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ON PARTIALLY AMPLE ULRICH BUNDLES
ANGELO FELICE LOPEZ AND DEBADITYA RAYCHAUDHURY

ABSTRACT. We characterize g-ample Ulrich bundles on a variety X C PV with respect to (g + 1)-
dimensional linear spaces contained in X.

1. INTRODUCTION

Let X C PV be a smooth variety of dimension n > 1. The study of positivity properties of vector
bundles £ on X is a classical one. Starting with Hartshorne’s pioneering paper [H], several positivity
notions have been introduced, among which, perhaps, the most important one is ampleness. The latter
amounts to say that the tautological line bundle O]p(g)(l) is ample. One possible weakening of this
notion, so that some properties are maintained, is g-ampleness, that we now recall (see for example
[To] and references therein).

Definition 1.1. Let ¢ > 0 and let £ be a line bundle on a scheme Y. We say that £ is g-ample if for
every coherent sheaf F on Y, there exists an integer mg > 0 such that H'(F(mL)) = 0 for m > my
and i > ¢. Let £ be a vector bundle on Y. We say that £ is g-ample if Opg)(1) is g-ample.

In this paper we are interested in studying the above notion for a special class of vector bundles,
namely for Ulrich bundles, that is bundles £ such that H(E(—p)) = 0 for all i > 0 and 1 < p < n.
The importance of Ulrich bundles is well-known (see for example [ES, Be, CMRPL] and references
therein). Positivity properties of Ulrich bundles have been studied recently [L, LM, LS, LMS1, LMS2].
In particular, in [L.S, Thm. 1], we showed that an Ulrich bundle £ is ample (that is 0-ample) if and only
if either X does not contain lines or £, is ample on any line L C X. We prove here a generalization of
this result.

Theorem 1.
Let X C PV be a smooth variety of dimension n > 1. Let £ be an Ulrich vector bundle and let ¢ > 0
be an integer. Then the following are equivalent:
(i) &€ is g-ample;
(ii) either X does not contain a linear space of dimension q+1, or & does mot have a trivial direct
summand for every linear space M C X of dimension q + 1;
(iii) either X does not contain a linear space of dimension q+ 1, or ho(é"*M) = 0 for every linear
space M C X of dimension q + 1.

We also have the following consequence.

Corollary 1. Let £ be an Ulrich vector bundle on X C PN. Then:
(i) & is (n — 1)-ample if and only if (X,0x(1),E) # (P, Opn (1), Op1).
(i) If n > 2,(X,0x(1),&) # (P*,Opn (1), Ogi) and p(X) = 1, then € is (n — 2)-ample.
In recent years, positivity of vector bundles have been measured by augmented and restricted base

loci (see for example [BKKMSU, FM]). In the last section we will ask a question about augmented
base loci of Ulrich bundles arising from the above theorem.

2. NOTATION

Throughout the paper we work over the field C of complex numbers. A wvariety is by definition an
integral separated scheme of finite type over C.
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3. GENERALITIES ON VECTOR BUNDLES

In this section we collect some general facts about vector bundles and some notation that will be
used later.

Definition 3.1. Let £ be a rank r vector bundle on X. We set P(£) = Proj(Sym(€)) with projection
map 7 : P(€) — X and tautological line bundle Opg)(1). If £ is globally generated we define the map
determined by |Opg)(1)| as

P = e = Pope, 1) PIE) = PHY(E)
and we set
I, = 7(¢~ '),y € (P(€)) and Py = p(P(&y)),z € X.
We also define the map determined by £ as
d=0s: X = G(r—1,PHE))
given, for any x € X, by ®(z) = [P,] € G(r — 1,PHY(&)).

We record some simple but useful facts. The first one is essentially contained in [Tg, Proof of Lemma
2.4, page 426]".

Lemma 3.2. Let V' be a vector space and let P € PV be a point. Let Y C G(k,PV) be a subvariety
such that, for every y € Y, the corresponding k-plane contains P. If U is the universal subbundle of
G(k,PV), then Uy = Oy © G, for some rank k vector bundle G on Y.

Proof. The assertion being obvious if dimV = 1, we assume that dimV > 2. Let P = PV, where
Vi C V is 1-dimensional and choose a splitting V' = V; & V/. We have a closed embedding j :
G(k —1,V') < G(k,V) defined by j([W]) = [Vi & W], where Vi @ W C V, or, equivalently, j is the
morphism associated to the vector bundle Og—1,y7) @ (U')*, where U’ is the universal subbundle of
G(k—1,V'). Let Gp = {[U] € G(k,V) : P € PU}. Then j defines an isomorphism G(k — 1,V’) = Gp,
hence

Uecp = 57U = Og(—1yny OU' = O, ® G
for some rank k vector bundle G’ on Gp. Since Y C G p, we get that U|y = Oy &G, where G = g"y. O

Lemma 3.3. Let £ be a globally generated rank r vector bundle on X.
(i) For every x € X the restriction morphism ppe,) : P(E;) — Py is an isomorphism onto a linear
subspace of dimension r — 1 in PHC(E).
Now let y € o(P(E)). Then:
(ii) mp-1(y) : 0 Yy) = X is a closed embedding.
(iii) 5|Hy = On, © G, for some rank r — 1 vector bundle G on 11,,.

