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ABSTRACT
Predicting dissolved oxygen (DO) concentrations in north temper-
ate lakes requires a comprehensive study of phenological patterns
across various ecosystems, which highlights the significance of
selecting phenological features and feature interactions. Process-
based models are limited by partial process knowledge or oversim-
plified feature representations, while machine learning models face
challenges in efficiently selecting relevant feature interactions for
different lake types and tasks, especially under the infrequent nature
of DO data collection. In this paper, we propose a Nature-Guided
Cognitive Evolution (NGCE) strategy, which represents a multi-level
fusion of adaptive learning with natural processes. Specifically,
we utilize metabolic process-based models to generate simulated
DO labels. Using these simulated labels, we implement a multi-
population cognitive evolutionary search, where models, mirroring
natural organisms, adaptively evolve to select relevant feature inter-
actions within populations for different lake types and tasks. These
models are not only capable of undergoing crossover and mutation
mechanisms within intra-populations but also, albeit infrequently,
engage in inter-population crossover. The second stage involves
refining these models by retraining them with real observed labels.
We have tested the performance of our NGCE strategy in predicting
daily DO concentrations across a wide range of lakes in the Mid-
west, USA. These lakes, varying in size, depth, and trophic status,
represent a broad spectrum of north temperate lakes. Our findings
demonstrate that NGCE not only produces accurate predictions
with few observed labels but also, through gene maps of models,
reveals sophisticated phenological patterns of different lakes.

1 INTRODUCTION
The concentration of dissolved oxygen (DO) in lakes, as the in-
dicator of water quality and ecosystem health, plays a key role
in sustaining aquatic biodiversity and ensuring water safety for
human consumption [60]. DO concentrations are shaped not just
by the exchange of oxygen between air and water, but also by the
metabolic processes of primary production and respiration [50]. As
articulated by Edward A. Birge one century ago [4]: The fluctua-
tions in a lake’s oxygen illustrate its "life cycle" more clearly than
many other ecological indicators. This is particularly evident in
nutrient-rich eutrophic lakes, where algal blooms can significantly
deplete oxygen, creating detrimental "dead zones" for aquatic life.

DO concentration is closely intertwined with ecosystem phe-
nology, influenced by morphometric and geographic information,
mass fluxes, weather conditions, trophic state, and watershed land
use. In deeper lakes, for instance, increased light limitation and
decreased mixing with the oxygen-rich surface layers often result

in diminished oxygen in deeper areas [42, 49]. Temperature fluctu-
ations also play a pivotal role in oxygen solubility and biochemical
activities [53]. Land use changes can reshape DO patterns and me-
tabolism phenology [22, 61]. Accurate prediction of DO concentra-
tions requires a comprehensive study of these phenological patterns
across various ecosystems, which entails utilizing long-term data
encompassing a wide range of features. This highlights the signifi-
cance of selecting phenological features and feature interactions,
which offers a basis for analyzing the dynamics of the metabolism
of lakes and their evolution in response to external factors, as well
as internal physical–chemical–biological interactions.

Given the importance of DO concentration prediction, scientists
from multiple domains, including limnology, hydrology, meteorol-
ogy, and environmental engineering, have developed physically and
ecologically simplified process-based models to simulate different
components of aquatic ecosystem states and processes. Numerous
aquatic ecosystem models (AEMs) are designed to assess the impact
of both external and internal factors on ecosystems, often combin-
ing hydrodynamic and water quality models with interconnected
feedback loops [20]. Notable examples include hydrodynamic mod-
els like DYRESM [13], GLM [17], MyLake [48]. More advanced
vertical one-dimensional AEMs include GLM-AED [17], WET [41],
and PCLake [21]. However, these models, despite being grounded
in physical principles like mass and energy conservation, are ap-
proximations due to partial process knowledge. Their accuracy and
reliability are often constrained by either limited understanding or
oversimplified feature representations.

Advanced data-driven approaches like deep learning [30], known
for their success in vision and language processing, are considered
alternatives to process-based models for predicting DO concentra-
tions. However, applying thesemethods involves distinct challenges.
Firstly, predicting DO concentrations involves sophisticated pheno-
logical patterns in various ecosystems, which requires analyzing a
wide array of features. Equally enumerating all feature interactions
can bring unnecessary noise and complicate the training process.
Meanwhile, manually selecting relevant interactions requires sub-
stantial manual labor and may also miss crucial subtleties due to
limited knowledge about complex ecosystems. Secondly, most ap-
proaches rely on global models built under expert guidance and
lack the flexibility to adapt to various tasks and datasets. As a result,
they often fail to select relevant feature interactions for different
lake types and tasks and thus cannot guarantee effective model
learning across different scenarios. Finally, the observations of DO
concentration are often very sparse, primarily due to the high ma-
terial costs needed for data collection. Such sparse DO labels pose
a significant challenge for training reliable and accurate models.
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To address these challenges, we propose a Nature-Guided Cogni-
tive Evolution (NGCE) strategy, motivated by a multi-level fusion
of adaptive learning with natural processes. NGCE generates sim-
ulated labels using a metabolic process-based model to address
sparsely observed DO concentration. To analyze sophisticated phe-
nological patterns, we implement an evolutionary learning algo-
rithm to select feature interactions, simulating the natural adapt-
ability of organisms to their environment. It uses multi-population
models to cater to various lake types and tasks, reflecting how
species thrive in diverse habitats. Finally, NGCE enhances model
accuracy by retraining with observed DO concentration data.

