
Optimal Coherent Quantum Phase Estimation via Tapering

Dhrumil Patel,1, 4, ∗ Shi Jie Samuel Tan,2, 3, 4, ∗ Yiğit Subaşı,4 and Andrew T. Sornborger4
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Quantum phase estimation is one of the fundamental primitives that underpins many quantum al-
gorithms, including quantum amplitude estimation, the HHL algorithm for solving linear systems
of equations, and quantum principal component analysis. Due to its significance as a subroutine, in
this work, we study the coherent version of the phase estimation problem, where given an arbitrary
input state and black-box access to unitaries U and controlled-U, the goal is to estimate the phases
of U in superposition. Unlike most existing phase estimation algorithms, which employ intermedi-
ary measurements steps that inevitably destroy coherence, only a couple of algorithms, including the
well-known standard quantum phase estimation algorithm, consider this coherent setting. In this
work, we propose an improved version of this standard algorithm that utilizes tapering/window
functions. Our algorithm, which we call tapered quantum phase estimation algorithm, achieves the
optimal query complexity (total number of calls to U and controlled-U) without requiring the use of
a computationally expensive quantum sorting network for median computation, which the standard
algorithm uses to boost the success probability arbitrarily close to one. We also show that the tapering
functions that we use are optimal by formulating optimization problems with different optimization
criteria. Beyond the asymptotic regime, we also provide non-asymptotic query complexity of our
algorithm, as it is crucial for practical implementation. Finally, we also propose an efficient algorithm
that prepares the quantum state corresponding to the optimal tapering function.
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I. INTRODUCTION

Quantum phase estimation (QPE) has been central to
the field of quantum computing since its introduction
[Kit95]. It has been used in Shor’s algorithm for ef-
ficiently factoring large numbers [Sho94], in the Har-
row–Hassidim–Lloyd (HHL) algorithm to solve a sys-
tem of linear equations [HHL09], for quantum ampli-
tude estimation [BHMT02], for quantum principal com-
ponent analysis [LMR14], for fast Quantum Merlin-
Arthur (QMA) amplification [NWZ09], and as a sub-
routine in many other applications [WBL12, LMR13,
CSS18, WBD+21, ESP21, ALL+21, Ral20].

At its core, the goal of QPE is to estimate the phase of
an eigenvalue of a given unitary. Let U be a unitary act-
ing on a d-dimensional Hilbert space, H, and suppose
that e2πiθ is one of the eigenvalues of U, where θ lies in
the range [0, 1). Then, the QPE problem is to output an
estimate θ̃ that is δ-close to θ with a probability at least
1 − ϵ for some δ, ϵ > 0.
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To solve this problem, it is common to assume that
we are given black-box access to U and its controlled
version (controlled-U), as well as sample access to the
eigenvector |ψθ⟩ of U corresponding to the eigenvalue
e2πiθ . For our purposes, we define the cost of an algo-
rithm in terms of its query complexity, which is the num-
ber of times U and controlled-U are applied. An upper
bound on the gate complexity can be obtained from the
query complexity for a given circuit implementation of
the unitary by simple multiplication.

Probably the simplest approach to the phase estima-
tion problem is the Hadamard test. It estimates the real
and imaginary parts of the overlap ⟨ψθ |U|ψθ⟩, giving
e2πiθ . This can then be used to approximate θ. How-
ever, this approach requires O(δ−2 log(1/ϵ)) queries to
achieve a desired precision, δ. A quadratic improve-
ment in precision, i.e., O(δ−1 log(1/ϵ)), can be achieved
using the well-known algorithm proposed by Kitaev
in 1995 [Kit95]. A crucial insight for this quadratic
speedup was to extract the phase value bit-by-bit us-
ing controlled-Ui for some suitable powers i, rather
than simply using controlled-U in each iteration like
in the Hadamard test. Interestingly, the authors of
Ref. [MdW23] recently showed that any algorithm solv-
ing the QPE problem requires Ω

(
δ−1 log(1/ϵ)

)
queries,

making Kitaev’s algorithm optimal in that sense.
In many practical applications of QPE, it is not realis-

tic to assume that we have access to the exact eigenvec-
tor, |ψθ⟩. Instead, we have access to an arbitrary quan-
tum state, |ψ⟩, that can be written as a superposition of
eigenvectors {|ψθr ⟩}r of U: |ψ⟩ = ∑r cr|ψθr ⟩. Suppose
that the eigenvalues corresponding to these eigenvec-
tors are

{
e2πiθr

}
r. A more practical goal is then to es-

timate phases coherently in superposition, i.e., prepare
the state ∑r cr|ωδ

r ⟩|ψθr ⟩ with probability at least 1 − ϵ

such that |ωδ
r ⟩ = ∑s dr,s|θ̃r,s⟩ and θ̃r,s is δ-close to θr.

Here, |θ̃i⟩ is a quantum state that corresponds to the bi-
nary fractional representation of θ̃i. This coherent set-
ting is more realistic because most algorithms employ
QPE as a subroutine, rather than as a standalone algo-
rithm.

Both the Hadamard test and Kitaev’s algorithm fall
under the category of ‘iterative’ QPE algorithms. An it-
erative algorithm consists of multiple successive com-
putations, each consisting of simple quantum circuits.
Each iteration, however, consists of measurements at
the end of the circuit evaluation followed by some
classical post-processing. Applying these algorithms
to an arbitrary state aside from an eigenvector of U
causes decoherence due to these inherent measure-
ments in each iteration. Ultimately, this leads to
the preparation of an incoherent state described by
∑r ∑s |crdr,s|2|θ̃r,s⟩|ψθr ⟩⟨θ̃r,s|⟨ψθr |.

To the best of our knowledge, only two algorithms ex-
ist in the literature that can perform phase estimation co-
herently [CEMM98, Ral21], with the standard QPE algo-
rithm (also known as the textbook QPE algorithm) being

the most well-known [CEMM98]. This algorithm incor-
porates the (inverse) quantum Fourier transform (QFT)
as a subroutine and uses O(δ−1) queries to prepare the
desired coherent state with probability at least 4/π2 in
a single run. Note that since this success probability is
only constant, to boost this success probability to the
desired 1 − ϵ, one way is to use the coherent median
technique, where the algorithm is executed O(log(1/ϵ))
times in parallel and then the median of the outputs is
computed coherently [NWZ09]. Therefore, the overall
algorithm, i.e., the standard QPE combined with the co-
herent median computation for boosting success proba-
bility, has query complexity of O(δ−1 log(1/ϵ)), which
is optimal as it matches the corresponding lower bound
Ω(δ−1 log(1/ϵ)). However, the coherent median step
involves using a large number of ancilla qubits and
a quantum sorting network [HNS02, Kla03, BBG+13],
which is computationally expensive.

An alternative approach to boost the success proba-
bility, without using a sorting network, involves using
m = O(log(1/ϵ)) additional ancilla qubits all prepared
in the uniform superposition state, but this increases
the overall query complexity to O

(
δ−1ϵ−1) [CEMM98].

This is because the query complexity of the standard
QPE algorithm grows exponentially with the number
of these additional qubits used, i.e., O

(
δ−12m). Sub-

stituting m = O(log(1/ϵ)) into this yields the stated
complexity. It is worth noting that this complexity is
exponentially worse in ϵ compared to using the co-
herent median approach. Therefore, in this work, we
investigate the possibility of improving the standard
QPE algorithm to achieve the optimal query complex-
ity of O(δ−1 log(1/ϵ)) without employing the median
approach and the associated quantum sorting network.

A. Contributions

We propose a modified and improved version of the
standard QPE algorithm, which we call the tapered QPE
(tQPE) algorithm. The rationale behind this name will
become apparent later in the discussion. We show that
the tQPE algorithm uses exponentially fewer additional
qubits, m, to achieve a success probability arbitrarily
close to one. This improvement directly leads to an ex-
ponentially smaller query complexity in terms of ϵ.

To be more precise, we demonstrate that our tQPE al-
gorithm requires only m = ⌈log2 log(1/ϵ)⌉ additional
qubits to achieve a success probability at least 1 − ϵ (see
Sec. IV C). We obtain this improvement by framing the
problem as an optimization over the choice of the an-
cilla qubit state that maximizes the success probability.
This results in a more effective choice for the initial state
of the ancilla register. In the case of the standard QPE
algorithm, the ancilla register is initialized to the uni-
form superposition state. However, we propose to re-
place this state with the most-frequency-concentrated
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discrete prolate spheroidal sequence (DPSS), which is a
well-known window/tapering function used in the field
of classical signal processing. This motivates the name
of our algorithm. We will provide a brief note on DPSS
and on window/tapering functions in general later in
Sec. II. The key idea behind this substitution is that
DPSS maximizes signal concentration within a given
spectral band. This is particularly important for QPE,
as it helps in maximizing the probability of obtaining
phase estimates that are δ-close to the true phase θ. To
this end, the query complexity of our algorithm is then
O
(
(δ−1 log(1/ϵ)

)
, which scales exponentially better in

terms of ϵ than that of the standard QPE algorithm,
which, as mentioned before, is O

(
(δϵ)−1). Further-

more, the query complexity of our algorithm saturates
the lower bound Ω

(
δ−1 log(1/ϵ)

)
, which means that it

is optimal. Having said that, we would also like to em-
phasize one of the implications of our result: tQPE can
be used directly for fast QMA amplification instead of
running the standard QPE algorithm O(log(1/ϵ)) times
for computing the median. This suggests an alternative
approach for fast QMA amplification that employs ta-
pering functions.

A natural question following the aforementioned re-
sult is whether one can initialize the ancilla register to
this DPSS state efficiently. We answer this question by
providing an explicit algorithm for doing so, which we
describe in detail in App. A. We subsequently show that
the gate complexity of this algorithm is comparable to
that of the standard QPE algorithm for initializing the
uniform superposition state, up to log log factors.

