{(xi, ϕ(ci, ctest)}mi=1 ⊂ Dprivate to aid the generation pro-
cess. For simplicity, we simply retrieve the closest m sam-
ples based on L2-CLIP similarity score:

score = ∥ctest − ci∥+ ∥ctest − CLIP(xi)∥.

Note however that in Dretr we are modifying the prompt
of the retrieved samples through a function ϕ(ci, ctest) =
ci + ctest in order to align them better with the user prompt.

Mixture-of-Distribution Retrieved samples are used to im-
prove the generation of new samples. Formally, the goal of
CPR is to modify the sampling backward process in order
to generate samples from a weighted mixture of the distri-
bution of D and Dretr [12, 23, 38]:

p(x|c) = w0pD(x|c) + w1pDretr(x|c) (4)

where the weights w0 = λ and w1 = 1−λ allow the user to
control the contribution of the retrieved samples at inference
time through an hyperparameter 0 < λ < 1.

Mixture-of-Score To sample from this mixture distribution,
we need to compute its score function ∇ log pt(xt) at time
t (see eq. 2). From Sec. 3 we have:

pt(xt|c) =
∫

pt(xt|x0)
[
w0pD(x0|c) + w1pDretr(x0|c)

]
dx0

(5)

where pt(xt|x0) = N (xt; γtx0, σ
2
t I) is a Gaussian kernel.

The following proposition expresses the score of the mix-
ture as a function of the score of the individual components:

Proposition 1. Let pt(xt|c) be as in Eq. (5), then
∇xt log pt(xt|c) is given by:

∇xt
log pt = ŵt

0∇xt
log ptD(xt|c) + ŵt

1∇xt
log ptDretr

(xt|c)

where we have defined:

ŵt
0 = w0

ptD(xt|c)
pt(xt|c)

, ŵt
1 = w1

ptDretr
(xt|c)

pt(xt|c)
.

and ptD(xt|c) denotes the forward flow of the distribu-
tion pD(xt|c) at time t (and similarly for ptDretr

(xt|c)) and
pt(xt|c) = ptD(xt|c) + ptDretr

(xt|c).

While ŵt
0 and ŵt

1 could be computed exactly, we
find that treating them as fixed hyper-parameters simpli-
fies the implementation and performs well. The scores
∇xt

log pD(xt|c) can be approximated empirically by a dif-
fusion model sθ0(x, t, c) trained on D. However, we do not
have a model trained on the retrieved data Dretr to estimate
∇xt

log pDretr(xt|c). To solve the issue, recall that such a
diffusion model sθ1 that minimizes the loss:

sθ1 = argmin
sθ

E(x0,c)∼pDretr
Ext

[
∥sθ(xt, t, c)

−∇xt
log

( ∫
pt(xt|x0)pDretr(x0, c)

)∥∥] (6)

Since |Dretr| ≪ |D|, we expect the minimizer θ1 to be a
small small perturbation θ1 = θ0 + ∆θ1. However, fine-
tuning sθ0(x, t, c) to find such ∆θ1 for every inference re-
quest is computationally prohibitive.

Instead of fine-tuning, we approximate the expected be-
havior of sθ1 through prompting. Textual inversion and
prompt tuning have been shown to perform comparably to
fine-tuning on small datasets while using orders of magni-
tute less parameters [18, 35, 55, 65]. However, despite the
reduction, it is still cumbersome to fine-tune at inference.
Instead we propose manually modifying the user prompt
ctest using the CLIP embeddings of the retrieved samples,
and define the retrieval-score function:

ŝθ0(xt, t, ctest) ≜ sθ0

(
xt, t,

1

m

∑
xi∈Dretr

CLIP(xi)
)

(7)

We visualize in Fig. 1 the results of sampling with Eq. (7).
This definition is motivated by the following proposition,
which bounds the distance of Eq. (7) from the optimal.