Specifically, We simplify our analysis by dividing the water col-
umn into two distinct layers with separate oxygen and metabolic
kinetics: the epilimnion (upper surface layer) and the hypolimnion
(lower bottom layer), treating their DO dynamics as two tasks. We
separately simulate their DO concentrations by modeling vertical
transport processes and metabolic reactions. Then, we propose a
multi-population cognitive evolutionary search, where we concep-
tualize interactions as genomes, models as organisms within a pop-
ulation, and tasks as natural environments. These models are not
only capable of undergoing crossover and mutation mechanisms
within intra-populations but also, albeit infrequently, engage in
inter-population crossover. This enables our models to dynamically
select time-varying phenological features and their interactions for
predicting simulated DO labels across different lake types and tasks.
The final stage of our approach refines these evolved models using
real-world observed DO concentration data. This mirrors natural
genetic decoding, where selected features and interactions are fur-
ther optimized to reflect actual ecological dynamics. We have tested
the effectiveness of our NGCE strategy using data from 375 lakes in
the Midwest, USA, covering 41 years, representing a diverse sample
of north temperate lakes. The main contributions of this paper can
be highlighted as follows:
• We propose the NGCE strategy as a multi-level fusion of adap-
tive learning with natural processes. It leverages a process-based
model to generate simulated labels for feature interaction selection
and further refines the model using observed labels, effectively
addressing the scarcity of DO concentration labels.
• We propose a multi-population cognitive evolutionary search,
inspired by the natural selection, to emulate the adaptability of nat-
ural organisms. This leads to the populations of models specifically
designed for different lake types and predictive tasks, resulting in
adaptive models for diverse lake environments.
• We validate the effectiveness of our NGCE strategy applying
it to predict daily DO concentrations in diverse north temperate
lakes in the Midwest, USA. The results demonstrate that NGCE not
only achieves accurate predictions with few observed labels but
also reveals sophisticated phenological patterns of different lakes.

2 PRELIMINARY
2.1 Problem Formulation
Our goal is to predict the DO concentration at a daily scale. We
have access to phenological features 𝑥𝑥𝑥𝑡 for each lake on date 𝑡 , and
on certain days, we record DO concentrations 𝑦𝑡 in both the epil-
imnion𝑦𝑒𝑝𝑖𝑡 and hypolimnion𝑦ℎ𝑦𝑝𝑡 layers. These features, spanning
𝑚 diverse fields 𝑥𝑥𝑥𝑡 = {𝑥1𝑡 , · · · , 𝑥𝑚𝑡 }, encompass morphometric and

geographic details such as lake area, depth, and shape; flux-related
data like ecosystem and sedimentation fluxes; weather factors com-
prising wind speed and temperature; a range of trophic states from
dystrophic to eutrophic; and diverse land use proportions extend-
ing from forests to wetlands. To process these features, we use an
embedding layer to convert them into a series of multi-field feature
embeddings 𝑓𝑓𝑓 𝑡 = [𝑓𝑓𝑓 1𝑡 , · · · , 𝑓𝑓𝑓𝑚𝑡 ], where 𝑓𝑓𝑓 𝑖𝑡 = 𝑒𝑚𝑏𝑒𝑑 (𝑥𝑖𝑡 ). Our model
uses these embeddings to predict DO concentrations 𝑦𝑡 for both
the epilimnion 𝑦𝑒𝑝𝑖𝑡 and hypolimnion 𝑦ℎ𝑦𝑝𝑡 .

2.2 Metabolic Process-based Model
We introduce a metabolic process-based model to generate simu-
lated labels [29]. Our study focuses on changes in ecosystem-scale
metabolic fluxes in lakes that stratify (a vertical density difference
over 0.05 kg/m3 between surface and bottom layers, and the pres-
ence of a thermocline). These lakes largely adhere to the vertical
one-dimensional model assumption [17, 21, 41], which posits amore
pronounced density gradient vertically than horizontally. During
stratification, we simplify the water column into two mixed vol-
umes: the upper epilimnion and the lower hypolimnion, treating
the thermocline depth as a dividing barrier between both volumes.
Our model primarily focuses on metabolic dynamics during warmer
periods, excluding inverse stratification periods in ice-covered win-
ters. This is due to the scarce availability of under-ice DO data and
the heightened significance of abiotic-biotic interactions in warmer
conditions. For simplicity, we represent the direct flux features that
either augment or diminish DO concentrations as 𝐹 within our
metabolic process-based model. Upon obtaining observed DO data,
we generate posterior estimates for the process-based model to
ascertain 𝐹 effectively [29].

We integrate information from a hydrodynamic lake model into
a metabolism model to study each lake. By constructing a time
series of temperatures and volumes for both the epilimnion and
hypolimnion, these features are utilized in our process-based me-
tabolism model to simulate DO concentrations and their respective
fluxes. Our model simplifies the ordinary differential DO equation
for each layer into a discrete, first-order linear solution using an
explicit forward Euler scheme with a daily timestep. During strati-
fied conditions, we calculate the DO concentrations over time in

the epilimnion as: 𝑦𝑒𝑝𝑖
𝑡+1 =

(
𝑦
𝑒𝑝𝑖
𝑡 +

(
𝐹𝐴𝑇𝑀𝑡 + 𝐹

𝑁𝐸𝑃,𝑒𝑝𝑖
𝑡 ± 𝐹

𝐸𝑁𝑇,𝑒𝑝𝑖
𝑡 ±

𝐹
𝐷𝐼𝐹,𝑒𝑝𝑖
𝑡

)
× Δ𝑡

)
× 𝑉

𝑒𝑝𝑖

𝑡

𝑉
𝑒𝑝𝑖

𝑡+1
, where 𝑦𝑒𝑝𝑖𝑡 denotes the simulated DO con-

centration in the epilimnion at time 𝑡 , as estimated by this metabolic
process-based model, 𝑉 𝑒𝑝𝑖

𝑡 indicates the volume of this epilimnion
at time 𝑡 , 𝐹 represents the flux features: In the epilimnion it com-
prises atmospheric exchange (𝐹𝐴𝑇𝑀 ), net ecosystem production
in the epilimnion (𝐹𝑁𝐸𝑃,𝑒𝑝𝑖 ), DO entrainment from or into the hy-
polimnion by turbulent flow (𝐹𝐸𝑁𝑇,𝑒𝑝𝑖 ), and the diffusive DO flux
between layers (𝐹𝐷𝐼𝐹,𝑒𝑝𝑖 ).