Proof. To see (i), observe that we have P(E,) = P"~! and Ope)(Dpe,) = Opr-1(1). Let
W = Tm{H(Op(e)(1)) = H*(Opr—1(1))}.

Being Op(¢)(1) globally generated, we have that so is W, hence dimW > r. It follows that W =
H°(Opr-1(1)) and PIP(E,) = POy, (1) Is an isomorphism onto its image, which is then a linear subspace
of dimension 7 —1 in PH?(&). This proves (i) and then (i) implies that  and its differential are injective
on the fibers of ¢, proving (ii). As for (iii), set M = II, and consider the globally generated rank r
vector bundle & on M. Let

U =Im{H’(Op(g)(1)) — HO(OJP’(S‘M)(D}

ISec also  https://mathoverflow.net/questions/395472/trivial-subbundle-of-universal-bundle-on-the-grassmannian-
mathbbgk-n.
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so that @pe,,) = U : P(&n) — PU. Set @y = Pg,,, oM = g, and, for any z € M, Py =
©m (P((E)ar)z). We have a commutative diagram

P(E ) — > onm(P(Enr)) € PHO(E )

T ]

ou(P(&n)) CPU

where p is a finite map. For any x € M, there is a z € ¢~ !(y) such that x = 7(z). Hence z € P(£,) =
P((/a)e) and therefore y = ¢(2) = ¢u(z) = plenm(z)), so that ou(z) € p~'(y) N Pare. Therefore
each (r — 1)-plane Py, passes through one of the points of p~!(y). On the other hand, the family of
these (r — 1)-planes is just @5 (M) C G(r — 1,PH0(5‘M)), thus it is irreducible. Since p~!(y) is finite
and the condition of passing through a point is closed, we deduce that there is a point yy;s € PH 0(5| M)
such that yas € Py for every x € M. Set Y = ®y(M) € G(r — 1,PH°(€5)). It follows by Lemma
3.2 that Z/{E/ = Oy @ G, for some rank r — 1 vector bundle G on Y. Since & = ®},U", this proves
(i) O

4. g-AMPLE VECTOR BUNDLES
We discuss some generalities on g-ample vector bundles.
Definition 4.1. Let £ be a vector bundle on X. We set ¢min(£) = min{q > 0 : £ is g-ample}.
The definition of guin(€) implies that £ is g-ample if and only if ¢ > gumin(E).

Remark 4.2. We have:

(i) If &€ is a globally generated vector bundle on X, then £ is g-ample if and only if dim F' < ¢ for
every fiber F of ¢ = gg : P(£) — PHO(E).

(ii) If € is globally generated, then it is n-ample. Also n+ 7 —1 —v(€) < gmin(€) < n, where r is
the rank of £ and v(€) is the numerical dimension of Opg)(1).

Proof. (i) is just [S, Prop. 1.7]. The first part of (ii) follows either by [S, Prop. 1.7] or by (i), since
dim ¢! (y) = dimII, < n for every y € p(P(€)). Thus ¢min(£) < n. Since £ is gmin(€)-ample, for any
fiber F of ¢, we have by (i) that n+r — 1 — () < dim F < gin(€). This proves (ii). O

We have the following characterization, which is a special case of [S, Prop. 1.7].

Proposition 4.3. Let X be a smooth variety of dimension n > 1. Let € be a globally generated vector
bundle on X and let ¢ > 0 be an integer. Then the following are equivalent:
(i) &€ is g-ample;
(ii) &z does not have a trivial direct summand for every subvariety Z C X of dimension q + 1;
(iii) ho(é"*Z) =0 for every subvariety Z C X of dimension q + 1.

Proof. The equivalence (ii)-(iii) follows by [O, Lemma 3.9]. As for the equivalence (i)-(ii), assume first
that £z does not have a trivial direct summand for every subvariety Z C X of dimension ¢ + 1. If
£ is not g-ample, there exists by Remark 4.2(i) an y € ¢(P(£)) such that dimp~t(y) > ¢+ 1. Set
M =1I,. By Lemma 3.3(ii) we have that M = ¢~1(y), hence dim M > ¢ + 1. Also, Lemma 3.3(iii)
implies that £3; = O @ G, for some vector bundle G on M. But then, for any subvariety Z C M with
dim Z = g + 1, we have that £z = Oz @ G|z, contradicting the hypothesis. Vice versa, assume that £
is g-ample and let Z C X be a subvariety of dimension ¢+ 1. If £z = Oz @ G, for some vector bundle
G on Z, then Z = P(Oz) CP(z) CP(€) and

Ore)(V)ip0,) = Oprg ) (Dip(02) = Or0,) (1) = Oz

hence p(P(Oz)) is a point. Therefore ¢ has a fiber of dimension at least ¢ + 1, contradicting Remark
1.2(i). 0
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5. PROOFS OF THE MAIN RESULTS

In the case of Ulrich vector bundles, we can do better than Proposition 4.3.