Algorithm 1: CPR-KL

Input: ∇xt log
∫
qt(xt|x0)q

(1)(x|c)dx0,
∇xt

log
∫
qt(xt|x0)q

(2)(x|c)dx0, T, N, ctest
Output: x0

1 xT ∼ N (0, I)
2 for t = T · · · 0 do
3 for i = 1 · · ·N do
4 xt = xt +

ϵt
2
·

1

2

(
∇xt log

∫
qt(xt|x0)q

(1)(x|ctest)dx0 +

∇xt
log

∫
qt(xt|x0)q

(2)(x|ctestdx0)
)
+

√
ϵtz where z ∼ N (0, I)

5 xt−1 = xt

Proposition 2. Assume that sθ is Lipschitz in θ and c. Let
sθ0+∆θ1(xt, t, c) be the optimal solution to Eq. (6) and let
Dretr the private samples retrieved using ctest. Then

∥sθ1(xt, t, c)− ŝθ0(xt, t, ctest)∥ ≤

lθ∥∆θ1∥+ lc

∥∥∥ctest −
1

m

∑
xi∈Dretr

CLIP(xi)
∥∥∥

Above result shows that we can approximate the op-
timal diffusion model trained on retrieved data using the
engineered prompt 1

m

∑
xi∈Dretr

CLIP(xi), which only re-
quires computing the CLIP embeddings of the retrieved im-
ages. Combining Proposition 1 and Proposition 2, we fi-
nally obtain an expression for the score function of retrieval-
augmented mixture of distributions, which we call retrieval-
mixture-score:

sRAG(xt, t, ctest;Dprivate) ≜ ŵ0sθ0(xt, t, ctest)

+ ŵ1sθ0

(
xt, t, (1/m)

∑
xi∈Dretr

CLIP(xi)
)

(8)

Eq. (8) allows us any pre-trained CLIP-based diffusion
model to generate retrieval augmented samples without any
further changes (see Fig. 1). In Tab. 1 we show that Eq. (8)
improves text-to-image alignment (TIFA goes from 81.4 to
82.21). Parallelly, the retrieval-mixture score function al-
ready has immediate application to privacy, since it makes it
trivial to unlearn examples contained in Dprivate in constant
time: these samples are not used to train any parameter, and
hence can be forgotten by simply removing them from disk.
However, samples retrieved at inference time can still leak
private information, which tackle this next.

5. Copy-Protected Generation
In this section, we will provide algorithms for copyright
protected generation — in the Near-Access Freeness sense
of [62] — using our mixed-privacy RAG method.

Algorithm 2: CPR-Choose

Input: ctest, s̃(xt, t, c; q
(1)), s̃(xt, t, c; q

(2)), J ,
reverse-update(xt, st)

Output: x0

1 xT ∼ N (0, I)
2 for t = T · · · , 0 do
3 if t ∈ J then
4 s(xt, t, ctest) = s̃(xt, t, ctest; q

(2))

5 else if t ̸∈ J then
6 s(xt, t, ctest) = s̃(xt, t, ctest; q

(1))

7 xt−1 = reverse-update(xt, s(xt, t, ctest))

Near-Access Freeness Let Dprivate be a set of private sam-
ples, whose information we want to protect, and let ∆
be a divergence measure between probability distributions,
such as the KL-divergence ∆KL or thr max-divergence
∆max (that is, the Renyi Divergence as α → ∞). Let
safe : Dprivate → M be a function which maps a sample
xi ∈ Dprivate to a generative model trained without using
that xi. The Near Access-Free (NAF) criteria is defined as:

Definition 1 (NAF Definition 2.1 in [62]). We say that a
generative model p(x|c) is kc-near access-free (or kc-NAF)
on a prompt c with respect to Dprivate, and ∆, safe, if for all

xi ∈ Dprivate we have ∆
(
p(x|c)|| safexi(x|c)

)
≤ kc.

In practice, safexi can be a model trained with
leave-one-out, or be sharded-safe [62], or sim-
ply be the safe core diffusion model sθ0(xt, t, c). The above
definition says that to perform safe generation the output
sample must be close in distribution to a model which did
not have access to the private samples in Dprivate.

5.1. CPR-KL

We first report here Theorem 3.1 from [62] which provides
a simple procedure to generate NAF-protected samples with
respect to KL-divergence.