Similarly to the standard QPE algorithm, the tQPE
algorithm involves applying the inverse QFT to the
ancilla qubits. However, since tQPE uses expo-
nentially fewer additional qubits, the inverse-QFT
circuit is also smaller. This can be seen as follows.
In Ref. [HH02], the authors showed that the gate
complexity of the inverse QFT acting on p qubits
is O(p log p). Therefore, the gate complexity of the
inverse QFT in the case of the standard algorithm
is O

((
log
(

1
δ

)
+ log

(
1
ϵ

))
log
(

log
(

1
δ

)
+ log

(
1
ϵ

)))
because the number of ancilla qubits required
for this algorithm is p = O

(
log
(

1
δ

)
+ log

(
1
ϵ

))
.

On the other hand, the gate complexity
of this transform in the case of tQPE is
O
((

log
(

1
δ

)
+ log log

(
1
ϵ

))
log
(

log
(

1
δ

)
+ log log

(
1
ϵ

)))
because the ancilla qubits required for this algorithm is
p = O

(
log
(

1
δ

)
+ log log

(
1
ϵ

))
, a significant improve-

ment.
We also study a special scenario where one is not al-

lowed to use any additional qubits, i.e., m = 0 (see
Sec. IV B 1) and one wishes to maximize the success
probability of outputting one of the two nearest esti-
mates when θ lies exactly in between two phase esti-
mates. The optimal input states for the ancilla qubits for

this scenario define a two dimensional subspace which
includes a particular kind of sinusoidal sequence, de-
fined in (19). Additionally, we perform numerics, plot-
ting the success probability as a function of the distance
between the true value and the closest phase estimate
(see Sec. IV E). We carry out these numerics for three dif-
ferent input states of the ancilla register: 1) the uniform
superposition state, 2) the DPSS state, and 3) the above
sinusoidal state. This analysis demostrates that DPSS
performs well over the entire range as compared to the
uniform superposition state.

B. Overview

Let p be the number of ancilla qubits in the QPE cir-
cuit, initialized to the all-zeros state. For simplicity, we
assume that we have sample access to one of the eigen-
vectors, |ψθ⟩, of U. In tQPE, as shown in Fig. 2, there
are three main steps: 1) prepare the ancilla register in a
state |ϕ⟩, 2) apply the controlled-U j unitaries to the joint
state, |ϕ⟩|ψθ⟩, for some suitable powers, j, and 3) apply
the inverse QFT to the ancilla qubits. The standard QPE
algorithm can be seen as a special case of tQPE, where
the ancilla qubits are initialized to the uniform superpo-
sition state, i.e., |ϕ⟩ = 1/2p/2 (∑i |i⟩). The application of
the above three steps leads to the following transforma-
tion:

|0⊗p⟩|ψθ⟩
tQPE−−−→

2p−1

∑
k=0

ϕ̂ (θ − k/2p) |k⟩|ψθ⟩, (1)

where ϕ̂(·) is the discrete-time Fourier transform, de-
fined explicitly in (8), of |ϕ⟩.

As we can see from the above transformation, the fi-
nal state of the ancilla register is a superposition of all
possible values of phase estimates, k/2p. The goal is to
prepare this final state such that the following holds:

∑
k:|θ−k/2p |≤δ

∣∣ϕ̂ (θ − k/2p)
∣∣2 ≥ 1 − ϵ. (2)

Intuitively, we want to choose a state, |ϕ⟩, of the an-
cilla register whose energy in the frequency domain is
concentrated within the frequency band [−δ, δ] and is at
least 1 − ϵ. Fig. 1 shows an example of a taper whose
energy is concentrated around zero in its frequency do-
main.

We study error in two different setting: average- and
worst-case. In the average-case error setting, we formu-
late an optimization problem that aims to find ancilla
states, |ϕ⟩, that minimize the average error of the tQPE
algorithm when the phases are sampled uniformly at
random. We show that solving these optimization prob-
lems is equivalent to solving frequency concentration
problems arising in classical signal processing and the
most-frequency-concentrated DPSS naturally emerges
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FIG. 1. For the DPSS taper with p = 5, we plot the abso-
lute value squared of the taper in the frequency domain (blue
curve) as well as the discrete values (red dots) at which it is
evaluated for the expression of success probability in (2).

as the optimal solution in the average-case setting. Fur-
thermore, we show that this DPSS also exhibits opti-
mal performance with only a constant overhead in the
worst-case setting. Finally, we find that a sinusoidal ta-
per is obtained under the additional constraint that for
m = 0 the error probability is zero whenever the true
phase happens to be exactly in between two estimates.

C. Related work

QPE is a well-researched problem and hitherto many
quantum algorithms have been proposed to solve it un-
der different settings. However, most of the quantum
algorithms in the literature [Kit95, SHF13, NLY23, LT22,
OTT19, WBC22, CBB20, DL23, GSP21, MdW23] are not
suitable for the coherent setting that we are consider-
ing in this paper. This point is strongly emphasized in
Ref. [Ral21]. As such, only two algorithms, such as those
presented in Ref. [CEMM98] and Ref. [Ral21], provide
coherent phase estimation algorithms and are thus suit-
able for use as subroutines in larger algorithms. The
approach in Ref. [Ral21] is complementary to ours and
achieves similar query complexity. Their algorithm em-
ploys block-encoding techniques to obtain the phase es-
timate bit-by-bit and employs techniques from the quan-
tum singular value transform to enhance the probability
of success.

Tapers are not new in the study of quantum algo-
rithms. In 1999, Bužek et al. used a sinusoidal taper for
the construction of optimal quantum clocks [BDM99].
The authors of [BW00] found that a particular kind of
sinusoidal taper is optimal as an N-photon two-mode
input state for obtaining an estimate of the phase dif-
ference between two arms of an interferometer. The
effect of a cosine taper on the quantum phase estima-
tion has been studied in Ref. [RIK22], and the authors
showed a cubic improvement of m in terms of error
probability ϵ, i.e., m = O(log

(
1/ϵ1/3

)
) as opposed

to m = O(log(1/ϵ)) for the standard QPE algorithm.
Additionally, the cosine taper has been employed in
QPE-based algorithms, including the HHL algorithm
for solving systems of linear equations [HHL09]. Bump
functions have found application in spectral estimates
based on time series analysis [Som19]. Tapers have also
been explored within quantum spectral filtering meth-
ods aimed at efficient state initialization [FGML17]. Fur-
thermore, approximate Gaussian tapers have been uti-
lized in quantum algorithms for spectral density esti-
mation [Rog20] and thermal state preparation [CKBG23,
CKG23]. The Kaiser taper [CF+48, Kai66, KRD21,
MGB22] has been considered in QPE [BSG+22] and also
achieves asymptotically optimal scaling. We will fur-
ther comment on this work and Kaiser tapers relation
to the DPPS taper in Sec. V. However, none of these ta-
pers are optimally frequency-concentrated, resulting in
side-lobes that warrant further reduction.

II. A BRIEF NOTE ON DISCRETE PROLATE
SPHEROIDAL SEQUENCES

In the field of classical signal processing and statistics,
DPSS, sinusoidal sequences, and other such sequences
are referred to as window functions, tapering functions,
or simply tapers. These functions are widely used to
analyze and modify the frequency spectrum of a given
signal. It is important to note that the uniform superpo-
sition state used in the standard QPE algorithm is also
a type of window function known as a rectangular win-
dow. This function is also sometimes referred to as the
tophat taper, and we will use this name throughout this
paper to refer to this taper.

In a series of seminal papers in the field of signal
analysis [SP61, LP61, LP62, Sle64, Sle78], Slepian, Pol-
lack, and Landau studied the extent to which a time-
limited signal can be band-limited. In other words, they
investigated how much the Fourier transform of a sig-
nal can be concentrated in a small interval in the fre-
quency domain (i.e., band-limited), given that the signal
is only non-zero in a finite interval in the time domain
(i.e., time-limited). The discrete-time case was studied
in the fifth paper of this series of papers [Sle78]. In
this paper, the authors introduced DPSSs (also called
Slepian sequences) as eigenvectors of a kernel arising
from a particular frequency concentration algorithm
and demonstrated that there exists a DPSS that is both
time-limited and maximally band-limited. (They addi-
tionally showed how to stably compute it numerically.)
For completeness, we provide a detailed derivation of
this in App. E. Due to its ability to concentrate the en-
ergy of the Fourier transform in a small interval in the
frequency domain, while also maintaining a finite sup-
port in the time domain, this maximally concentrated
taper is well-suited for a wide variety of applications in
signal processing, including signal filtering, and high-
resolution spectral and harmonic analysis methods.
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Classical signal analysis methods based on Slepian
et al.’s analysis have resulted in significant advances in
spectral and harmonic analysis [Sle78, Tho82, PLVI87,
MP99, HTR09, SY12]. Maximizing signal concentration
within a given spectral band is not only desirable for
classical signal analysis but is also of special significance
for QPE as we will see in this paper. Intuitively, the
band-limiting property of a taper is important especially
for QPE in the sense that it helps in increasing the prob-
ability of outputting phase estimates that are δ-close to
the true phase θ.

III. TAPERED QUANTUM PHASE ESTIMATION

Consider a unitary, U, acting on a d-dimensional
Hilbert space, H. Let {|ψθr ⟩}d−1

r=0 be a set of orthog-

onal eigenvectors of U, and
{

e2πiθr
}d−1

r=0 be the set of
corresponding eigenvalues, where θr ∈ [0, 1) for all
r ∈ {0, . . . , d − 1}. It is assumed that we are given query
access to U and controlled-U, as well as sample access
to an arbitrary state, |ψ⟩ = ∑r cr|ψθr ⟩, or alternatively,
query access to the unitary that prepares |ψ⟩. Given
δ, ϵ > 0, the goal of coherent phase estimation is then to
prepare the state ∑r cr|ωδ

r ⟩|ψθr ⟩ with probability at least
1 − ϵ such that |ωδ

r ⟩ = ∑s dr,s|θ̃r,s⟩ and θ̃r,s is δ-close to
θr.