The same metabolic process applies to the hypolimnion, where
the flux features 𝐹 to DO concentrations over time in the hy-
polimnion are net ecosystem production (𝐹𝑁𝐸𝑃,ℎ𝑦𝑝 ), mineralization
through sediment oxygen demand (𝐹𝑆𝐸𝐷 ), DO entrainment into or
from the epilimnion by turbulent flow (𝐹𝐸𝑁𝑇,ℎ𝑦𝑝 ), and the diffusive

DO flux between layers (𝐹𝐷𝐼𝐹,ℎ𝑦𝑝 ): 𝑦ℎ𝑦𝑝
𝑡+1 =

(
𝑦
ℎ𝑦𝑝
𝑡 +

(
𝐹
𝑁𝐸𝑃,ℎ𝑦𝑝
𝑡 −
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𝐹𝑆𝐸𝐷𝑡 ± 𝐹
𝐸𝑁𝑇,ℎ𝑦𝑝
𝑡 ± 𝐹

𝐷𝐼𝐹,ℎ𝑦𝑝
𝑡

)
× Δ𝑡

)
× 𝑉

ℎ𝑦𝑝

𝑡

𝑉
ℎ𝑦𝑝

𝑡+1
, where 𝑦ℎ𝑦𝑝𝑡 denotes

the simulated DO concentration in the hypolimnion for lake 𝑙 at
time 𝑡 , 𝑉ℎ𝑦𝑝

𝑡 indicates the volume of the hypolimnion at time 𝑡 .

3 NATURE-GUIDED COGNITIVE EVOLUTION
In this section, we will introduce the proposed Nature-Guided Cog-
nitive Evolution (NGCE) strategy, which consists of two stages of
learning, i.e., feature selection stage, and model functioning stage.
The overall framework is illustrated in Figure 1. The strategy be-
gins with the feature selection stage, where simulated labels are
leveraged to facilitate a multi-population cognitive evolutionary
search for identifying relevant features and interactions. Following
this, the model functioning stage applies these selected features
and interactions for further refinement with real observed labels.

3.1 Feature Selection Stage
In this subsection, we detail the feature selection stage, employing
simulated labels 𝑦𝑡 to train a multi-population cognitive evolution-
ary search algorithm. We begin by introducing the establishment
of multiple populations, followed by an explanation of how each
individual within these populations is modeled. Subsequently, we
delve into the fundamental mutation and crossover mechanisms.
Lastly, we provide an instantiation of the algorithm.
3.1.1 Identifying different lake types. We first categorize lakes into
different types using lake characteristics that have a direct impact
on oxygen dynamics. In particular, we consider the characteristics
of surface area and volume because lakes with expansive surface ar-
eas facilitate more effective oxygen exchange with the atmosphere,
while those with larger volumes are prone to higher oxygen con-
sumption in deeper waters during summer, owing to limited oxygen
replenishment from the surface. To categorize the diverse array
of lakes in our dataset L, we use a balanced K-means clustering
algorithm to create lake clusters of more uniform sizes [38], which
ensures a more equitable distribution of lake types in our analysis.
By applying balanced K-means clustering, we group lakes into four
distinct categories based on their volume and area: small lakes L𝑆 ,
medium lakes L𝑀 , large lakes L𝐿 , and extra-large lakes L𝑥𝐿 .

3.1.2 Multi-population of feature interaction selection models. The
use of population in evolutionary learning has been proven to make
search processes less prone to settle in local optima [16, 39, 56]. In
our strategy, each population is a set of models specifically designed
for distinct lake types and tasks. Consequently, we have established
eight unique populations: P𝑒𝑝𝑖

𝑆
, Pℎ𝑦𝑝

𝑆
, P𝑒𝑝𝑖

𝑀
, Pℎ𝑦𝑝

𝑀
, P𝑒𝑝𝑖

𝐿
, Pℎ𝑦𝑝

𝐿
,

P𝑒𝑝𝑖

𝑥𝐿
, Pℎ𝑦𝑝

𝑥𝐿
. For example, models within P𝑒𝑝𝑖

𝑆
are trained using

data from small lakes L𝑆 and simulated labels for these lakes in
the epilimnion 𝑦𝑒𝑝𝑖 .

In our population-based search with a size of 𝑛 (where 𝑛 > 1),
we initialize each population with 𝑛 models for feature interaction
selection: P = {M1, · · · ,M𝑛}. We liken each feature interaction
selection model to a natural organism evolving to optimize its
traits for greater fitness. These traits, inherited via an organism’s
genomes, are derived from the relationship between features and
operations, analogous to nucleotides and their linkages. Following
various linkages of nucleotides, we enrich our operation set by
introducing four types of operations 𝑔𝑔𝑔 = {⊕, ⊗,⊞,⊠}, which are

highly used in previous work [26, 32, 51, 64]. Specifically, these
operations include element-wise sum (⊕), element-wise product
(⊗), concatenation with a feed-forward layer (⊠), and element-wise
product with a feed-forward layer (⊞). In our feature interaction
selection model, if 𝑔𝑘 is a chosen operation from 𝑔𝑔𝑔, an interac-
tion 𝑔𝑘 (𝑓𝑓𝑓 𝑖𝑡 , 𝑓𝑓𝑓

𝑗
𝑡 ) is defined by applying the operation 𝑔𝑘 to a pair of

features (𝑓𝑓𝑓 𝑖𝑡 , 𝑓𝑓𝑓
𝑗
𝑡 ).

Our strategy is designed to enhance model fitness by favoring
the preservation of beneficial genetic information, motivating us
to discern and prioritize important features and their interactions
through a set of relevance parameters. thereby strengthening those
that are relevant while diminishing or mutating less contributory
ones. In this context, we define relevance parameters for features
𝑓𝑓𝑓 𝑡 and interactions 𝑔(𝑓𝑓𝑓 𝑡 ) as 𝛼𝛼𝛼 = {𝛼𝑖 |1 ⩽ 𝑖 ⩽ 𝑚} and 𝛽𝛽𝛽 = {𝛽𝑖, 𝑗 |1 ⩽
𝑖 < 𝑗 ⩽ 𝑚}, respectively. Here, 𝑔(𝑓𝑓𝑓 𝑡 ) denotes the application of any
operations from 𝑔𝑔𝑔 to each pair of features. The predictive response
of our model at specific time steps is formulated as:

𝑦𝑡 = M
(
𝛼𝛼𝛼 · 𝑓𝑓𝑓 𝑡 , 𝛽𝛽𝛽 · 𝑔(𝑓𝑓𝑓 𝑡 )

)
. (1)

whereM can be any individual model in the population. We use
a sequence encoder with a Long-Short Term Memory (LSTM) net-
work [18] to efficiently encode temporal information and feature
interaction dynamics. The modelM is thus depicted as:

ℎℎℎ𝜄𝑡 = LSTM
(
[𝛼𝛼𝛼 · 𝑓𝑓𝑓 𝑡 , 𝛽𝛽𝛽 · 𝑔(𝑓𝑓𝑓 𝑡 )];ℎℎℎ𝜄𝑡−1

)
,

𝑦𝑡 =𝑊𝑊𝑊
𝜄 ·ℎℎℎ𝜄𝑡 +𝑏𝑏𝑏𝜄 ,

(2)

whereℎℎℎ𝜄𝑡 represents a series of hidden states, and𝑊𝑊𝑊 𝜄 and𝑏𝑏𝑏𝜄 denote
the weight and bias parameters, respectively. The loss function for
modelM, calculated using simulated labels 𝑦𝑡 , is defined as:

L(M) = 1
|𝐵 |

∑︁
(𝑙,𝑡 ) ∈𝐵

(
𝑦𝑡 − 𝑦𝑡

)2
, (3)

where 𝐵 denotes the set of instance indices within a mini-batch.
We use a regularized dual averaging (RDA) optimizer to differen-

tiate between relevant and irrelevant feature interactions, learning
the relevance parameters𝛼𝛼𝛼 and 𝛽𝛽𝛽 through this process [6, 62].When
the absolute value of the cumulative gradient average value in a
certain position in 𝛼𝛼𝛼 or 𝛽𝛽𝛽 is less than a threshold, the weight of that
position in relevance parameters will be set to 0, resulting in the
sparsity of the relevance [33, 62]. Meanwhile, feature embeddings
are optimized using the Adam optimizer [27]. Unlike AutoML [34],
which categorizes 𝛼𝛼𝛼 and 𝛽𝛽𝛽 as high-level decisions and treats fea-
ture embeddings as lower-level variables for bi-level optimization,
our approach simplifies this process. AutoML operates under the
premise that accurate operation selection is contingent upon the
effective learning of feature embeddings, thereby enabling 𝛼𝛼𝛼 and
𝛽𝛽𝛽 to "make their proper decision." To circumvent the complex and
costly inner optimization of gradients for feature embeddings and
relevance parameters 𝛼𝛼𝛼 , 𝛽𝛽𝛽 , we update them jointly using one-level
optimization with gradient descent on the training set, given as:

∇𝑓𝑓𝑓 L(𝑓𝑓𝑓 𝑖𝑡𝑒𝑟−1,𝛼𝛼𝛼𝑖𝑡𝑒𝑟−1, 𝛽𝛽𝛽𝑖𝑡𝑒𝑟−1)
and ∇𝛼,𝛽𝛼,𝛽𝛼,𝛽L(𝑓𝑓𝑓 𝑖𝑡𝑒𝑟−1,𝛼𝛼𝛼𝑖𝑡𝑒𝑟−1, 𝛽𝛽𝛽𝑖𝑡𝑒𝑟−1).

(4)

3.1.3 Mutation mechanism and crossover mechanism. With our
definitions of population and feature interaction selection models,
we further detail both the mutation and crossover mechanisms in
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Figure 1: An illustration of the NGCE strategy. Feature selection stage: Leveraging a metabolic process-based model to generate
simulated labels for a multi-population cognitive evolutionary search, aimed at selecting relevant features and interactions.
Model functioning stage: Employing these selected features and interactions for further refinement with real observed labels.

our strategy. Notably, the crossover mechanism is bifurcated into
intra-population and inter-population crossover.

Mutation mechanism. The mutation serves as a fundamental
mechanism of our search process, primarily aiming at discrimi-
nating relevant and irrelevant feature interactions in the current
model (the parent), then mutates the operations associated with ir-
relevant interactions into alternative operations, thus generating a
newmodel (the offspring). Specifically, for an interaction𝑔𝑘 (𝑓 𝑖𝑡 , 𝑓

𝑗
𝑡 ),

mutation is triggered with a probability 𝜎 after every 𝜏 steps if the
relevance parameter 𝛽𝑖, 𝑗 drops below a threshold 𝜆. In other words,
to regenerate a new interaction, the operation 𝑔𝑘 of the interaction
𝑔𝑘 (𝑓 𝑖𝑡 , 𝑓

𝑗
𝑡 ) mutates into another operation 𝑔𝑙 , given as:

𝑔𝑘 =

{
𝑔𝑙 with probability 𝜎, if 𝛽𝑖, 𝑗 < 𝜆,

𝑔𝑘 , otherwise.
(5)

where 𝑔𝑙 is randomly selected from the operation set as 𝑔𝑙 = {𝑔 | 𝑔 ∈
𝑔𝑔𝑔,𝑔 ≠ 𝑔𝑘 }. The new interaction 𝑔𝑙 (𝑓𝑖 , 𝑓𝑗 ) replaces the irrelevant
interaction 𝑔𝑘 (𝑓𝑖 , 𝑓𝑗 ), and its corresponding relevance 𝛽𝑖, 𝑗 is reset.
Consequently, the parent modelM evolves into its offspringM′,
which incorporates these fresh interactions with revised relevance
𝛽𝛽𝛽′, and maintains features with relevance 𝛼𝛼𝛼 ′ inherited from 𝛼𝛼𝛼 .

Intra-population crossover mechanism. Given a population
P = {M1, · · · ,M𝜈 , · · · ,M𝑛}, we use 𝛽𝛽𝛽M𝜈 to denote the rele-
vance parameters of interactions for each modelM𝜈 . The obtained
𝛽𝛽𝛽M𝜈 can vary across different models in P. Therefore, within
this population, the models may have a variety of operations for
interacting with each feature pair (𝑓𝑖 , 𝑓𝑗 ), represented as 𝑔P

𝑖, 𝑗
=

{𝑔M1
𝑖, 𝑗

, · · · , 𝑔M𝜈

𝑖, 𝑗
, · · · , 𝑔M𝑛

𝑖, 𝑗
}. The intra-population crossover mecha-

nism aims to select themost suitable operation (of which interaction
has the largest relevance) within the population to apply on the
feature pair for the offspring modelM′, given as:

𝑔M
′

𝑖, 𝑗 = arg max
𝑔
M𝜈
𝑖,𝑗

∈ 𝑔P
𝑖,𝑗

𝛽
M𝜈

𝑖, 𝑗
. (6)

Meanwhile, the relevance parameters of interactions in this off-
spring model are inherited from their respective parent models (i.e.,
the selectedM𝜈 ).