Theorem 1. (Theorem 3.1 [62]) Given a dataset D̃, and
copyrighted samples C ∈ D̃, split D̃ into two disjoint shards
D1, D2, and train two generative models q(1), q(2) on each
respectively. Given the two models return a new model
which satisfies kc-NAF wrt ∆KL

p(x|c) =
√

q(1)(x|c)q(2)(x|c)
Z(c)

(9)

where kc = −2 log (1− H2(q(1)(x|c), q(2)(x|c))), H is the
Hellinger distance.

However, for diffusion models we do not
have access to q(1) and q(2), but only to



Figure 2. (A) We plot the histogram of ∆max = log
p(x|c)

safe(x|c) as we vary the contribution of the retrieval-score (ŵ1 in Eq. (8)). We use ŵ1

as a user tunable parameter which controls the amount of bits the generated images are different from safe. We show that as we reduce ŵ1,
empirical kc (max value on the x-axis with non-zero probability) decreases. (B) Comparison to baseline, [62], with k=1500 using rejection
sampling. Smaller k leads to slow generation which is evident from the distribution.

the scores ∇xt
log

∫
qt(xt|x0)q

(1)(x|c)dx0 and
∇xt

log
∫
qt(xt|x0)q

(2)(x|c)dx0 respectively, where
qt(xt|x0) is a variance preserving Gaussian distribution.

We therefore extend Theorem 1 to generative models by
extending it to models’ scores.

Given score functions, we define the CPR-KL algorithm
in Algorithm 1 where we average the two scores at every
step during backward diffusion using Langevin Dynamics
[8, 12, 44, 59, 64]. In the following result we prove that
sampling using Algorithm 1 indeed ensures kc−NAF.

Lemma 1. Let x0 be the output of Algorithm 1. Under
certain regularity conditions (see Supplementary Material),
x0 is kc−NAF w.r.t. safe, C, ∆KL.

By the previous result, Algorithm 1 enables us to gen-
erate samples from Eq. (9), as T,N increases and ϵt de-
creases. However, in practice we do not have access to
the optimal scores, but instead approximations which use
DNNs. In our setting we shall consider having the safe
model sθ0(xt, t, c), and the RAG score on the private data-
store sRAG(xt, t, ctest;Dprivate). In practice, although com-
bining the two scores as in Algorithm 1 can produce bet-
ter results, it also doubles the computation cost at inference
time. To circumvent this we now describe CPR-Choose
(Algorithm 2) which approximates Algorithm 1 without in-
creasing computational complexity.

5.2. CPR-Choose

We now propose another CPR algorithm which does not in-
cur in higher computational cost of CPR-KL. First we recall
a result on the likelihood estimation of samples with MMSE
denoisers, then we show how to use it to define an efficient
NAF algorithm w.r.t. ∆max.

Estimating sample likelihood with MMSE denoiser
Recently, [32, 33] provided a simple method for estimat-

ing the probability of individual samples by computing the
Minimum mean square error (MMSE) using pre-trained
text-to-image diffusion models. Let xt = γtx0 + σtϵ,

x0 ∼ p(x0|c) where ϵ ∼ N (0, I), and α(t) = log
γ2
t

σ2
t

be

the log SNR. Then the MMSE denoiser for a distribution p
can defined as:

s̃(xt, t, c; p) ≜ argmins(·)Ep(x0|c),ϵ∥ϵ− s(xt, t, c)∥2

= Ep(x0|xt,c)

[xt − γtx0

σt

]
(10)

Using the MMSE denoiser, [32, 33] provide a simple ex-
pression for estimating the log probability of x0.

log p(x0|c) = −
∫

Eϵ∥ϵ− s̃(xt, t, c; p)∥2α′(t)dt+ const

(11)

where α′(t) is the time-derivative of α(t). Note that
s̃(xt, t, c; p) is also equivalent to the diffusion score we ob-
tained in the previous sections.

This result shows that to obtain NAF w.r.t. ∆max =
log p(x|c)/ safe(x|c), all we need to do is bound the dif-
ference in MMSE at each time step t. We can bound this by
choosing p(x|c) = safe(x|c) for majority of t, while using
Dprivate intermittently for remaining t.