In what follows, we focus on a particular eigenvector
|ψθ⟩ of U with eigenvalue e2πiθ for simplicity and lay out
the details of our tQPE algorithm. This approach can be
readily extended to a superposition of eigenvectors as
well. To begin with, as shown in Fig. 2, we prepare an
ancilla register in a state |ϕ⟩ defined as

|ϕ⟩ :=
N−1

∑
n=0

ϕ[n]|n⟩, (3)

where ϕ[n] ∈ C for all n ∈ {0, . . . , N − 1}. Also, N :=
2p, where p is the total number of qubits in the ancilla
register. Throughout this paper, we refer to the state of
the ancilla register, |ϕ⟩, as a taper, and we use the terms
“taper register” and “ancilla register” interchangeably.
For the time being, please note that |ϕ⟩ is an arbitrary
state, with a particular choice specified later. We then
apply the conditional unitary

N−1

∑
n=0

|n⟩⟨n| ⊗ Un (4)

to |ϕ⟩|ψθ⟩, resulting in the state

N−1

∑
n=0

ϕ[n]e2πiθn|n⟩|ψθ⟩. (5)

Subsequently, we apply the inverse QFT (QFT−1 =
QFT†) on the ancilla register. This transforms the basis

(3) (5) (9)

UPREP

. . . •

QFT†

. . . •
...

... . . . ...
• . . .

• . . .

|ψ⟩ U20
U21 . . . U2p−2

U2p−1

|0⟩⊗p

FIG. 2. Tapered QPE quantum circuit. The system is ini-
tialized in the state |0⟩⊗p|ψ⟩, where |ψ⟩ is an arbitrary input
state. UPREP is the unitary that prepares the taper state |ϕ⟩
(see App. A for UPREP that prepares the DPSS taper approxi-
mately). Dashed blue lines labeled by equation numbers de-
note the corresponding state at each step.

{|n⟩}N−1
n=0 as

|n⟩ → 1√
N

N−1

∑
k=0

e−2πink/N |k⟩, (6)

giving us the following final state:

N−1

∑
k=0

(
1√
N

N−1

∑
n=0

ϕ[n]e2πin(θ−k/N)

)
|k⟩|ψθ⟩. (7)

Note that the expression above inside the parentheses
is the discrete-time Fourier transform, defined as

ϕ̂ ( f ) :=
1√
N

N−1

∑
n=0

ϕ[n]e2πin f , (8)

of the time-limited signal, ϕ[n], evaluated at the fre-
quency, θ − k/N. Using this, the final state of the al-
gorithm, given by (7), can be expressed more concisely
as:

N−1

∑
k=0

ϕ̂ (θ − k/N) |k⟩|ψθ⟩, (9)

where we can think of
{

ϕ̂ (θ − k/N)
}

k as the probability
amplitudes of the discrete frequencies {k/N}k indexed
by k. In other words, if the first register corresponding
to the taper is measured, the tQPE algorithm outputs a
phase estimate, k/N, with probability

∣∣ϕ̂ (θ − k/N)
∣∣2.

Recall that the goal of tQPE is to prepare the final
state, given by (9), such that the following holds:

∑
k:|θ−k/N|≤δ

∣∣ϕ̂ (θ − k/N)
∣∣2 ≥ 1 − ϵ. (10)

To simplify the analysis, we choose δ = 2−ℓ−1 for some
positive integer ℓ without loss of generality. If θ can
be expressed exactly on ℓ bits, then there exists a k ∈
{0, 1, . . . , N − 1} such that θ = k/N. Otherwise, there
is always a phase estimate k′/N such that |θ − k′/N| ≤
2−p−1, and a θ that saturates this bound (i.e., it lies ex-
actly between two possible phase estimates). This con-
straint naturally arises because the resolution of the an-
cilla register is 2−p. Therefore, we only consider the case
where δ ≥ 2−p−1 which implies that p ≥ ℓ. Thus, we
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set p = ℓ + m for some m ≥ 0 where m can be inter-
preted as the number of additional qubits used to boost
the success probability of estimating phases that are δ-
close to θ.

As we can see, the standard QPE algorithm is a spe-
cial case of the tQPE algorithm, where the taper being
used is the tophat taper (ϕ[n] = 1/

√
N; ∀n). For m = 0

(i.e., no additional qubits used to boost phase estima-
tion success probability), the tQPE algorithm using the
tophat taper outputs a δ-close phase estimate with prob-
ability at least 4/π2 ≈ 0.405. As previously stated in
the Introduction section, in order to increase the suc-
cess probability further, a natural approach is to increase
m. By doing so, the number of δ-close phase estimates
increases, which in turn increases the total probability
of outputting such estimates. Specifically, the authors
of Ref. [CEMM98] showed that it is sufficient to choose
m = ⌈log2 (1/(2ϵ) + 1/2)⌉ to boost the success proba-
bility to at least 1− ϵ when considering the tophat taper.

Although increasing m can reduce the probability of
outputting a phase estimate that differs from the true
value by more than δ, it also increases the computa-
tional cost of the algorithm, since the number of queries
to U is proportional to 2p = 2l+m (as shown in Fig. 2).
It also increases the size of the inverse-QFT circuit be-
cause as mentioned above, the size of this circuit is of
the order O(p log p). Thus, it is of utmost importance to
choose our taper, |ϕ⟩, optimally so as to minimize m for
a given ϵ.

IV. OPTIMAL TAPERS

In what follows, we derive optimal tapers for the case
where the relative position of the true phase with respect
to the grid of estimates is known and optimal tapers for
the average-case settings which we define later. We then
study the worst-case error of these tapers.

A. The Optimization Problem

We now state the optimization problem more for-
mally:

max
|ϕ⟩∈Ht

∑
k: |θ− k

N |≤δ

∣∣∣∣ϕ̂(θ − k
N

)∣∣∣∣2

subject to
N−1

∑
n=0

|ϕ[n]|2 = 1. (11)

Here, Ht denotes the N-dimensional Hilbert space cor-
responding to the taper register. The objective function
above represents the probability of obtaining a phase
estimate that is δ-close to the exact value, θ. The con-
straint arises from the fact that |ϕ⟩ is a quantum state,
and therefore, it must be normalized.

Due to our choice of δ = 2−ℓ−1 and p = ℓ+ m, there
are exactly 2m estimates that are δ-close to θ1. Depend-
ing on the exact value of θ, the index, k, in the objective
function of (11) can range over different values. This sig-
nificantly complicates the optimization problem. In or-
der to simplify the above expression further, we define
the following:

∆ := θ − k∗

N
, (12)

where k∗/N is the phase estimate that is closest to θ
on the grid. In other words, ∆ is the difference be-
tween the best possible phase estimate afforded by the
p-qubit taper and the true value, θ. We can now rewrite
ϕ̂(θ − k/N) as ϕ̂(∆ − k/N) since the sum is over a
dummy index. We observe that phase estimates corre-
sponding to |k| ≤ K with K = 2m−1 − 1 are always δ-
close for m ≥ 2 and K = 0 for m = 0. This leaves out
at most one phase estimate that is furthest away from
the true value (two if ∆ = ±1/2N). Finally, all tapers of
practical interest we know of have Fourier transforms
that are symmetric, have a peak at 0, and decay rapidly,
meaning their value at ∆ ± (K + 1) will be extremely
small for large K or equivalently small ϵ. In light of this,
we ignore the contribution of those points to the success
probability in the optimization problem.

With these considerations, we restate the optimization
problem as:

max
|ϕ⟩∈Ht

K

∑
k=−K

∣∣∣∣ϕ̂(∆ − k
N

)∣∣∣∣2
subject to

N−1

∑
n=0

|ϕ[n]|2 = 1. (13)

To convert the above constrained optimization problem
to an unconstrained one, we use the Lagrangian formu-
lation:

L (|ϕ⟩, λ) =
K

∑
j=−K

∣∣∣∣ϕ̂(∆ − j
N

)∣∣∣∣2

− λ

(
N−1

∑
n=0

|ϕ[n]|2 − 1

)
. (14)

where L is the Lagrangian and λ ∈ R is a Lagrange
multiplier.

B. Ideal Case

Finding the optimal taper is equivalent to finding the
stationary point of L that maximizes the objective func-
tion of (13). The stationary points of L can be found by

1 There are two exceptions: when θ is exactly on the grid there are
2m + 1 δ-close estimates for m > 0, and when θ is exactly between
two grid points there are two δ-close estimates for m = 0.
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setting all the partial derivatives of L to zero. Doing so,
we get the following two conditions (see App. B for a
detailed derivation):

1
N

N−1

∑
n=0

e2πi∆(n−m)

(
sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)

)
ϕ[n]

= λϕ[m]; ∀m ∈ {0, . . . , N − 1}, (15)
N−1

∑
n=0

|ϕ[n]|2 = 1. (16)

The first equation is an eigenvalue equation, while the
second equation is the normalization constraint. By sub-
stituting all the stationary points (|ϕ⟩, λ) satisfying the
above two conditions into the objective function of (13),
we obtain:

K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2 = λ. (17)

This implies that the stationary point, (|ϕ⟩, λ), that max-
imizes the objective function is the eigenvector with
maximum eigenvalue, λ. Since the objective function is
the probability of outputting one of the 2K + 1 phase es-
timates closest to θ, using the eigenvector with the max-
imum eigenvalue (see (15)) as our taper will maximize
this probability.

In App. C, we establish an explicit connection be-
tween the eigenvectors of (15) and the periodic dis-
crete prolate spheroidal sequences (P-DPSS) [ZKD+17].
We call the former quantum periodic discrete prolate
spheroidal sequences (QP-DPSS), which depend on the
value of ∆. Then, combining results from App. C with
known results for the P-DPSS in [XC84], we observe that
the eigenvector of (15) with the largest eigenvalue has
an eigenvalue of 1, regardless of the value of ∆. In other
words, there exists a taper for which the tQPE algorithm
outputs one of the δ-close 2K + 1 phase estimates with
probability 1.

It should not be surprising that the above observation
holds true. To understand this intuitively, we can break
it down into two cases. In the first case, we consider
∆ = 0, that is θ lies exactly on one of the grid points
(see (12)). In this case, the standard QPE algorithm us-
ing the tophat taper always returns θ with probability
1 because now θ itself is one of the possible phase esti-
mates. Now, let’s consider the case where 0 < ∆ ≤ 1

2N
or − 1

2N ≤ ∆ < 0. This case can be converted into the
∆ = 0 case by shifting the grid of possible phase es-
timates by ∆. To accomplish this, we apply a unitary
operator parameterized by ∆ to the tophat taper. This
operation shifts all 2p grid points by ∆, such that θ now
lies exactly on a grid point. After that, we output θ with
probability 1 because it is now a possible phase estimate.