Inter-population crossover mechanism. In two distinct popu-
lations P𝐴 = {M𝐴

1 , · · · ,M
𝐴
𝜈 , · · · ,M𝐴

𝑛 } and P𝐵 = {M𝐵
1 , · · · ,M

𝐵
𝜈 ,

· · · ,M𝐵
𝑛 }, where 𝛽𝛽𝛽M

𝐴
𝜈 and 𝛽𝛽𝛽M

𝐵
𝜈 denote the relevance of inter-

actions for two populations, respectively. The inter-population
crossover mechanismworks as follows: For each feature pair (𝑓𝑖 , 𝑓𝑗 ),
we select the most suitable operation from P𝐵 to interact on the
feature pair in the offspring model of P𝐴 . Conversely, the most
suitable operation of the feature pair from P𝐴 is selected for the
offspring model of P𝐵 , given as:

𝑔
M′

𝐴

𝑖, 𝑗
= arg max

𝑔
M𝐵

𝜈
𝑖,𝑗

∈ 𝑔P𝐵
𝑖,𝑗

𝛽
M𝐵

𝜈

𝑖, 𝑗
, 𝑔

M′
𝐵

𝑖, 𝑗
= arg max

𝑔
M𝐴

𝜈
𝑖,𝑗

∈ 𝑔P𝐴
𝑖,𝑗

𝛽
M𝐴

𝜈

𝑖, 𝑗
. (7)

Meanwhile, the relevance parameters of interactions in the offspring
models are inherited from their respective parent models.

3.1.4 Instantiation of the search process. Leveraging the mutation
mechanism and both intra- and inter-population crossover mech-
anisms, we introduce an implementation of the multi-population
cognitive evolutionary search, as outlined in Algorithm 1. Initially,
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the algorithm randomly initializes eight distinct model populations
(line 1). It proceeds with a series of iterative steps (lines 6-27), contin-
uing until convergence. Each iteration involves optimizing offspring
models and their relevance parameters within each population.

For every 𝜏 iterations, the algorithm (lines 10-14) selects and
replaces the worst model M in each population P based on the
designated loss function, referred to Eq. (3), given as:

M = arg max
M𝜈 ∈P

L(M𝜈 ). (8)

When the algorithm replaces the worst model M with the off-
spring model M′, a new offspring M′ is generated through intra-
population crossover and subsequent mutation, enhancing geno-
typic diversity, thus enabling the search process to effectively avoid
local optima and explore global regions.

For every 𝑒𝑝 × 𝜏 iterations (lines 18-25), a pair of populations
P𝐴 , P𝐵 are randomly selected based either on a shared task (i.e.,
epilimnion or hypolimnion) across different lake types or on the
same lake type but with different tasks. This leads to the generation
of new offspring modelsM′

𝐴
,M′

𝐵
via inter-population crossover

betweenP𝐴 ,P𝐵 , promoting the transfer of advantageous genotypic
patterns across different lake types and tasks. Simultaneously, each
remaining population generates its offspring M′ through intra-
population crossover, followed by the mutation of all offspring.

Finally, the algorithm culminates by delivering a set of the best
models, one from each population (line 28), thereby ensuring a
comprehensive exploration and exploitation of the search space
across diverse environmental contexts.

3.2 Model Functioning Stage
Drawing inspiration from nature’s replication and transcription
processes, which translate genetic information into protein se-
quencesto to equip organisms with diverse functions, we proceed to
a model functioning stage. Here our objective is to refine the model
by leveraging selected features and interactions. At this stage, we
select the corresponding model by the lake type and task, and use
observed labels for the model refinement. Relevant features and in-
teractions are selected according to their relevance parameters 𝛼𝛼𝛼 , 𝛽𝛽𝛽 .
If 𝛼𝑖 = 0 or 𝛽𝑖, 𝑗 = 0, the corresponding features or interactions are
fixed to be discarded permanently. Given the scarcity of observed
data, we inherit parameters from the preceding LSTM to ensure
the model’s effective learning, given as:

ℎℎℎ𝑜𝑡 = LSTM
(
[𝛼𝛼𝛼 · 𝑓𝑓𝑓 𝑡 , 𝛽𝛽𝛽 ·𝑔𝑔𝑔(𝑓𝑓𝑓 𝑡 )];ℎℎℎ𝑜𝑡−1

)
𝑦𝑡 =𝑊𝑊𝑊

𝑜 ·ℎℎℎ𝑜𝑡 +𝑏𝑏𝑏𝑜
(9)

where ℎℎℎ𝑜𝑡 represents a series of hidden states, with𝑊𝑊𝑊 𝑜 and 𝑏𝑏𝑏𝑜 as
the weight and bias parameters, respectively. The relevance 𝛼𝛼𝛼 , 𝛽𝛽𝛽
are fixed and serve as attention units.

To bridge the gap between abundant simulated and scarce ob-
served labels, we crafting a masked LSTM by blending sparse ob-
servations with simulated labels through weighted imputation and
gradient adjustments. This helps mitigates the scarcity in observed
labels. This leads to a loss function combining both observed and
simulated data, as follows:

L(M) = 1
|𝐵 |

∑︁
(𝑙,𝑡 ) ∈𝐵

I
(
𝑦𝑡
) (
𝑦𝑡 −𝑦𝑡

)2
+ 𝜌

(
1 − I

(
𝑦𝑡
) ) (

𝑦𝑡 −𝑦𝑡

)2
, (10)

Algorithm 1 Multi-population Cognitive Evolutionary Search
Input: Training dataset of four types of lakes L𝑆 , L𝑀 , L𝐿 , L𝑥𝐿 ,
each lake 𝑙 has features 𝑓𝑓𝑓 𝑡 , simulated DO labels 𝑦𝑒𝑝𝑖𝑡 , 𝑦ℎ𝑦𝑝𝑡 over 𝑇
days; operation set 𝑔𝑔𝑔.

1: Initialize eight populations P𝑒𝑝𝑖

𝑆
, Pℎ𝑦𝑝

𝑆
, P𝑒𝑝𝑖

𝑀
, Pℎ𝑦𝑝

𝑀
, P𝑒𝑝𝑖

𝐿
,

Pℎ𝑦𝑝

𝐿
, P𝑒𝑝𝑖

𝑥𝐿
, Pℎ𝑦𝑝

𝑥𝐿
, of which anyM has initialized 𝛼𝛼𝛼 and 𝛽𝛽𝛽 .