Using these results we will provide another algorithm
for copy-protected generation. Let q(1), q(2) be the mod-
els obtained using D1, D2 respectively. And assume that
we shard the total data in such a way that D1 contains the
safe data, while D2 contains the copy-protected data. We let
q(1) be our safe-model. In practice, we will have access to
the score function or the MMSE denoiser, s̃(xt, t, c; q

(1)),
s̃(xt, t, c; q

(2)).
NAF ∆max algorithm Let J = {[ti, ti+1]|ti+1 ≤

ti+2, i ∈ {0, 2, 4, · · · , N}, t0 ≥ 0, tN+1 < ∞, N < ∞}



Figure 3. Concept similarity with CPR: In this figure we show the CLIP similarity between CPR generated images and the textual prompt
(Syn-Cap) and the retrieved images (Syn-Ret) respectively. We show that while the CPR generated image preserves the concept presented
in the textual prompt (their similarity with the caption is high), they do not copy the private retrieved images (their similarity with the
retrieved samples is low).

be a subset of disjoint time-intervals on the real line. Using
the set J , let us define a new distribution,

q̃(x0|c, t) = q(1)(x0|c)1t ̸∈J + q(2)(x0|c)1t∈J (12)

This new distribution is a time-dependent, which essentially
selects a distribution at time t to sample xt. The benefit of
such an approach is that it enables the user to select one
of the two model during backward diffusion at each time-
step, which is similar to [1] which has shown to empirically
improve generation quality. Towards this end we have the
following result,

Proposition 3. Let s̃(xt, t, c; q̃) be the MMSE denoiser for
Eq. (12), then we can show that

s̃(xt, t, c; q̃) = s̃(xt, t, c; q
(1))1t ̸∈J + s̃(xt, t, c; q

(2))1t∈J

This result states the fact that optimal MMSE denoiser
for Eq. (12) will choose one of the two denoisers depending
on the time-step, where the choice of J can be completely
user dependent. Using these observations we propose inter-
val based CPR algorithm (CPR-Choose), Algorithm 2

Lemma 2. Let x0 be the output of Algorithm 2. Under
certain regularity conditions (see Supplementary Material),
x0 is kc−NAF w.r.t. safe, C, ∆max.

5.2.1 Time-Discretization

Often in practice we model the diffusion process using a
discrete markov chain [27, 58] whose continuous limit is
SDE[60]. For discrete markov chains discrete in t we can
denote the output of models q(1) (safe-model), q(2) using
the entire trajectory, {x0, · · · , xT }) [62]. The set of inter-
vals J becomes a set of discrete time-steps. During back-
ward diffusion, at each t the user can use one of the two

models to generate the score for updating xt. Depending
on the choice of J , we can generate completely safe images
(J to be empty) or no protection (J is the entire domain of
t).This leads to two CPR-Choose algorithms, depending on
the choice of J.

CPR-Min In this setting, we choose J such that at each t,
we choose the model with the larger MSE, which can be
considered as choosing the worst model at each t. This will
generate samples from a distribution which approximates
the minimum of the two distributions. Under certain condi-
tions we can show that this algorithm is NAF protected (In
the appendix). This in intuitive because, for time-stamps
when we choose q(1) (which is the safe model), we incur no
loss for ∆max, and it is only for the remaining terms that we
need to bound ∆max.

CPR-Alt Similarly, we can choose J to alternate between
the two models by choosing q(2) (private model) at regular
intervals, like e.g. every t̃ steps, or in the most simplest case,
in an alternating fashion. Using this approach, we will only
need to compute the ∆max at every t̃ steps to bound kc.

In our experiments, we will let q(1) be the sθ0(xt, t, c)
which is trained on the safe-core data, while q(2) be the
sRAG(xt, t, c;Dprivate) which uses the private data at infer-
ence using retrieval.

6. Experiments

We use the Stable-Diffusion 2.1 model [49] as our safe base
model, and use the Stable-Diffusion unCLIP model [47, 49]
(without the prior model) as our retrieval-score model. Us-
ing the unCLIP model enables better control of the genera-
tion with the retrieved images Dretr ⊂ Dprivate. We use top
2k samples (based on the aesthetic score) from MSCOCO



Figure 4. (a) Plot of the utility (generation quality) for increasing values of copyright protection, on samples from the MS-COCO dataset.
(b) The TIFA score of CPR increases as the size of the retrieval dataset grows. (c) Computational costs of CPR (ours) and CP-K[62]
compared to the base model.