We find that even for K = 0, unit success probability
can be achieved with the optimal taper given by:

ϕ∆[n] =
e2πi∆n
√

N
. (18)

As a check, we note that for ∆ = 0, we recover the
tophat taper which is known to have zero error proba-
bility when the true phase is on the grid of estimates.
In Fig. 3 we plot the success probability of this taper
for ∆ = ±1/2N. The above procedure is described in
greater detail in App. C.

1. Special Case: ∆ = ±1/2N

In this case, there are pairs of grid points that are
equidistant to the exact solution. So, it makes sense to
consider the probability of outputting an even number
of estimates as opposed to an odd number. More specif-
ically, we will focus on the case where we only consider
the nearest two estimates. Eq. (18) shows tapers that re-
turn the closest estimate with probability one for arbi-
trary ∆. In the special case ∆ = ±1/2N, there are ac-
tually two such tapers: one shown in Eq. (18) and the
other obtained by letting ∆ → −∆. One of these tapers
outputs the larger and the other the smaller of the two
closest estimates with unit probability. Any linear com-
bination of these tapers also succeeds with unit proba-
bility. One might be interested in combinations that out-
put each closest estimate with equal probability. One
such pair of tapers is

ϕsin[n] =
sin(πn/N)√

N/2
, (19)

ϕcos[n] =
cos(πn/N)√

N/2
. (20)

Although these two tapers perform the same on ∆ =
±1/2N, their performance on other ∆ is very different.
In Fig. 3 we show that the sine taper is superior to the
cosine taper because it performs better at all other val-
ues of ∆. Note that ϕ±1/2N has similar properties to the
tophat taper by construction but the sine taper behaves
qualitatively differently. This is because in constructing
the sine taper we used the additional degree of freedom
afforded by taking a linear combination of ϕ±1/2N to im-
prove the performance of the taper over all ∆. In fact,
the sine (cosine) taper can be obtained by minimizing
(maximizing) the average-case error defined in the next
section among all linear combinations between the two
QP-DPSS tapers above.

C. Average-case Optimal Tapers

From the development above, it is important to note
that in general the value of ∆ is not known a priori. More-
over, since ∆ depends on the phase θ, it can differ for
distinct phases, particularly when the input state is a su-
perposition of eigenvectors of U. Since we are interested
in coherent phase estimation, the same taper must work
well for all values of ∆ in order to be useful. Therefore,
in this subsection, we focus on finding the optimal taper
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FIG. 3. We plot the probability of the ϕ−1/2N (green), ϕ1/2N (red), ϕsin (blue), and ϕcos (orange) tapers to output the closest phase
estimate as a function of ∆, for N = 25. Both cosine and sine tapers achieve 0.5 at ∆ = ±1/2N. This means with unit probability
one of the two closest estimates will be returned.

that works best on average. The Lagrangian, Lavg, for
this modified optimization problem is similar to the one
given by (14), except that the first term is now an expec-
tation, resulting in the average success probability:

Lavg (|ϕ⟩, λ) = E∆∼D

[
K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2
]

− λ

(
N−1

∑
n=0

|ϕ[n]|2 − 1

)
, (21)

where D is the uniform distribution defined over the
interval

[
− 1

2N , 1
2N

]
. Then solving for the above La-

grangian, we get the following eigenvalue equation (see
App. D for a detailed derivation):

1
N

N−1

∑
n=0

sin (π(m − n)(2K + 1)/N)

π(m − n)
ϕ[n]

= λϕ[m]; ∀m ∈ {0, . . . , N − 1}. (22)

We observe that this eigenvalue equation appears
commonly in the field of classical signal processing and
that DPSSs are eigenvectors of this equation. Now,
with a similar reasoning as we used previously for the
ideal case, the eigenvector |ϕ⟩ that maximizes the objec-
tive function, Lavg (i.e., average success probability), is
the one with maximum eigenvalue. Thus, the optimal
eigenvector is the DPSS with the maximum eigenvalue.
Note that when we mention DPSS from here on, we refer
to the DPSS with the maximum eigenvalue. For com-
pleteness, we provide a brief overview of DPSSs from
the classical signal analysis point of view in App. E.
Remark 1. An important thing to note is that the deriva-
tion of DPSSs from the classical signal processing point
of view (provided in App. E) relies heavily on the fact
that the spectrum of frequencies is continuous. In con-
trast, we have a discrete frequency spectrum in the case

of QPE. However, by taking the average of ∆ over the
uniform distribution, we effectively transform the prob-
lem to a continuous one. Thus, the average-case op-
timization problem has the same form as the classical
continuous-frequency case, and as a result, the DPSS ta-
per turns out to be the optimal taper.

We now state an important theorem from the classi-
cal signal processing literature [KRD21] that provides
(to date) the most stringent non-asymptotic bounds on
the eigenvalues of the kernel in (22). The key idea is to
use this theorem to derive a non-asymptotic bound on
the number of ancilla qubits, i.e., m, needed to achieve
the average success probability of at least 1− ϵ, for some
ϵ > 0.

Theorem 1 ([KRD21, Corollary 1]). For any N, K ∈ N

such that K ∈ [0, . . . , N/2 − 1], the maximum eigenvalue
λmax of the kernel in (22) satisfies

λmax ≥ 1 − min

{
8 exp

[
− 2K − 1

2
π2 log(4N)

]
,

10 exp

[
− 2K − 6

2
π2 log (100K + 75)

]}
. (23)

As the maximum eigenvalue of the DPSS kernel in
(22) is equal to the average success probability, the
bound on this eigenvalue from the theorem given above
naturally bounds the average success probability. There-
fore, one way to infer the above theorem statement is as
follows: when the maximal DPSS is used as a taper, it
will output one of the 2K + 1 phase estimates closest to
θ with an average success probability lower-bounded by
the quantity on the right hand side of (23).

Applying Thm. 1 to the tQPE algorithm that uses the
DPSS taper, we obtain the following result that holds
for all N, K ∈ N which we term as the non-asymptotic
regime.
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Theorem 2 (Non-asymptotic). To ensure that the output
of the tQPE algorithm is one of the 2K + 1 phase estimates
closest to the true phase θ with an average success probability
of at least 1 − ϵ, we only require

m =
⌈

log2

(⌈
175 (log (10/ϵ) + 1)2

⌉
+ 1
)⌉

+ 1 (24)

additional qubits when K ≥ 1.

Proof. We use the bound from Thm. 1 to lower-bound
the average success probability for outputting one of the
2K + 1 p-bit phase estimates closest to θ. Subsequently,
if this bound is at least 1− ϵ, we can say that the average
success probability is also at least 1 − ϵ. Formally, this is
expressed as follows:

ϵ ≥ min

{
8 exp

[
− 2K − 1

2
π2 log(4N)

]
,

10 exp

[
− 2K − 6

2
π2 log(100K + 75)

]}
. (25)

Without loss of generality, we choose to work with the
second argument of the min function in the equation
above, i.e.,

ϵ ≥ 10 exp

[
− 2K − 6

2
π2 log(100K + 75)

]
. (26)

Taking logarithms and flipping the sign of both sides,
we find

log(10/ϵ) ≤ 2K − 6
2

π2 log(100K + 75)
. (27)

By assuming that K ≥ 1, we first provide a lower
bound for 2K−6

2
π2 log(100K+75)

in the following way:

2K − 6
2

π2 log(100K + 75)
≥ 2K − 6

2
π2 log(175K)

(28)

≥ K − 3
log (175K)

(29)

=
1

175

(
175K

log (175K)

)
− 3

log(175K)
(30)

≥ 1
175

(
175K

log (175K + 1)

)
− 1 (31)

≥
√

175K
175

− 1 (32)

=

√
K

175
− 1 , (33)

where the second to last inequality comes from the stan-
dard logarithmic inequality:

x
log(x + 1)

≥
√

x + 1 for x ≥ −1. (34)

Now, by enforcing the following inequality,

log (10/ϵ) ≤
√

K
175

− 1, (35)

we obtain K ≥ 175 (log (10/ϵ) + 1)2. In other words,
as long as K is at least

⌈
175 (log (10/ϵ) + 1)2

⌉
, we are

guaranteed that (26) holds and the error is bounded
by ϵ. Recall from above that 2m of the p-bit phase es-
timates are δ-close. Letting K = 2m−1 − 1, we only
need m =

⌈
log2

(⌈
175 (log (10/ϵ) + 1)2

⌉
+ 1
)⌉

+ 1 ad-
ditional qubits to ensure that our tQPE algorithm has at
least 1 − ϵ success probability.

Remark 2. Although the analytical proof for Thm. 2 im-
plies that K needs to be of order log2(1/ϵ) to achieve
an average success probability of 1 − ϵ, for all practical
purposes K only needs to be of order log(1/ϵ). For ex-
ample, for all ϵ ≥ 10−81, we have that K ≤ 192, and as a
result, we can replace K inside the logarithm in (27) with
192 and find that K = ⌈log(10/ϵ)⌉+ 3 is sufficient.

Since Thm. 1 holds for any N ∈ N, our result de-
scribed in Thm. 2 also holds for any N including the
asymptotic regime where N → ∞ and δ → 0. How-
ever, the bound on the maximum eigenvalue shown in
Thm. 1 can be made tighter when we restrict our anal-
ysis to the asymptotic case with large N and small δ.
In what follows, we state the result for this asymptotic
case.

Theorem 3 (Asymptotic). In the regime where N is large
and δ is small, the tQPE algorithm with the DPSS taper out-
puts one of the 2K+ 1 phase estimates closest to the true phase
θ with an average success probability of at least 1 − ϵ when

m =

⌈
log2 log

(
1
ϵ

)⌉
(36)

additional qubits are used in the tQPE algorithm.

