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ON PARTIALLY AMPLE ULRICH BUNDLES

ANGELO FELICE LOPEZ AND DEBADITYA RAYCHAUDHURY

Abstract. We characterize q-ample Ulrich bundles on a variety X ⊆ P
N with respect to (q + 1)-

dimensional linear spaces contained in X.

1. Introduction

Let X ⊆ P
N be a smooth variety of dimension n ≥ 1. The study of positivity properties of vector

bundles E on X is a classical one. Starting with Hartshorne’s pioneering paper [H], several positivity
notions have been introduced, among which, perhaps, the most important one is ampleness. The latter
amounts to say that the tautological line bundle OP(E)(1) is ample. One possible weakening of this
notion, so that some properties are maintained, is q-ampleness, that we now recall (see for example
[To] and references therein).

Definition 1.1. Let q ≥ 0 and let L be a line bundle on a scheme Y . We say that L is q-ample if for
every coherent sheaf F on Y , there exists an integer m0 > 0 such that H i(F(mL)) = 0 for m ≥ m0

and i > q. Let E be a vector bundle on Y . We say that E is q-ample if OP(E)(1) is q-ample.

In this paper we are interested in studying the above notion for a special class of vector bundles,
namely for Ulrich bundles, that is bundles E such that H i(E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ n.
The importance of Ulrich bundles is well-known (see for example [ES, Be, CMRPL] and references
therein). Positivity properties of Ulrich bundles have been studied recently [L, LM, LS, LMS1, LMS2].
In particular, in [LS, Thm. 1], we showed that an Ulrich bundle E is ample (that is 0-ample) if and only
if either X does not contain lines or E|L is ample on any line L ⊂ X. We prove here a generalization of
this result.

Theorem 1.

Let X ⊂ P
N be a smooth variety of dimension n ≥ 1. Let E be an Ulrich vector bundle and let q ≥ 0

be an integer. Then the following are equivalent:

(i) E is q-ample;

(ii) either X does not contain a linear space of dimension q+1, or E|M does not have a trivial direct

summand for every linear space M ⊆ X of dimension q + 1;
(iii) either X does not contain a linear space of dimension q + 1, or h0(E∗

|M ) = 0 for every linear

space M ⊆ X of dimension q + 1.

We also have the following consequence.

Corollary 1. Let E be an Ulrich vector bundle on X ⊆ P
N . Then:

(i) E is (n− 1)-ample if and only if (X,OX (1), E) 6= (Pn,OPn(1),O⊕r
Pn ).

(ii) If n ≥ 2, (X,OX (1), E) 6= (Pn,OPn(1),O⊕r
Pn ) and ρ(X) = 1, then E is (n− 2)-ample.

In recent years, positivity of vector bundles have been measured by augmented and restricted base
loci (see for example [BKKMSU, FM]). In the last section we will ask a question about augmented
base loci of Ulrich bundles arising from the above theorem.

2. Notation

Throughout the paper we work over the field C of complex numbers. A variety is by definition an
integral separated scheme of finite type over C.
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3. Generalities on vector bundles

In this section we collect some general facts about vector bundles and some notation that will be
used later.

Definition 3.1. Let E be a rank r vector bundle on X. We set P(E) = Proj(Sym(E)) with projection
map π : P(E) → X and tautological line bundle OP(E)(1). If E is globally generated we define the map
determined by |OP(E)(1)| as

ϕ = ϕE = ϕOP(E)(1) : P(E) → PH0(E)

and we set

Πy = π(ϕ−1(y)), y ∈ ϕ(P(E)) and Px = ϕ(P(Ex)), x ∈ X.

We also define the map determined by E as

Φ = ΦE : X → G(r − 1,PH0(E))

given, for any x ∈ X, by Φ(x) = [Px] ∈ G(r − 1,PH0(E)).

We record some simple but useful facts. The first one is essentially contained in [Tg, Proof of Lemma
2.4, page 426]1.

Lemma 3.2. Let V be a vector space and let P ∈ PV be a point. Let Y ⊂ G(k,PV ) be a subvariety

such that, for every y ∈ Y , the corresponding k-plane contains P . If U is the universal subbundle of

G(k,PV ), then U|Y
∼= OY ⊕ G, for some rank k vector bundle G on Y .