[36] as our private data store and use the TIFA score [29] to
measure the text-image alignment and quality.

Improved text-to-image alignment Retrieval is often used
to improve the text-to-image alignment of the diffusion
model. In Tab. 1, we use TIFA benchmark to evaluate the
alignment of different methods. We observe that retrieving
images from the data store indeed improves the alignment
from 81.4 to 83.17. Interestingly, CPR regularizes the in-
ference, resulting in even better TIFA (with protection).

Comparing privacy leakage In Fig. 2, we plot the ∆max
(whose upper bound is kc) for various methods against safe
(on images generated with TIFA prompts). We use the con-
trol parameter ŵ1 (Eq. (8) to vary the retrieval contribu-
tion. We show that increasing ŵ1, makes the model generate
more similar images to Dprivate, resulting in larger ∆max (log
prob. ratio w.r.t. safe). This is unlike the CP-∆ [62] which
does not allow the user to tune the NAF constant kc. We
also compare with CP-K [62], which uses rejection sam-
pling on the outputs generated by a Stable Diffusion model
fine-tuned on the private database Dprivate. We set k=1500,
and observe that log p(x|c)/ safe(x|c) is almost uniformly
distributed, which results in much slower (5-10x) rejection
sampling for the same privacy level as our CPR algorithms.

Concept similarity with CPR In Fig. 3, we plot the CLIP-
score between the image generated using TIFA prompts
(Syn in Fig. 3) and the input captions (Cap in Fig. 3), re-
trieved images from Dprivate (Ret in Fig. 3) respectively. We
show that CPR reduces the similarity between the synthe-
sized images and the retrieved images, while improving the
similarity to the textual prompts. This implies that CPR
generates images corresponding to the concept present in
the prompt (with the help of the retrieved image), but en-
sures that the synthesized image is different from the re-
trieved image (prevents copying/memorization).

Ablations In Fig. 4 we provide additional experiments
where we ablate the size of the retrieval store, show the pri-
vacy utility trade-off, and compare the computations cost of
various methods.

7. Discussion and Limitations

Relation between kc and retrieval function The NAF
bound kc relates to the private data store through the re-
trieval function, which in our case is the L2 distance be-
tween the CLIP embeddings. Functions that retrieve images
which explain the concept underlying the ctest instead of its
exact expression, can further help in improving privacy.

Classifier-free guidance for privacy protected genera-
tion We can redefine the expression in Eq. (9), to repre-
sent a more general form like p(x|c) ∝ qα1 (x|c)q1−α

2 (x|c),
which when substituted with appropriate α provides the ex-
pression for the classic classifier free guidance (CFG) [26],
which implies that replacing the marginal in CFG with a
safe model, and using the RAG model in place of the condi-
tional results in private generation with appropriate scaling
of kc. Thus CFG with appropriate model selection can be
considered a good candidate for NAF generation.

Unlearning, adapters, and RAG A direct consequence of
copied generation is the request to remove the appropri-
ate training samples from the dataset (in our case Dstore).
Such unlearning requests can be efficiently handled by our
CPR framework as it allows for cost free removal of private
samples. However, in certain settings, if the private data
store contains out-of-distribution (OOD) examples, simply
using Eq. (8) may not be enough to obtain high fidelity
images. In such situations we may train separate adapters
[13, 14, 28, 30, 55] corresponding to the OOD samples (a
subset of Dstore. Hence at inference, we would first retrieve
a private adapter, and then a set of samples from Dstore.
Upon a forgetting request, we discard both the adapter, and
the samples in Dstore.

Limitations One of the major limitation of diffusion model
based methods is the inability to compute the exact proba-
bility values (this is not the case for auto-regressive or flow
based models). For instance, in Proposition 1, ŵ0, or even
the computation of the true NAF parameter depends on the
actual probability values.
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CPR: Retrieval Augmented Generation for Copyright Protection
Supplementary Material

A. Proofs of the Propositions and Lemmas
A.1. Proposition 1

Proof. of Proposition 1.