Proof. Let W = 2δ = 1
2l . Then, NW = 2m because

we know that N = 2l+m. In the original paper on
DPSS [Sle78], Slepian provided an asymptotic expres-
sion for the eigenvalues {λk}k of the DPSSs (i.e., when
N is large or δ, W → 0),

1 − λk = π1/2(k!)−12(14k+9)/4

× α(2k+1)/4(2 − α)−(k+1/2)Nk+1/2e−γN , (37)

where α and γ are defined as follows:

α = 1 − cos 2πW (38)

γ = log
(

1 +
2
√

α√
2 −√

α

)
. (39)
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From the definition of α, it is clear that α → 0 as W →
0. To this end, we Taylor expand the cos function, to get
the following expression of α:

α =
(2πW)2

2
+ O((2πW)4). (40)

Substituting this in the definition of γ, we get

γ = log

1 +
2
√

(2πW)2

2 + O((2πW)4)
√

2 −
√

(2πW)2

2 + O((2πW)4)

 (41)

∼ log (1 + 2πW) (42)
∼ 2πW. (43)

Also, α ∼ 2π2W2. Plugging the values of α, γ, and also
k = 0 (because we are interested in the maximum eigen-
value) into the first equation, we get

1 − λ0

∼ π1/229/4(2π2W2)1/4 (2 − 2π2W2)−1/2︸ ︷︷ ︸
∼2−1/2

N1/2e−2πWN

(44)

= π1/229/4(2π2W2)1/42−1/2N1/2e−2πWN (45)

= 4π(NW)1/2e−2πNW . (46)

We require that 1 − λ0 ≤ ϵ. This implies

4π(NW)1/2e−2πNW ≤ ϵ (47)

Using the fact that 4πx1/2e−2πx ≤ e−x for x ≥ 1, it suf-
fices to choose

m = ⌈log2 log(1/ϵ)⌉ (48)

Please note that this result can be further tightened, but
it is sufficient for our purpose.

Remark 3. Now, using the fact that K = 2m−1 − 1, we
further obtain:

K = 2⌈log2 log(1/ϵ)⌉−1 − 1 ≤ log(1/ϵ)− 1 . (49)

While we do not gain an improvement in m with respect
to ϵ in the asymptotic regime, we observe an improve-
ment in the scaling of K with respect to ϵ in this regime.
In particular, we showed how the upper bound on K
decreases from 175(log(10/ϵ) + 1)2 + 1 to log(1/ϵ)− 1
when we utilize the asymptotic bound that Slepian pro-
vides in [Sle78] which holds in the regime where N is
large and δ is small. Recall that the tQPE algorithm suc-
ceeds in outputting one of the 2K + 1 phase estimates
closest to the true phase θ with an average success prob-
ability of at least 1 − ϵ. Thus, a smaller K value would
imply that the DPSS taper has greater frequency con-
centration around θ and endows a smaller set of clos-
est phase estimates with the same success probability of
1 − ϵ.

D. Analysis of worst-case error

Ideally, we would like to find a taper that has the
smallest error probability for its worst-case ∆∗. For most
tapers used in classical signal processing (including the
tophat and DPSS tapers), ∆∗ = ±1/2N corresponds to
the largest error probability. However, in general, dif-
ferent tapers have different worst-case ∆∗, which makes
the corresponding optimization problem too hard. In
this section, we analyze the performance of the DPSS ta-
per in its worst case, which, as mentioned above, is at
∆∗ = ±1/2N. We find that although not optimized for
the worst-case scenario, the DPSS taper performs well
and is optimal asymptotically.

To perform such a comparison, we first restate the ker-
nel of the DPSS taper which coincides with the eigen-
value equation shown in (22):

1
N

N−1

∑
n=0

sin (π(m − n)(2K + 1)/N)

π(m − n)
ϕ[n]

= λϕ[m]; ∀m ∈ {0, . . . , N − 1}. (50)

Recall that the DPSS taper is the eigensequence with the
largest eigenvalue that satisfies the DPSS kernel. When
considering the success probability of the DPSS taper in
the worst case, where ∆ = ±1/2N, we let |ϕ⟩ denote
the DPSS taper and adapt the calculations in App. D to
include an additional complex rotation e2πi(n′−n)∆ that
translates the phase estimates in the frequency domain
by ∆ = ±1/2N to obtain the following expression:

K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2

=
1
N

N−1

∑
n,m=0

e2πi(m−n)∆
sin
(

π(m − n)
(

2K+1
N

))
sin (π(m − n)/N)

ϕ∗[n]ϕ[m]

(51)

=
1
N

N−1

∑
n,m=0

cos (π(m − n)/N)

sin
(

π(m − n)
(

2K+1
N

))
sin (π(m − n)/N)

ϕ∗[n]ϕ[m] (52)

where the last equality comes from substituting ∆ = 1
2N

and observing how the complex terms from the complex
exponential annihilate each other when we run over all
summands indexed by m and n. In other words, the
success probability for the DPSS taper in the worst-case
would then be the quantity shown in (52).

From Thm. 1, we make the observation that the max-
imum eigenvalue, or the success probability, of the
average-case optimal DPSS taper tends to 1 as N →
∞. This is well-aligned with our intuition because we
would expect our DPSS taper to have greater spectral
concentration in the central lobe in the frequency do-
main. At the same time, we note that the worst-case
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success probability of the DPSS taper also converges to
1 when N → ∞. This is a result of the complex expo-
nential term in (51) approaching 1 as N → ∞, result-
ing in the worst-case DPSS success probability expres-
sion approaching the average-case success probability
in the same limit. Therefore, DPSS is optimal asymp-
totically. While the DPSS taper may not achieve the
same 1 − ϵ success probability as it would in the av-
erage case for the non-asymptotic case, i.e., when N is
finite, the fact that the worst-case DPSS success proba-
bility converges to the average-case DPSS success prob-
ability for large values of N implies that the worst-case
success probability of the DPSS taper would share a sim-
ilar dependence on ϵ. We provide numerical evidence
in Figs. 4a, 4b, and 4c that shows that the worst-case
success probability of the DPSS taper never falls below
1 − 4ϵ for several different parameters.

E. Numerics

In this section, we provide numerics for three of the
tapers we have discussed so far: the DPSS taper, the sine
taper, and the tophat taper. In Figs. 5a, 5b, 5c, and 5d, we
plot the success probability of each taper as a function of
∆, i.e., the distance between the true phase and the grid
point closest to it, for various values of m. The DPSS
taper is optimal for the average case. The tophat taper
is designed to output the true phase with unit proba-
bility when the true phase coincides with a grid point
and the sine taper has the property that it outputs one
of the two nearest estimates with unit probability when
the true phase is exactly between two grid points. Both
of these properties are confirmed by the plots. Although
the DPSS kernel does not succeed with unit probabil-
ity for any ∆ it does perform well for the entire range,
which is consistent with the fact that it is optimal for the
average case.

In Figs. 4a, 4b, and 4c, we again plot the success prob-
ability of the DPSS taper as a function of ∆ for various
values of m. In contrast to Figs. 5a, 5b, 5c, and 5d, we
do not plot the other tapers; instead we display a hori-
zontal line at 1 − 4ϵave, where ϵave is the average error
associated with the DPSS taper (alternatively, 1 − ϵave is
the largest eigenvalue of the DPSS kernel). We see that
the success probability is above 1− 4ϵave for all ∆. Thus,
our numerics suggest that the DPSS taper has a worst-
case error that is at most four times its average-case er-
ror. Since the worst-case error cannot be smaller than
the average-case, the worst-case error of DPSS is at most
a factor of four worse than the best possible worst-case
error. This means that although we have not been able
to find the optimal taper for the worst-case, the DPSS
taper cannot be too far from it.

V. DISCUSSION

We note that the authors of Ref. [RDD17] studied con-
tinuous QPE and formulated a different optimization
problem than ours. Interestingly, their optimal taper for
continuous QPE also resulted in DPSS. So, it would be
valuable to explore the similarities and differences be-
tween these two optimization problems, which we leave
for future work.

We remark that the asymptotic scaling of K for the
DPSS taper compares favorably against the Kaiser ta-
per which is known to also achieve a similar asymptot-
ically scaling of m as our DPSS taper [BSG+22]. There
are other additional factors inside the logarithm for the
Kaiser taper which the DPSS taper does not have. Fur-
thermore, for the case of the Kaiser taper, its K value
scales as O (log(1/ϵ)) + O (log log(1/ϵ)) with respect
to ϵ in the asymptotic regime as shown in Appendix D
of Ref. [BSG+22]. As shown in the proof for Thm. 3,
the DPSS taper scales as O (log(1/ϵ)) in the asymptotic
regime which implies that the DPSS taper has better fre-
quency concentration around θ than the Kaiser taper in
the regime where N is large and δ is small. This cor-
responds well with existing classical signal processing
literature where the DPSS taper is known to have maxi-
mal frequency concentration in the central lobe out of all
taper functions and the Kaiser taper has originally been
designed as an approximation to DPSS.

In addition to the asymptotic analysis, we also pro-
vide the explicit expressions for m in the non-asymptotic
regime. This will be important for the practical im-
plementation of the QPE algorithm in the early fault-
tolerant regime. Finally, we would like to mention
that we approach the QPE problem from a different
angle, i.e., by framing optimization problems. Due to
the optimality of the DPSS taper, all tapers must use
Ω(log log(1/ϵ)) additional qubits to boost the average
success probability to at least 1 − ϵ. This means that
there cannot be any further improvements when using
tapers for QPE. This result complements Thm. 1.3 of
[MdW23], which provides the same lower bound on
the ϵ-dependence for any algorithm solving QPE in the
worst case. However, while Thm. 1.3 of [MdW23] is
general and holds for any QPE algorithm, our lower
bound only applies to tQPE with arbitrary tapers.