Proof of Theorem 1. Recall that £ is globally generated since it is O-regular. The equivalence (ii)-(iii)
follows by [O, Lemma 3.9]. As for the equivalence (i)-(ii), assume first that £ is g-ample. Then either
X does not contain a linear space of dimension g+ 1 or it follows by Proposition 4.3 that &, does not
have a trivial direct summand for every linear space M C X of dimension ¢ + 1. To see the converse,
let y € p(P(€)) and let I, = m(p~1(y)), so that IT, = »~!(y) by Lemma 3.3(ii). By [LS, Thm. 2] we
have that II, is a linear space contained in X. Now, if X does not contain a linear space of dimension
q + 1, then dim¢~!(y) = dimII, < g for every y € ¢(P()). Hence & is g-ample by Remark 4.2(i).
On the other hand, assume that &, does not have a trivial direct summand for every linear space
M C X of dimension g+ 1. If £ is not g-ample, there exists by Remark 4.2(i) an y € ¢(P(€)) such that
dim ¢~!(y) > ¢+ 1. Hence dim Il, > ¢+ 1, and picking a linear subspace M C II, with dim M = ¢ +1,
we get a contradiction by Lemma 3.3(iii). O

We also have.

Proof of Corollary 1. First we prove (i). If £ is not (n — 1)-ample, then it follows by Theorem 1 that
X =P*"and &€ = Ox & G, for some vector bundle G on X. But then Ox is Ulrich and therefore
(X,0x(1),&) = (P",Opn (1), Opr) by [ACLR, Lemma 4.2](vi) and [ES, Prop. 2.1] (or [Be, Thm. 2.3]).
On the other hand, if (X,0x(1),€) = (P, Opn(1),057), then P() = PT1 x P" and ¢ = m :
P~ x P* — P'~! has n-dimensional fibers, hence Og is not (n — 1)-ample by Remark 4.2(i). This
proves (i). As for (ii), using Theorem 1, we just need to prove that X C PY does not contain linear
spaces of dimension n — 1 unless (X, Ox(1),€) = (P*,Opn (1), Ofr). To this end, let A be the ample
generator of N'(X) and let H € |Ox(1)], so that H = hA. If X contains a linear space M of dimension
n — 1, then M = aA for some integer a > 1, and therefore

1=MH" 1 =ah" A"

hence a = h = A" = 1 and then H" = 1, so that (X,0x(1),&) = (P", Opn (1), Opr) by [ES, Prop. 2.1]
(or [Be, Thm. 2.3]). This proves (ii). O

6. AUGMENTED BASE LOCI OF ULRICH BUNDLES

Given a vector bundle &, it follows by [BKKMSU, Thm. 1.1] that B4 (€) # 0 if and only if £ is
not ample if and only if £ is not O-ample. More generally, given ¢ > 0, we have by Proposition 4.3
that & is not g-ample if and only if there exists a subvariety Z C X of dimension ¢ + 1 such that &z
has a trivial direct summand. For any such subvariety, we have that Z = P(Oz) C P(£) and, since
OP((‘))(l)\P(OZ) = Op(@z)(l) = Oz, it follows that P(Oz) - B+(Op(5)(1)) If w: P(E) — X is the
natural map, then [BKKMSU, Prop. 3.2] implies that

Z =m(P(Oz)) € m(B4(Ope)(1))) = B(£).

It is well-known, using for example [BBP, Prop. 2.3], that one cannot expect, in general, that B (&)
is the union of all such Z’s, already in the case of line bundles.

Now assume that € is Ulrich and not ample. It follows by [LS, Thm. 1] that there is a line L C X
such that £z, is not ample. It was recently proved by Buttinelli [Bu, Thm. 2] that

B.(&)=JL
L

where L runs among all lines contained in X such that &7, is not ample. Equivalently L runs among
all lines contained in X such that & has a trivial direct summand. This is the case ¢ = 0 of a more
general question. In fact, when £ is not g-ample, we have by Theorem 1 that there is a linear space
M C X of dimension g + 1 such that &), has a trivial direct summand. As above, this implies that
M C B4 (€). Question: is B4 (€) the union of all such M’s?
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