∇xt
log pt(xt|c) = ∇xt

log

∫
pt(xt|x0)

[
w0pD(x0|c) + w1pDretr(x0|c)

]
dx0

=
1∫

pt(xt|x0)
[
w0pD(x0|c) + w1pDretr(x0|c)

]
dx0

[
∇xt

∫
pt(xt|x0)w0pD(x0|c)dx0

+∇xt

∫
pt(xt|x0)w1pDretr(x0|c)dx0

]
=

1

pt(xt|c)

[
∇xt

∫
pt(xt|x0)w0pD(x0|c)dx0 +∇xt

∫
pt(xt|x0)w1pDretr(x0|c)dx0

]
=

1

pt(xt|c)

[
w0

∫
pt(xt|x0)pD(x0|c)dx0∇xt log

∫
pt(xt|x0)pD(x0|c)dx0

+ w1

∫
pt(xt|x0)pDretr(x0|c)dx0∇xt log

∫
pt(xt|x0)pDretr(x0|c)dx0

]
=

w0

∫
pt(xt|x0)pD(x0|c)dx0

pt(xt|c)
∇xt

log

∫
pt(xt|x0)pD(x0|c)dx0

+
w1

∫
pt(xt|x0)pDretr(x0|c)dx0

pt(xt|c)
∇xt log

∫
pt(xt|x0)pDretr(x0|c)dx0

A.2. Proposition 2

Proof. of Proposition 2. Let sθ1(xt, t, c) ≜ sθ0+∆θ1(xt, t, c) be the optimal solution to the retrieval optimization problem.
We use CLIP embeddings of the retrieved images for generation, and bound its difference from the optimal.

∥sθ1(xt, t, c)− ŝθ0(xt, t, ctest)∥ = ∥sθ1(xt, t, c)− sθ0

(
xt, t,

1

m

∑
xi∈Dretr

CLIP(xi)
)
∥

= ∥sθ1(xt, t, c)− sθ0(xt, t, c) + sθ0(xt, t, c)− sθ0

(
xt, t,

1

m

∑
xi∈Dretr

CLIP(xi)
)
∥

≤ ∥sθ1(xt, t, c)− sθ0(xt, t, c)∥+ ∥sθ0(xt, t, c)− sθ0

(
xt, t,

1

m

∑
xi∈Dretr

CLIP(xi)
)
∥

≤ ∥sθ0+∆θ1(xt, t, c)− sθ0(xt, t, c)∥+ ∥sθ0(xt, t, c)− sθ0

(
xt, t,

1

m

∑
xi∈Dretr

CLIP(xi)
)
∥

≤ lθ∥∆θ1∥+ lc∥
1

m

∑
xi∈Dretr

CLIP(xi)∥ (13)

A.3. Lemma 1

Proof. of Lemma 1. [62] proved in Theorem 3.1, that sampling from Eq. (9) produces samples which are copy-protected. In
Algorithm 1, we sample using the score function: 0.5(∇xt log

∫
qt(xt|x0)q

(1)(x|c)dx0 +∇xt log
∫
qt(xt|x0)q

(2)(x|c)dx0,
which smoothly interpolates between N (0, I) at t = T , and Eq. (9) at t = 0. We need to show that using Langevin
based backward diffusion in Algorithm 1 indeed generates samples from the desired distribution. The convergence results



for Langevin dynamics have been well studied in practice [10, 16, 44, 61], [48] has shown that Langevin dynamics converge
exponentially fast to the distribution estimated by the gradients. Theorem 2.1 from [48] provides the result on the convergence
of Langevin dynamics in continuous time. For the sake of completeness we will extend the results from [66] to show that
Algorithm 1 generates samples from Eq. (9).

We will re-state the assumptions from [66], for a distribution νt(xt), and score estimator st(xt). In our case νt(xt) =
0.5(∇xt log

∫
qt(xt|x0)q

(1)(x|c)dx0+∇xt log
∫
qt(xt|x0)q

(2)(x|c)dx0), and st(xt) is the average of the safe diffusion flow
and retrieval mixture score.