Due to the flexibility of our formulation, it allows us
to find tapers satisfying different optimization criteria.
For instance, we find that a sinusoidal taper minimizes
the average case error under the additional constraint
that for m = 0 the error probability is zero whenever
the true phase happens to be exactly in between two
estimates. This taper has been obtained before in the
literature as a result of a different optimization prob-
lem [LP96, BDM99]: it is the taper that minimizes a cost
function that penalizes estimates that are further away
from the true value as 4 sin2((θ − θest)/2). We have ar-
rived at this taper from a completely different perspec-
tive.
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FIG. 4. Performance of the DPSS taper as a function of ∆ from 0 to 1/2N. (a) The figure is plotted for success probabilities ranging
from 0.999999975 to 1. We have omitted labeling the tick with 0.999999975 to avoid cluttering the figure.
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FIG. 5. Comparison between the DPSS taper, the sine taper, and the tophat taper.
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It might be possible to construct tapers with slightly
worse average case error but better worst case error by
hybridizing some of the eigenvectors of the DPSS kernel
with large eigenvalues. This is similar to how we con-
structed the sine taper by hybridizing two QP-DPSS ta-
pers. Our numerics suggests that the worst case error of
DPSS taper is at most 4ϵave. It is an open question how
close the worst case error can be made by hybridizing
DPSS’s.
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Supplementary Material for
“Optimal Coherent Quantum Phase Estimation via Tapering”

Appendix A: Preparation of the DPSS Taper

In this section, we focus on preparing the DPSS taper |ϕ⟩. We use a modification of the method for preparing
broadband Gaussian states presented in [CSS18] to prepare the taper state. The key idea is that the DPSS taper in the
frequency domain, i.e., |ϕ̂⟩ = UQFT|ϕ⟩, is narrow-band. By narrow-band, we mean that it is highly concentrated on
just a few grid points, implying that the state, |ϕ̂⟩, has non-trivial amplitude on very few of its basis states. Therefore,
we can prepare an approximate version of |ϕ̂⟩ (say |ϕ̂∗⟩) using standard methods presented in [CSS18] with very little
overhead. After that, we can perform an inverse quantum Fourier transform on |ϕ̂∗⟩ to obtain |ϕ∗⟩, which closely
approximates the DPSS taper |ϕ⟩.

Before we provide an explicit description of the taper state preparation protocol, we show in the lemma below that
we can prepare an approximate DPSS taper state that is ϵ-close to the DPSS taper state using N′ = O

(
log2(1/ϵ)

)
≪

N parameters where ϵ is an average failure probability of the tQPE algorithm using the DPSS taper. In this case,
we refer to the non-trivial amplitudes of the state |ϕ̂⟩ as the N′ parameters that are needed to characterize our
approximate DPSS taper state.

Lemma A.1. The number of parameters, N′, necessary to prepare a state, |ϕ∗⟩, that is O(ϵ)-close in Euclidean distance to |ϕ⟩
i.e., ∥|ϕ∗⟩ − |ϕ⟩∥2 = O(ϵ) satisfies N′ = 2

⌈
175 (log (10/ϵ) + 1)2

⌉
+ 1.

Proof. Recall from Thm. 1 and Thm. 2 that

ϵ ≥ 10 exp

[
− 2K − 6

2
π2 log(100K + 25)

]
, (A1)

where ϵ is the average probability outside of the central lobe of the most-concentrated DPSS taper in the frequency
domain. Because the DPSS taper in the frequency domain has 2K + 1 grid points in the central lobe, the number of
parameters N′ needed to describe the frequency amplitudes in the central lobe is then 2K + 1. Note that N′ may be
determined with a classical numerical computation on a lattice of size N with central lobe bandwidth parameter K
(as shown in Figure A1). From the derivation of the proof of Thm. 2, we observe that K =

⌈
175 (log (10/ϵ) + 1)2

⌉
.

Since N′ = 2K + 1, we obtain N′ = 2
⌈

175 (log (10/ϵ) + 1)2
⌉
+ 1.

Suppose we construct a state |ϕ̂∗⟩ using the N′ parameters as frequency amplitudes at the N∗ positions inside
the central lobe before appropriately normalizing the state. Let us denote the projection of |ϕ̂∗⟩ onto the subspace
spanned by the basis states with the N′ parameters with |ϕ̂∗⟩N′ . In other words, we have |ϕ̂∗⟩N′ = C|ϕ̂⟩N′ =

1
∥|ϕ̂⟩N′∥2

|ϕ̂⟩N′ where C is the appropriate normalization constant. Likewise, we denote the complement of N′ as N′

which gives us |ϕ̂∗⟩N′ = 0 since |ϕ̂∗⟩ has zero amplitude outside of the N′ positions in the central lobe. Note that the
act of projection onto these subspaces may result in sub-normalized states. We see that∥∥|ϕ̂∗⟩ − |ϕ̂⟩

∥∥
2 =

∥∥∥|ϕ̂∗⟩N′ + |ϕ̂∗⟩N′ −
(
|ϕ̂⟩N′ + |ϕ̂⟩N′

)∥∥∥
2

(A2)

≤
∥∥∥|ϕ̂∗⟩N′ − |ϕ̂⟩N′

∥∥∥
2
+
∥∥|ϕ̂∗⟩N′ − |ϕ̂⟩N′

∥∥
2 (A3)

=
∥∥∥|ϕ̂⟩N′

∥∥∥
2
+
∥∥C|ϕ̂⟩N′ − |ϕ̂⟩N′

∥∥
2 (A4)

= O (ϵ) + (C − 1) ∥|ϕ⟩N′∥2 (A5)
= O (ϵ) + (C − 1)(1/C) (A6)

= O (ϵ) + 1 −
∥∥|ϕ̂⟩N′

∥∥
2 (A7)

≤ O(ϵ) + 1 − (1 − ϵ) (A8)
= O(ϵ), (A9)

where we used the fact that
∥∥∥|ϕ̂⟩N′

∥∥∥
2
≤ ϵ in the second equality and

∥∥|ϕ̂⟩N′
∥∥

2 ≥ 1 − ϵ in the last inequality. These
inequalities come from the bounds on the total probability inside and outside of the central lobe of the DPSS taper
state. Lastly, using the Parseval-Plancherel identity, we obtain ∥|ϕ∗⟩ − |ϕ⟩∥2 = O(ϵ) as desired.
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We note that the lemma stated above is similar to Lemma 1 in [CSS18] which states that a Gaussian taper with the
reciprocal standard deviation, 1/σ, as the width of its central lobe, could also be used in place of a DPSS taper to
concentrate phase measurements. However, it would not have the optimal concentration of probability in the central
lobe that we would observe from the DPSS taper.

We now provide an explicit description of the taper state preparation method that closely follows App. B of
[CSS18]. We first begin by classically computing the N′ amplitudes that characterize the central lobe of |ϕ̂⟩ using
classical numerical methods. Next, we use these N′ amplitudes to prepare a state on a register of log N′ qubits
using the preparation method described in [SBM05]. Subsequently, we append p − log N′ qubits initialized to
|0⟩⊗(p−log N′) to the ancilla register to form a p-qubit ancilla register. The N′ amplitudes form an off-center lobe
in the frequency domain, so we need to center these amplitudes on the p-qubit register to form a central lobe. In
App. C of [CSS18], the authors provide an explicit circuit involving CNOT and X gates that performs the desired
centering by permuting and mapping the original N′ basis states {|j⟩ | 0 ≤ j ≤ N′ − 1} to the new N′ basis states
{|j⟩ | (N − N′) /2 ≤ j ≤ (N + N′) /2 − 1} in the p-qubit ancilla register. Lastly, we perform the centered Fourier
transform operator UC-QFT that was proposed in App. B of [CSS18].

Given ϵ > 0, where ϵ is the failure probability of the tQPE algorithm, let us define UC-QFT as such:

UC-QFT := πUQFTπ, (A10)

where π is a p-qubit cyclic permutation operator that maps |j⟩ to |j − N/2 mod N⟩, and UQFT is the p-qubit Fourier
transform operator. The cyclic permutation operator π can be implemented with UQFTZU−1

QFT, where Z is a diagonal
operator defined as diag(Z) := [1,−1, 1,−1, . . . , 1,−1] as elaborated in App. B of [CSS18]. Therefore, the overall
action of the centered Fourier transform operator UC-QFT can be understood as a shifted QFT that accounts for the
new central lobe, and it outputs the approximate DPSS taper state |ϕ∗⟩ that is O(ϵ)-close to |ϕ⟩ in the ancilla register
of the tQPE quantum circuit. Readers can find more details about the derivation in Sec. IV-D and App. B of [CSS18].
From Figure A1, we can see that with an O(ϵ)-close approximation of the DPSS taper, we can achieve the exponential
decrease in sidelobe amplitudes described in Corollary 2.

Now, we analyze the complexity of the taper state preparation protocol. Ref. [SBM05] introduced a technique for
preparing a state on a register of log N′ qubits with a gate complexity of O (N′) from N′ amplitudes. Note that their
technique requires some classical computation, which we disregard, along with the classical computation of the N′
amplitudes of the central lobe of |ϕ̂⟩. For the quantum circuit required to center the amplitudes, it has been shown
in App. C of [CSS18] that the number of two-qubit gates required is log

(
N−N′

2

)
= O (log (N − N′)). Lastly, we

provide the gate complexity of UC-QFT. We begin by providing its alternative expression:

UC-QFT = πUQFTπ =
(

UQFTZU−1
QFT

)
UQFT

(
UQFTZU−1

QFT

)
= UQFTZUQFTZU−1

QFT. (A11)

Notice that we require three applications of QFT which has been shown in [Cop94] to have gate complexity O
(

p2) =
O
(

log2 N
)

. This gives us an overall gate complexity of O
(

N′ + log (N − N′) + log2 N
)
= O

(
N′ + log2 N

)
for the

state preparation protocol. Using the fact that N′ = O
(

log2(1/ϵ)
)

and N = 2p = 2m · 2ℓ = 2O(log log 1/ϵ) · 2O(log 1/δ),
we can state the gate complexity of the state preparation protocol Cϕ in terms of δ and ϵ:

Cϕ = O
(

log2(1/ϵ) + [log log(1/ϵ) + log(1/δ)]2
)

(A12)

We also note that the state preparation protocol does not require any additional ancilla qubits other than the p-qubits
for the taper state register.

Having discussed how we can prepare an approximate DPSS taper |ϕ∗⟩ that is O(ϵ)-close to the DPSS taper |ϕ⟩,
we now proceed to provide guarantees for the performance of |ϕ∗⟩. To do that we first write the approximate DPSS
taper in terms of the DPSS taper:

|ϕ∗⟩ =
√

1 − O (ϵ2)|ϕ⟩+ O(ϵ)
∣∣∣ϕ⊥

〉
, (A13)

where
〈
ϕ |ϕ⊥〉 = 0.