2: for each P do
3: Generate M′ via intra-population crossover in P. ⊲ Eq. (6)
4: MutateM′. ⊲ Eq. (5)
5: end for
6: while not converged do
7: for each P do
8: Optimize M′ with 𝛼𝛼𝛼 ′ 𝛽𝛽𝛽′. ⊲ Eq. (4)
9: if mod(𝑡, 𝜏) = 0 then
10: Select the worstM. ⊲ Eq. (8)
11: ReplaceM in P withM′.
12: if mod(𝑡, 𝑒𝑝 × 𝜏) ≠ 0 then
13: Generate M′ via intra-population crossover.
14: Mutate M′. ⊲ Eq. (5)
15: end if
16: end if
17: end for
18: if mod(𝑡, 𝑒𝑝 × 𝜏) = 0 then
19: Choose (P𝐴,P𝐵) either by task or lake type.
20: Generate (M′

𝐴
,M′

𝐵
) via inter-population crossover be-

tween P𝐴 , P𝐵 . ⊲ Eq. (7)
21: for each P not in (P𝐴,P𝐵) do
22: GenerateM′ via intra-population crossover.
23: end for
24: for each P do
25: MutateM′. ⊲ Eq. (5)
26: end for
27: end if
28: end while
29: return the set of best models, one from each population P:

M = argminM𝜈 ∈P L(M𝜈 ).

where 𝑦𝑡 denotes the predicted DO concentration, 𝑦𝑡 is the ob-
served DO concentration, 𝑦𝑡 is the simulated DO concentration,
I(𝑥) is an indicator function that equals 1 if 𝑥 is observed (true)
and 0 otherwise (false), and 𝜌 is the tradeoff parameter assigned to
blending observed and simulated labels.

4 EXPERIMENTAL EVALUATION
We conduct extensive experiments across a variety of north temper-
ate lakes in the Midwest, USA, to investigate the research questions:
• RQ1. How does the effectiveness of the NGCE strategy compare
to other baseline models?
• RQ2. What is the performance of the NGCE strategy in time-
series analysis of DO concentrations?
• RQ3. How do feature interactions vary across lake types and
tasks, and how do these interactions evolve over multiple years?
• RQ4. How significant and effective are the feature interactions
selected by the NGCE strategy?
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Table 1: Comparative performance of DO concentration (𝑔/𝑚3) prediction in terms of root mean square error (RMSE) across
different lake types and tasks. The mean and standard deviation (displayed in grey) of RMSE are calculated from ten runs.

Algo. Name
Small lakes Medium lakes Large lakes Extra-large lakes

Epi. Hyp. Epi. Hyp. Epi. Hyp. Epi. Hyp.

Sim DO conc. 1.943 (0.000) 2.212 (0.000) 1.940 (0.000) 2.217 (0.000) 2.620 (0.000) 2.937 (0.000) 1.536 (0.000) 2.772 (0.000)
LSTM 1.802 (0.079) 1.973 (0.064) 1.744 (0.092) 2.001 (0.081) 2.298 (0.088) 2.630 (0.043) 1.479 (0.068) 2.594 (0.056)
EA-LSTM 1.716 (0.047) 1.783 (0.098) 1.676 (0.084) 1.546 (0.054) 2.111 (0.045) 2.629 (0.043) 1.478 (0.039) 2.278 (0.062)
KGSSL 1.793 (0.044) 1.467 (0.057) 1.557 (0.062) 1.632 (0.094) 2.064 (0.103) 2.730 (0.060) 1.294 (0.047) 2.425 (0.075)
AutoInt 1.510 (0.080) 1.406 (0.097) 1.516 (0.088) 1.626 (0.094) 1.716 (0.072) 1.924 (0.078) 1.112 (0.081) 1.847 (0.085)
AutoGroup 1.473 (0.078) 1.509 (0.080) 1.364 (0.059) 1.875 (0.072) 1.384 (0.075) 1.600 (0.068) 0.937 (0.085) 1.953 (0.076)
AutoFeature 1.382 (0.063) 1.768 (0.089) 1.422 (0.070) 1.467 (0.081) 1.405 (0.084) 1.465 (0.082) 1.178 (0.078) 1.976 (0.093)

NGCE 1.076 (0.146) 1.316 (0.161) 1.060 (0.137) 1.288 (0.159) 0.988 (0.169) 1.243 (0.156) 0.918 (0.171) 1.415 (0.215)

4.1 Experimental Settings
4.1.1 Dataset. We evaluate the proposed NGCE strategy for pre-
dicting DO concentration using a dataset from the North Temperate
Lakes Long-Term Ecological Research program1 [37], which docu-
ments over 41 years of ecological observations from 375 lakes in the
Midwest, USA, starting in 1979. This dataset has grown to include
around 5.58 million daily records, each characterized by 39 fields of
phenological features, including morphometric, flux data, weather
conditions, trophic states, and land use details. Observed DO data
were sourced from the Water Quality Portal (WQP). Lake residence
time was taken from the HydroLAKES dataset2. Trophic state prob-
abilities (eutrophic, oligotrophic, dystrophic) were from a recently
published dataset [40]. Land use proportions of each lake’s water-
shed were taken from the National Land Cover Database (NLCD).
An account of these features is available in theAppendix. Of these,
36,920 records include measured DO concentrations for both the
upper epilimnion and the lower hypolimnion layers. We split the
dataset as follows: data collected until 2017 are for training the
models for larger and extra-large lakes, with 2018 for validation,
and 2019 for testing. For small and medium lakes, where DO obser-
vations in 2019 are comparatively sparse, we resort to data up until
2016 for training, 2017 for validation, and 2018 for testing.
4.1.2 Baselines. We compare to a set of baselines in our experi-
ment: Sim DO Conc.: This baseline is the metabolic process-based
model used in our first stage, leveraging minimal observed labels
to generate simulations that can significantly augment the data
for other baselines. LSTM: As adopted in our model functioning
stage, LSTM incorporates simulated labels for weighted imputation
and backward gradient adjustments, a necessity for convergence
given the scarcity of observed labels. EA-LSTM & KGSSL [10, 28]:
These time series prediction models, which assimilate hydrologi-
cal behavior and physical processes, respectively, are regarded as
cutting-edge within hydrological and ecological domains. LSTM
and EA-LSTM, along with KGSSL, adopt individual features for
input without feature interaction modeling. AutoInt, AutoGroup, &
AutoFeature [26, 32, 52]: Emblematic of state-of-the-art feature inter-
action modeling, these methods have demonstrated their utility and
versatility through extensive commercial deployment, showcasing
their capacity to model complex feature combinations.