1. LSI: For any probability distribution ρ, C0 > 0,
∫
ρt log

ρt
νt
dx ≤ 1

2C0

∫
ρt

∥∥∥∇ log
ρt
νt

∥∥∥dx
2. L-Smoothness: − log νt is L-smooth
3. Lipschitz score estimator: st(xt) is Ls-lipschitz
4. MGF error assumption: Mt =

√
Eνt

[exp r∥∇ log νt(xt)− st(xt)∥2] ≤ ∞
Then from Theorem 1 in [66] we know that

KL(ρt(xt)||νt(xt)) ≤ exp (−1

4
C0hN)KL(ρt+1(xt+1)||νt+1(xt+1)) + C1ϵt + C2Mt (14)

where N is from the Algorithm 1, C1 = O(
dLL2

s

C0
), C2 =

16

3
. Eq. (14) result is the obtain by running the inner loop in

Algorithm 1. Using the previous equation recursively for Algorithm 1, we obtain that,

KL(ρ0(x0)||ν0(x0)) ≤ exp (−1

4
C0hNT )KL(ρT (xT )||νT (xT ))

+

T∑
t=1

exp (−1

4
C0hN(T − t))ϵtC1 +

T∑
t=1

exp (−1

4
C0hN(T − t))MtC1 (15)

where ν0(x0) is the distribution in Eq. (9). Since we use DNNs with sufficient capacity, we can assume that Mt → 0, then
as ϵt → 0, and T → ∞, we have that KL(ρ0(x0)||ν0(x0)) → 0, which implies that Algorithm 1 generates samples from
Eq. (9).

A.4. Proposition 3

Proof. of Proposition 3 Let s̃(xt, t, c; q̃) = Eq̃(x0|xt,c)

[xt − γtx0

σt

]
, where q̃(x0|c, t) = q(1)(x0|c)1t̸∈J + q(2)(x0|c)1t∈J .

s̃(xt, t, c; q̃) = Eq̃(x0|xt,c)

[xt − γtx0

σt

]
=

∫
q̃(x0|xt, c)

[xt − γtx0

σt

]
dx0

=

∫ (
q(1)(x0|c)1t ̸∈J + q(2)(x0|c)1t∈J

)[xt − γtx0

σt

]
dx0

=

∫
q(1)(x0|c)1t ̸∈J

[xt − γtx0

σt

]
dx0 +

∫
q(2)(x0|c)1t∈J

[xt − γtx0

σt

]
dx0

= s̃(xt, t, c; q
(1))1t ̸∈J + s̃(xt, t, c; q

(2))1t∈J

A.5. Lemma 2

Proof. of Lemma 2 We use Proposition 3 in Algorithm 2 for CPR-generation. Let q(1) be the safe model in accordance with
the assumptions in Sec. 5. To show that Algorithm 2 is NAF, we need to bound ∆max. To show that q̃(x0|c, t) satisfies NAF



we need to bound:

log
q̃(x0|c)

q(1)(x0|c)
=

∫
Eϵ∥ϵ− s̃(xt, t, c; q

(1))∥2α′(t)dt− Eϵ∥ϵ− s̃(xt, t, c; q̃)∥2α′(t)dt

=

∫
Eϵ

(
∥s̃(xt, t, c; q

(1))∥2 − ∥s̃(xt, t, c; q̃)∥2
)
α′(t)dt

=
∑
j∈J

∫
t∈j

Eϵ

(
∥s̃(xt, t, c; q

(1))∥2 − ∥s̃(xt, t, c; q̃)∥2
)
α′(t)dt

=
∑

j=[ti,ti+1]∈J

∫
t∈j

Eϵ

(
∥s̃(xt, t, c; q

(1))∥2 − ∥s̃(xt, t, c; q
(2))∥2

)
α′(t)dt

=
∑

j=[ti,ti+1]∈J,t′∈j

Eϵ

(
∥s̃(x′

t, t
′, c; q(1))∥2 − ∥s̃(x′

t, t
′, c; q(2))∥2

)
α′(t′)(ti+1 − ti)