Now, we consider the success probability of our tQPE algorithm when we use the approximate taper. We assume
that the probability of error of the exact taper |ϕ⟩ is ϵ, that is

|ϕ⟩ |ψθ⟩
QPE−−→

√
1 − ϵ

|θ̃i−θ|≤δ

∑
i

|θ̃i⟩|ψθ⟩+
√

ϵ
|θ̃i−θ|>δ

∑
i

|θ̃i⟩|ψθ⟩. (A14)
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For
∣∣ϕ⊥〉 we assume the worst possibility, i.e. that it returns a δ-close phase estimate with zero probability. Then the

approximate taper returns a δ-close estimate with probability at least

P∗
success ≥

(
1 − O

(
ϵ2
))

(1 − ϵ) = 1 − ϵ − O
(

ϵ2
)
+ O

(
ϵ3
)
= 1 − O(ϵ). (A15)

Appendix B: Ideal Case

The optimal taper for tQPE is the one that maximizes the probability of outputting the value of a phase estimate
of the form k/N that is δ-close to θ. To simplify the analysis we have set δ = 2−(l+1) for some integer ℓ. In this case
the 2K + 1 discrete frequencies closest to θ are indeed δ-close to the true phase for K = 2m−1, where p = ℓ+ m is the
total number of ancilla qubits. At most a single discrete frequency that is δ-close is left out, and that frequency has
the smallest probability of being output by the algorithm. Thus without introducing much error we formulate the
optimization problem in terms of maximizing the probability of outputting the closest 2K + 1 discrete estimates, see
(13). Since this is a constrained problem, we used the Lagrangian formulation to solve it. For ease of reference, we
restate the corresponding Lagrangian (14) from the main text below:

L (|ϕ⟩, λ) =
K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2 + λ

(
N−1

∑
n=0

|ϕ[n]|2 − 1

)
. (B1)

To find the optimal taper for the original optimization problem, given by (13), we need to find the stationary point
of L that maximizes the objective function of (13). But before doing so, we expand the expression on the right-hand
side of the above equation by plugging the definition of ϕ̂, given by (8):

L (ϕ, λ) =
1
N

K

∑
j=−K

N−1

∑
n,n′=0

ϕ[n]ϕ∗[n′]e2πi
(

∆+ j
N

)
(n−n′)

+ λ

(
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1

)
(B2)

=
1
N

K

∑
j=−K

N−1

∑
n,n′=0

e2πi∆(n−n′)ϕ[n]ϕ∗[n′]e−2πi(j/N)(n′−n) + λ

(
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1

)
. (B3)

Then, to find the stationary points of L, we set all partial derivatives to zero. First, we differentiate L with respect to
ϕ∗[m] for all m ∈ {0, . . . , N − 1} then set the expression to zero:

∂L
∂ϕ∗[m]

=
1
N

K

∑
j=−K

N−1

∑
n=0

e2πi∆(m−n)ϕ[n]e−2πi(j/N)(m−n) + λϕ[m] = 0 (B4)

=⇒ 1
N

K

∑
j=−K

N−1

∑
n=0

e2πi∆(n−m)ϕ[n]e−2πi(j/N)(m−n) = λϕ[m] (B5)

=⇒ 1
N

N−1

∑
n=0

e2πi∆(n−m)

(
K

∑
j=−K

e−2πi(j/N)(m−n)

)
ϕ[n] = λϕ[m] (B6)

=⇒ 1
N

N−1

∑
n=0

e2πi∆(n−m)

(
sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)

)
ϕ[n] = λϕ[m] (B7)

As is evident, the last equation is an eigenvalue equation with eigenvalue λ and eigenvector |ϕ⟩. We rewrite this
equation more concisely as follows:

B∆|ϕ⟩ = λ|ϕ⟩, (B8)

where we define the matrix B∆ as

B∆[m, n] :=
1
N

e2πi∆(n−m)

(
sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)

)
. (B9)
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FIG. A1. Preparation of Taper States. Using the algorithm outlined in App. A, we plot discrete frequency amplitudes of DPSS
tapers in the left hand column (a-d). The central lobe bandwidth of two lattice widths of the standard tophat taper is indicated
by the bracket under panel d). There are (N∗ = 5, N∗ = 7, N∗ = 13, N∗ = 21) nonzero values within the central lobe needed
for state preparation of (m∗ = 0, m∗ = 1, m∗ = 2, m∗ = 3) tapers, where N∗ ∼ 2m∗

. All values other than the central lobe
amplitudes are set to zero. We then plot the discrete inverse Fourier transform of the values in the left hand column, transforming
the DPSS tapers to the discrete time domain (e-h, center column). In the right hand column (i-l), we plot log10 of the measurement
probability density (unnormalized). The key thing to note here is the ratio of the height of the central peak to the side lobe height,
which decreases exponentially with N∗. The bandwidth of the standard tophat taper is indicated under panel l. Here, we see that
using very few classically computed parameters, it is nonetheless possible to construct a DPSS taper whose side lobes decrease
exponentially as a function of N∗.
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Next, we differentiate L with respect to the Lagrange multiplier, λ, and also set it to zero:

∂L
∂λ

=
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1 = 0 (B10)

=⇒
N−1

∑
n=0

ϕ[n]ϕ∗[n] = 1, (B11)

reproducing the normalization constraint.
Now, by plugging all the stationary points (|ϕ⟩, λ) that satisfy the conditions (B7) and (B11) into the objective

function of the original optimization problem (13), we find:

K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2 = λ. (B12)

In other words, this means that the stationary point (|ϕ⟩, λ) that maximizes the objective function is the eigenvector
of B∆ with the maximum eigenvalue λ, and this value corresponds to the success probability of the algorithm.

Appendix C: Relationship Between P-DPSS Tapers and Ideal Case Optimal Tapers

We compare the operator B∆ defined in (B9) to the bandlimiting operator BK : CN → CN described in Zhu, et al.
[ZKD+17]. Suppose K ∈ N and 2K + 1 < N. The bandlimiting operator, BK, is defined such that it zeros out the
discrete frequencies of a signal ϕ ∈ CN that lie outside of the range {−K ≡ N − K (mod N), . . . , 0, . . . , K}. Formally,
this operator does the following:

(BK (ϕ)) [m] :=
1√
N

∑
n∈S

ϕ̂[n]e
2πimn

N , (C1)

where m ∈ {0, . . . , N − 1} and S = {0, 1, . . . , K} ∪ {N − K, . . . , N − 1}. In the time domain this can be written as

(BK (ϕ)) [m] =
1
N

N−1

∑
n=0

sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)
ϕ[n]. (C2)

Note that this expression only differs from the matrix description stated in (B7) by a factor of e2πi∆(m−n) in each
summand. We now introduce the timelimiting operator TN : CN → C that is defined similarly as the following:

(TN (ϕ)) [n] :=

{
ϕ[n], n ∈ {0, 1, . . . , N − 1}
0, else.

(C3)

In [ZKD+17], it was shown that the P-DPSSs are the eigensequences of the operator TNBKTN . In other words, the
P-DPSSs are discrete sequences that contain a particular eigensequence that not only fulfills the time-limiting con-
straints of having non-zero values only on the indices 0, 1, . . . , N − 1, but also has maximal frequency concentration
within our window of interest, 2K + 1. Notice that the time-limiting property and the property of having maximal
frequency concentration around 2K + 1 lattice points are the same properties that we want the optimal tapers to
possess. These similarities make it interesting for us to study the eigenvalue spectrum of the P-DPSSs because it may
suggest an upper bound on what we can do with our ideal tapers. The bounds for the eigenvalues of the P-DPSS’s
with respect to the operator TNBKTN , proven in [ZKD+17] , are stated in the following theorem, which we restate
with our notation.

Theorem C.1. [ZKD+17, Theorem 1] Suppose K, N ∈ N and W = 2K+1
2N < 1

2 . Also, suppose that λ(i) is the ith largest

eigenvalue of TNBKTN . Then for any ϵ ∈
(

0, 1
2

)
, we have

λ(2⌊NW⌋−⌈R(N,ϵ)⌉) ≥ 1 − ϵ, (C4)

where

R(N, ϵ) =

(
4

π2 log(8N) + 6
)

log
(

16
ϵ

)
+ 2 max

− log
(

π
32

((
N

N−1

)2
− 1
)

ϵ

)
log
(

N
N−1

) , 0

 . (C5)
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Although, Thm. C.1 is stated for the matrix that corresponds to TNBKTN , the authors of [ZKD+17] showed that
the eigenvalues of TNBKTN and BK are the same. Note that the matrix representation of the eigenvalue equation
given by (B7) differs from the matrix representation of BK by some complex phase. However, we demonstrate in the
following proposition that they share the same spectrum by showing that we can adapt the eigensequences of BK
to obtain the eigensequences that satisfy (B7). In other words, we can use the analytical bounds for the eigenvalues
of the P-DPSSs to bound the eigenvalues for our ideal tapers. Below, we refer to ϕ∆

i , the eigenvector of the operator
described in (B7) with eigenvalue λ(i), as the quantum periodic discrete prolate spheroidal sequence (QP-DPSS),
where − 1

2N ≤ ∆ ≤ 1
2N .

Proposition C.1. Suppose {(λ(i), ψi)}i represents the set of eigenvalues and eigensequences of BK. Then, for some − 1
2N ≤

∆ ≤ 1
2N , {(λ(i), ϕ∆

i )}i is the set of eigenvalues and eigensequences of B∆ given in (B9), where

ϕ∆
i [n] = e2πi∆nψi[n]. (C6)

Proof. We first restate the eigenvalue equation described in (B7) with the proposed eigensequence, ϕ∆
i [n].

1
N ∑

n
e2πi∆(m−n)

(
sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)

)
ϕ∆

i [n]

=
1
N ∑

n
e2πi∆(m−n)

(
sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)

)
e2πi∆nψi[n] (C7)

=
e2πi∆m

N ∑
n

(
sin (π(m − n)(2K + 1)/N)

sin (π(m − n)/N)

)
ψi[n] (C8)

= e2πi∆mλ(i)ψi[m] (C9)

= λ(i)ϕ∆
i [m] (C10)

where the second to last equality follows from the fact that ψi is an eigensequence of BK with eigenvalue λ(i). This
concludes the proof.