1https://lter.limnology.wisc.edu/
2https://www.hydrosheds.org/pages/hydrolakes

Small lake

Medium lake

Large lake

Extra-large lake

Figure 2: Time-series analysis of DO concentrations: a com-
parison of predicted (NGCE), simulated, and observed values.

4.1.3 Implementation Details. To implement NGCE, we set feature
embedding size |𝑓𝑓𝑓 𝑖𝑡 | = 15. We use RDA optimizer [6, 62] to dis-
criminate the relevant and irrelevant feature interactions, with the
learning rate 𝛾 = 10−3, adjustable hyperparameters 𝑐 = 0.5, 𝜇 = 0.8.
We set the population size as 𝑛 = 4. We set the mutation mechanism
as the mutation threshold 𝜆 = 0.2, the mutation probability 𝜎 = 0.5,
and the mutation step size 𝜏 = 10. We set the inter-population
crossover step size 𝑒𝑝 = 10, and the tradeoff parameter 𝜌 = 0.1.
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Figure 3: Visualization of gene maps highlighting top relevant feature interactions across different lake types and tasks.

4.2 Experimental Results
4.2.1 Performance comparison (RQ1). Table 1 presents a compara-
tive analysis of the NGCE strategy against various baselines, utiliz-
ing root mean square error (RMSE) across diverse lake types and
tasks, with both mean and standard deviation calculated over five
runs. From the results, we have the following key observations:

First, machine learning models universally outperform simula-
tions alone, underscoring the value of integrating observed labels
with simulated labels for enhanced prediction accuracy. Second,
EA-LSTM and KGSSL surpass LSTM in performance, evidencing
the advantage of incorporating hydrological behaviors and physical
processes into models, particularly when faced with a scarcity of
labels. Third, AutoInt, AutoGroup, and AutoFeature demonstrate
the predictive power of feature interactions, offering significant
improvements over models that rely solely on individual feature
inputs. Lastly, NGCE emerges as the superior model across all base-
lines, attributing its success to the adaptive modeling of interactions
through evolutionary operation selection. Unlike methods that in-
discriminately consider all features and interactions, NGCE discerns
their relevance to specific lake types and tasks, thereby amplifying
the impact of relevant features and interactions while diminishing
or altering those of lesser relevance. However, NGCE’s performance
variability, as evidenced by the relatively wide standard deviation
across trials, points to algorithmic instability—a consequence of its
meta-heuristic nature dependent on stochastic processes.

4.2.2 Time-series analysis (RQ2). Figure 2 offers a time-series com-
parison of predicted (NGCE), simulated, and observed DO concen-
trations, with a specific emphasis on the summer season of the
testing period. The analysis reveals that NGCE predictions not only
align closely with observed values but also demonstrate sensitiv-
ity to subtle features and interactions, enhancing their accuracy.
While simulated DO concentrations also generally exhibit a clear
trend, there are instances of slight deviation from observed data.
Encouragingly, both predicted and simulated values largely mirror
observed trends, highlighting the efficacy and significance of our
NGCE strategy in advancing research in this domain.

4.2.3 Visualization of gene maps (RQ3). The model populations
accommodate different lake types and tasks, leading to a rich diver-
sity in model traits. These traits influence their survival and fitness
rates, mirroring the selection process for operations and feature
interactions. To demonstrate the model’s evolutionary process and
how feature interactions adapt across different lake types and tasks,
we visualize the model’s gene maps. Adopting an encoding where
⊕ = 0, ⊗ = 1,⊞ = 2,⊠ = 3, we can diagnose the model’s fitness
as a symmetric matrix. Distinct colors are allocated to each oper-
ation, creating a vibrant gene map where each gene symbolizes
an interaction; like red "0", green "1", yellow "2", and blue "3". For
example, a green "1" within the "depth × area" block signifies that
the element-wise product ⊗ is identified as the optimal operation
for "depth" to interact with "area". The intensity of the colors on
the gene map is directly correlated with the relevance of the interac-
tions, with darker hues denoting higher relevance and lighter ones
suggesting lesser importance. Individual features are also visually
encoded as single-hued bars. Interactions deemed irrelevant, with
their relevance parameters reduced to 0, are excluded, leaving their
corresponding genes depicted in white "−1".

Figure 3 presents gene maps based on end-of-training data, show-
casing highlight relevant feature interactions for DO concentration
prediction, offering insight into their relevance across different lake
sizes and stratification dynamics. In larger lakes, the DO dynamics
are predominantly influenced by sediment oxygen demand and
atmospheric exchange, reflecting their extensive water volumes.
Conversely, smaller lakes exhibit DO concentrations that are no-
tably impacted by local land use and meteorological factors due to
their shallower depths and greater vulnerability to changes in their
external watershed environments. Across the board, temperature-
related interactions are significant, affecting DO solubility and
the lake’s biological processes. Additionally, wind speed and at-
mospheric exchange flux stand out as key drivers of surface gas
exchange influencing epilimnion, while the trophic state markers
provide indicators of possible oxygen production in the epilimnion
and eventual hypolimnetic depletion due to the formation of algal
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Figure 4: Gene maps that evolved over ten years.

Figure 5: Impact of increasing feature interaction sparsity.
blooms. These findings suggest that diverse ecological factors inter-
play differently across lake environments, necessitating adaptable
prediction models that can cater to these variances.