=
∑

j=[ti,ti+1]∈J,t′∈j

Eϵ

(
∥s̃(x′

t, t
′, c; q(1))∥2 − ∥s̃(x′

t, t
′, c; q(2))∥2

)
α′(t′)(ti+1 − ti)

≤ maxt′∈JEϵ

(
∥s̃(x′

t, t
′, c; q(1))∥2 − ∥s̃(x′

t, t
′, c; q(2))∥2

)
α′(t′)

∑
j=[ti,ti+1]∈J,t′∈j

(ti+1 − ti)

= kc (16)

J is our control parameter in CPR-Choose which controls kc. If a conservative approach is to be followed, then J should be
chosen such that

∑
j=[ti,ti+1]∈J,t′∈j(ti+1 − ti) is small, which bounds kc, the copy-protection leakage.

CPR-Min, CPR-Alt In practice we discretize the time-steps of the backward diffusion process. In this setting we pro-
tect the entire sequence {xT , · · · , x0} instead of protecting only the final prediction x0. The probability of the sequence
{xT , · · · , x0} is denoted by q̃(x0|x1, c) · · · q̃(xT−1|xT , c)q̃(xT |c) using the chain rule of probability. To show that the
method satisfies NAF, we need to bound:

log
q̃({x0, · · · , xT }|c)

q(1)({x0, · · · , xT }|c)
= log

∏
t

q̃(xt|xt+1, c)

q(1)(xt|xt+1, c)

= log
∏
t∈J

q(2)(xt|xt+1, c)

q(1)(xt|xt+1, c)

=
∑
t∈J

log
q(2)(xt|xt+1, c)

q(1)(xt|xt+1, c)

=
∑
t∈J

log
N (xt;α1,txt+1 + α2,ts̃(xt+1, t+ 1, c, q(2)), σ2

t I)

N (xt;α1,txt+1 + α2,ts̃(xt+1, t+ 1, c, q(1)), σ2
t I)

=
∑
t∈J

1

σ2
t

(
∥xt − α1,txt+1 + α2,ts̃(xt+1, t+ 1, c, q(1))∥2

− ∥xt − α1,txt+1 + α2,ts̃(xt+1, t+ 1, c, q(2))∥2
)

≤ maxt

(
∥xt − α1,txt+1 + α2,ts̃(xt+1, t+ 1, c, q(1))∥2

− ∥xt − α1,txt+1 + α2,ts̃(xt+1, t+ 1, c, q(2))∥2
)∑

t∈J

1

σ2
t

≤ b
∑
t∈J

1

σ2
t

= kc (17)

where α1,t, α2,t, σ
2
t are the coefficients using the backward diffusion depending on the choice of sampler, for eg. DDPM

[27], DDIM [58], Langevin dynamics [12], b is an upper bound on the maximum difference between the MSE for the two



diffusion processes. Similar to the previous derivation,
∑

t∈J

1

σ2
t

through J provides a control knob to the user to control the

∆max for copy-protected generation.

B. Implementation Details
We use the Stable diffusion [49] and Stable diffusion unCLIP [47] model for all the experiments in the paper. We use the
Stable diffusion model to generate safe flow corresponding to the safe distribution q(1), and the Stable diffusion unCLIP
model to generate the retrieval mixture score q(2). We use classifier free guidance with a guidance scale of 7.5 in all the
results. We use 2k samples from the MSCOCO dataset [36] as our private retrieval data store.

C. Additional Figures

(Safe) (NAF-Protected Images)(Private)

Safe Model Retrieved Image Retrieval Score Retrieval-Mix-Score CPR-KL CPR-Min CPR-Alt

Prompt: A scenic view features a calm lake, boats and mountains in the distance.

Figure 5



(Safe) (NAF-Protected Images)(Private)

Safe Model Retrieved Image Retrieval Score Retrieval-Mix-Score CPR-KL CPR-Min CPR-Alt

Prompt: A dog dressed in sunglasses, wig, and a scarf.

Figure 6

(Safe) (NAF-Protected Images)(Private)

Safe Model Retrieved Image Retrieval Score Retrieval-Mix-Score CPR-KL CPR-Min CPR-Alt

Prompt: A steaming locomotive coming down the tracks quickly.

Figure 7
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