Note that the eigensequences {ϕ∆
i }i are what we refer to as QP-DPSSs in the main text. It is clear from the de-

velopment above that transforming the tophat taper in the way shown in (C6) would give us a taper that would
succeed with probability 1. In fact, it is known that the P-DPSSs have up to 2K + 1 eigensequences with eigenvalue
1. While such a transformation would be amazing, we remark that it requires explicit knowledge of ∆ which is
not something that we can reasonably assume to possess (i.e. it would assume knowledge of the phase that we are
trying to determine). Nevertheless, we provide some further discussion below to allow the reader to understand the
deeper connections between P-DPSSs and optimal quantum tapers. In particular, we note that it may be possible to
construct optimal tapers with greater efficiency by taking linear combinations of optimal tapers due to the possibility
of the existence of a much more efficient description of the tapers. In fact, if one is willing to give up on the goal of
achieving a success probability of 1, there are possibly other tapers with a much more efficient representation. From
the development above in Thm. C.1 and Prop. C.1, we have the following result.

Corollary C.1. Given N = 2l+m, where l is the number of qubits needed to encode the target phase and m is the number of
extra qubits necessary to guarantee that with probability at least 1 − ϵ, the desired precision will be met. Using the QP-DPSS
taper with the largest eigenvalue, we have

m = O (log log 1/δ + log log 1/ϵ) . (C11)

Proof. We are interested in the largest eigenvalue, i.e., λ(0). Therefore, from (C4), we first set 2⌊NW⌋ − ⌈R(N, ϵ)⌉ = 0
to obtain ⌈R(N, ϵ)⌉ = 2⌊NW⌋ ≤ 2NW. For all N ≥ 2, the first term in (C5) dominates and therefore, (C5) reduces to

R(N, ϵ) = O
(

log
(

1
ϵ

)
log N

)
. (C12)

This naturally implies that

NW = O
(

log
(

1
ϵ

)
log N

)
. (C13)
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Recall that m, the additional qubits required for a given precision, can be expressed as log (NW) because W = 2m

2l+m

is the fraction of the lattice for which the taper has significant support. This gives

2m = O
(

log
(

1
ϵ

)
log N

)
(C14)

= O ((m + l) log(1/ϵ)) (C15)
= O (m log 1/ϵ + log 1/δ log 1/ϵ) (C16)

=⇒ m = O (log (m log 1/ϵ + log 1/δ log 1/ϵ)) (C17)

= O
(

log (log 1/δ log 1/ϵ) +
m log 1/ϵ

log 1/δ log 1/ϵ

)
(C18)

= O
(

log (log 1/δ log 1/ϵ) +
m

log 1/δ

)
(C19)

=⇒ m − O
(

m
log 1/δ

)
= O (log (log 1/δ log 1/ϵ)) (C20)

=⇒ m =
O (log (log 1/δ log 1/ϵ))

1 − O
(

1
log 1/δ

) (C21)

= O (log log 1/δ + log log 1/ϵ) . (C22)

The second equality follows by substituting N = 2l+m. The fifth equality follows from the fact that log(x + y) ≤
log(x) + y/x for all x, y > 0. This concludes the proof.

Appendix D: Average-Case

For ease of reference, we restate the Lagrangian corresponding to the average case from the main text below:

Lavg (|ϕ⟩, λ) = E∆∼D

[
K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2
]
+ λ

(
N−1

∑
n=0

|ϕ[n]|2 − 1

)
. (D1)

As mentioned before, we focus on the case where ∆ is uniformly distributed over the interval [− 1
2N , 1

2N ], i.e., D is
the uniform distribution over this interval. It is reasonable to make this assumption since it is unlikely that the phase
values are influenced in a way such that they lie away or close to the lattice points in a systematic way. However, it is
possible to generalize the subsequent analysis for other probability distributions, such as the Gaussian distribution.

Please note that the analysis below follows a similar approach outlined in App. B. Now, consider the following:

Lavg (|ϕ⟩, λ) (D2)

=
∫ 1

2N

− 1
2N

d∆N
K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2 − λ

(
N−1

∑
n=0

|ϕ[n]|2 − 1

)
(D3)

=
1
N

∫ 1
2N

− 1
2N

d∆N
K

∑
j=−K

N−1

∑
n,n′=0

ϕ[n]ϕ∗[n′]e2πi(∆+ j
N )(n−n′) − λ

(
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1

)
(D4)

=
N−1

∑
n,n′=0

ϕ[n]ϕ∗[n′]
∫ 1

2N

− 1
2N

d∆e2πi∆(n−n′) ∑
j

e−2πi(j/N)(n′−n) − λ

(
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1

)
(D5)

=
N−1

∑
n,n′=0

ϕ[n]ϕ∗[n′]
sin (2π (1/2N) (n′ − n))

π(n′ − n)
sin (π(n′ − n)(2K + 1)/N)

sin (π(n′ − n)/N)
− λ

(
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1

)
(D6)

=
N−1

∑
n,n′=0

ϕ[n]ϕ∗[n′]
sin (π(n′ − n)(2K + 1)/N)

π(n′ − n)︸ ︷︷ ︸
=:C(n,n′)

−λ

(
N−1

∑
n=0

ϕ[n]ϕ∗[n]− 1

)
(D7)
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Then, to find stationary points of Lavg, we set all of its partial derivatives to zero. First, we differentiate Lavg with
respect to ϕ∗[m] for all m ∈ {0, . . . , N − 1} and set it to zero:

∂Lavg

∂ϕ∗[m]
=

N−1

∑
n=0

ϕ[n]C(n, m)− λϕ[m] = 0 (D8)

=⇒
N−1

∑
n=0

ϕ[n]C(n, m) = λϕ[m]. (D9)

Note that the above equation is an eigenvalue equation, and its eigenvectors are DPSSs, previously studied in classi-
cal signal processing [Sle78]. Next, differentiating L with respect to the Lagrange multiplier λ and setting it to zero
leads to the normalization constraint for the taper:

∂Lavg

∂λ
= −

N−1

∑
n=0

ϕ[n]ϕ∗[n] + 1 = 0 (D10)

=⇒
N−1

∑
n=0

ϕ[n]ϕ∗[n] = 1, (D11)

Next, by plugging all the stationary points (|ϕ⟩, λ) that satisfy the conditions (D9) and (D11) into the objective
function of Lavg, we get the following:

E∆∼D

[
K

∑
j=−K

∣∣∣∣ϕ̂(∆ +
j

N

)∣∣∣∣2
]
= λ. (D12)

In other words, this means that the stationary point (|ϕ⟩, λ) that maximizes the objective function is the eigenvec-
tor of C with the maximum eigenvalue λ. This corresponds to the DPSS with the maximum eigenvalue, which
additionally corresponds to the success probability of the algorithm.

Appendix E: Classical Signal Analysis Derivation of DPSS as Optimal Tapers

Following [Sle78, KRD21], the discrete time Fourier transform (DTFT), x̂ ∈ L2([− 1
2 , 1

2 ]), of a discrete signal, x ∈
l2(Z), is given by

x̂( f ) :=
∞

∑
n=−∞

x[n]e−2πi f n, f ∈
[
−1

2
,

1
2

]
, (E1)

with the inverse transform given by

x[n] =
∫ 1

2

− 1
2

x̂( f )e2πi f nd f . (E2)

From these definitions, we can see that x, x′ ∈ l2(Z) satisfy the Parseval-Plancherel inequality, ⟨x, x′⟩l2(Z) =

⟨x̂, x̂′⟩L2([−1/2,1/2]). Here, we denote ⟨·, ·⟩A as the inner product defined on the vector space A. We say that x ∈ l2(Z)

is time-limited to n ∈ {0, . . . , N − 1} if x[n] = 0 for all n ∈ Z\{0, . . . , N − 1}. Furthermore, we say that x ∈ l2(Z) is
band-limited to | f | ≤ W if x̂( f ) = 0 for | f | > W, where W ∈ (0, 1/2).

The aim here is to find discrete functions x[n] that are time-limited to n ∈ {0, . . . , N − 1} and are maximally
band-limited to the frequency band | f | ≤ W. We can formulate this as an optimization problem in the following
way:

max
x∈l2(Z)

∫ W

−W
|x̂( f )|2d f (E3)

subject to ∥x∥2
l2(Z) = 1, (E4)

x[n] = 0 for all n ∈ Z\{0, . . . , N − 1}. (E5)
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We can simplify things conceptually by defining the following two operators: the time-limiting operator TN as

(TN x)[n] :=
{

x[n] if n ∈ {0, . . . , N − 1}
0 if n ∈ Z\{0, . . . , N − 1} (E6)

and the band-limiting operator BW as

(BW x)[n] :=
∞

∑
l=−∞

sin[2W(l − n)]
π(l − n)

x[l] for n ∈ Z . (E7)

Note that the DTFT of the band-limiting operator is B̂W x( f ) = x̂( f ) for | f | ≤ W and B̂W x( f ) = 0 for | f | > W.
With these definitions, we see that the integral in (E3) can be represented as∫ W

−W
|x̂( f )|2d f = ⟨x̂, B̂W x⟩L2([− 1

2 , 1
2 ])

. (E8)

From the Parseval-Plancherel theorem, we have

⟨x̂, B̂W x⟩L2([− 1
2 , 1

2 ])
= ⟨x,BW x⟩l2(Z) . (E9)

And then

⟨x,BW x⟩l2(Z) = ⟨TN x,BWTN x⟩l2(Z) (E10)

= ⟨x, TNBWTN x⟩l2(Z) , (E11)

with the last expression, (E11), holding because TN is self-adjoint.
From (E3), (E8), and (E11), we can see that the eigenvector, ϕ0, corresponding to the maximum eigenvalue, λ0, of

the matrix given by

[TNBWTN ]l,n =
sin(2πW(l − n))

π(l − n)
; l, n ∈ {0, . . . , N − 1} (E12)

solves the maximization problem. This classical signal processing result gives the same optimal tapers that we find
above for the quantum average-case optimal taper.
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