Figure 4 presents a comparison of gene maps for extra-large
lakes across a decade, from 2000 to 2010. The enduring patterns of
feature interactions hint at consistent ecological processes, while
deviations in their relevance suggest adaptation to environmental
shifts and human activities. Changes in the importance of certain
interactions may stem from better land management or climate
variations affecting lake stratification. Meanwhile, the emergence
of new significant interactions could be a reaction to changes in
lake usage or watershed practices. These temporal dynamics high-
light the importance of adaptable models like NGCE, which can
recalibrate the significance of feature interactions to align with the
changing lake environments over time.
4.2.4 Impact of selected feature interactions (RQ4). As depicted in
Figure 5, we evaluate the impact of feature interactions identified
by the NGCE strategy. By adjusting the RDA optimizer’s parame-
ters, we consistently choose a sparser set of feature interactions,
accepting a trade-off in accuracy, illustrated by the blue trend line
for NGCE. Simultaneously, a random strategy is applied for com-
parative purposes, where operations for feature interactions are
allocated at random, and some interactions are arbitrarily removed
as sparsity intensifies, as depicted by the red trend line. The gene
map showcased at a feature interaction sparsity level around 0.5
offers insight into the model’s structure under reduced complexity.
This experiment highlights NGCE’s superior performance even as
many feature interactions are discarded, emphasizing its precision
in identifying relevant interactions under task guidance. Conversely,
the random approach shows a quicker performance drop due to the
loss of important interactions. When feature interactions become
exceedingly sparse, both methodologies suffer in performance, indi-
cating that a limited set of feature interactions fails to significantly
contribute to the model’s predictive capabilities. In such scenar-
ios, it is predominantly the individual features that influence the
model’s performance.

5 RELATEDWORK
Aquatic ecosystem models (AEMs) have been pivotal in the aquatic
ecosystem science domain, helping us understand the complex
interactions within ecosystems [20]. These models blend hydrody-
namics, water quality, and ecosystem processes, employing vari-
ous methodologies such as DYRESM [13], GLM [17], MyLake [48],
GOTM [5], LAKE2.0 [55], and Simstrat [12]. More advanced vertical
one-dimensional AEMs including GLM-AED [17], WET [41], and
PCLake [21] further enhance modeling capabilities.

Despite their comprehensive nature, AEMs encounter limitations
due to their complexity, computational intensity, and equifinality
issues, constraining their flexibility and wider applicability [3, 36].
Simpler diel metabolism models, while insightful for short-term
DO fluctuations, often overlook long-term ecosystem predictions
due to missing hydrodynamic factors [1, 7, 11, 19, 47, 54]. Bridging
these gaps, integrating physics-basedmodels withmachine learning
offers groundbreaking potential [9, 15, 23, 31, 35, 43, 45, 58, 59],
especially by using simulated data from physics-based models to
enhance ML training in light of limited observed data [8, 14, 44].

Predicting DO concentrations in aquatic environments high-
lights the need to carefully choose and examine phenological fea-
tures and their interactions [22, 42, 49, 53, 61]. This emphasizes
the value of assessing feature interactions to enhance prediction
accuracy, as supported by research emphasizing embedded meth-
ods for feature interaction selection [63, 65]. Traditionally, interac-
tion modeling employed methodologies like factorization machines
(FM) [46] and field-aware FM (FFM) [24], which faced limitations
in representation capability. However, a uniform application of
predefined operations across all feature interactions, often under
expert guidance, might not always align with the specific demands
of tasks or data, potentially introducing noise and complicating
the training process [33, 64]. Herein, adaptive learning, utilizing
nature-inspired meta-heuristic algorithms or gradient-based Au-
toML, presents a powerful solution for complex search challenges in
machine learning [2, 25, 66]. Feature selection methods in AutoML,
especially within embedded frameworks that combine feature se-
lection and classifier training, face difficulties in evaluating model
fitness accurately [26, 32, 52, 57, 63]. Our strategy aims to overcome
these challenges by refining feature interaction selection with evo-
lutionary strategies, thereby improving model adaptability for the
intricate task of aquatic ecosystem management.

6 CONCLUSION
This paper presents the Nature-Guided Cognitive Evolution (NGCE)
strategy, a novel approach blending adaptive learning with natu-
ral processes for predicting dissolved oxygen (DO) concentrations
in north temperate lakes. NGCE analyzes intricate phenological
patterns and utilizes evolutionary learning for feature interaction
selection, mirroring the adaptability inherent in natural organisms.
It employs multi-population models customized for varied lake
types and tasks, reflecting the diverse survival strategies of species
across various habitats. Evaluated on a variety of north temperate
lakes in the Midwest, USA, NGCE not only demonstrates accurate
DO concentration predictions with limited observed data but also
reveals sophisticated phenological patterns, highlighting its utility
for environmental science and lake management.
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A APPENDIX

Table 2: Features for DO Concentration Prediction

Feature Group Feature Descriptions

Morphometric &
Geographic

depth: Derived maximum lake depth
area: Derived maximum lake surface area
elev: Derived lake elevation
Shore_len: Shore length
Vol_total: Lake volume
Vol_res: Lake volume residual
Vol_src: Lake volume supplement
Depth_avg: Average lake depth
Dis_avg: Average inflow discharge
Res_time: Lake residence time
Elevation: Alternative lake elevation
Slope_100: Lake slope information
Wshd_area: Watershed area

Mass Fluxes

fnep: Net ecosystem production flux
fmineral: Mineralisation flux
fsed: Net sedimentation flux
fatm: Atmospheric exchange flux.
fdiff: Diffusion flux
fentr_epi: Entrainment flux in the epilimnion
fentr_hyp: Entrainment flux in the hy-
polimnion

Weather Conditions wind: Derived wind speed
airtemp: Derived air temperature

Trophic State
eutro: Derived classification for eutrophic state
oligo: Derived classification for oligotrophic
state
dys: Derived classification for dystrophic state

Watershed Land Use

water: Derived classification proportion for wa-
ter land use
developed: Derived classification proportion
for developed land use
barren: Derived classification proportion for
barren land use
forest: Classification proportion for forest
land use
shrubland: Derived classification proportion
for shrubland land use
herbaceous: Derived classification proportion
for herbaceous land use
cultivated: Derived classification proportion
for cultivated land use
wetlands: Derived classification proportion for
wetlands land use

Stratification

sat_hypo: Hypolimnion DO saturation concen-
tration
thermocline_dept: Thermocline depth
temperature_epi: Epilimnion water tempera-
ture
temperature_hypo: Hypolimnion water tem-
perature
volume_epi: Epilimnion volume
volume_hypo: Hypolimnion volume
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