Proof. The assertion being obvious if dimV = 1, we assume that dimV ≥ 2. Let P = PV1, where
V1 ⊆ V is 1-dimensional and choose a splitting V = V1 ⊕ V ′. We have a closed embedding j :
G(k − 1, V ′) →֒ G(k, V ) defined by j([W ]) = [V1 ⊕W ], where V1 ⊕W ⊂ V , or, equivalently, j is the
morphism associated to the vector bundle OG(k−1,V ′) ⊕ (U ′)∗, where U ′ is the universal subbundle of

G(k − 1, V ′). Let GP = {[U ] ∈ G(k, V ) : P ∈ PU}. Then j defines an isomorphism G(k − 1, V ′) ∼= GP ,
hence

U|GP
∼= j∗U ∼= OG(k−1,V ′) ⊕ U ′ ∼= OGP

⊕ G′

for some rank k vector bundle G′ on GP . Since Y ⊆ GP , we get that U|Y
∼= OY ⊕G, where G = G′

|Y . �

Lemma 3.3. Let E be a globally generated rank r vector bundle on X.

(i) For every x ∈ X the restriction morphism ϕ|P(Ex) : P(Ex) → Px is an isomorphism onto a linear

subspace of dimension r − 1 in PH0(E).

Now let y ∈ ϕ(P(E)). Then:

(ii) π|ϕ−1(y) : ϕ
−1(y) → X is a closed embedding.

(iii) E|Πy
∼= OΠy ⊕ G, for some rank r − 1 vector bundle G on Πy.

Proof. To see (i), observe that we have P(Ex) ∼= P
r−1 and OP(E)(1)|P(Ex)

∼= OPr−1(1). Let

W = Im{H0(OP(E)(1)) → H0(OPr−1(1))}.

Being OP(E)(1) globally generated, we have that so is W , hence dimW ≥ r. It follows that W =

H0(OPr−1(1)) and ϕ|P(Ex) = ϕO
Pr−1 (1) is an isomorphism onto its image, which is then a linear subspace

of dimension r−1 in PH0(E). This proves (i) and then (i) implies that π and its differential are injective
on the fibers of ϕ, proving (ii). As for (iii), set M = Πy and consider the globally generated rank r

vector bundle E|M on M . Let

U = Im{H0(OP(E)(1)) → H0(OP(E|M )(1)}

1See also https://mathoverflow.net/questions/395472/trivial-subbundle-of-universal-bundle-on-the-grassmannian-
mathbbgk-n.
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so that ϕ|P(E|M ) = ϕU : P(E|M) → PU . Set ΦM = ΦE|M , ϕM = ϕE|M and, for any x ∈ M , PM,x =

ϕM (P((E|M )x). We have a commutative diagram

P(E|M)

ϕU
((❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

❘

ϕM
// ϕM (P(E|M)) ⊂ PH0(E|M )

p

��

ϕU (P(E|M)) ⊂ PU

where p is a finite map. For any x ∈ M , there is a z ∈ ϕ−1(y) such that x = π(z). Hence z ∈ P(Ex) =
P((E|M )x) and therefore y = ϕ(z) = ϕU (z) = p(ϕM (z)), so that ϕM (z) ∈ p−1(y) ∩ PM,x. Therefore

each (r − 1)-plane PM,x passes through one of the points of p−1(y). On the other hand, the family of
these (r − 1)-planes is just ΦM(M) ⊂ G(r − 1,PH0(E|M )), thus it is irreducible. Since p−1(y) is finite

and the condition of passing through a point is closed, we deduce that there is a point yM ∈ PH0(E|M)

such that yM ∈ PM,x for every x ∈ M . Set Y = ΦM (M) ⊂ G(r − 1,PH0(E|M )). It follows by Lemma
3.2 that U∗

|Y
∼= OY ⊕ G, for some rank r − 1 vector bundle G on Y . Since E|M = Φ∗

MU∗, this proves

(iii). �

4. q-ample vector bundles

We discuss some generalities on q-ample vector bundles.

Definition 4.1. Let E be a vector bundle on X. We set qmin(E) = min{q ≥ 0 : E is q-ample}.

The definition of qmin(E) implies that E is q-ample if and only if q ≥ qmin(E).

Remark 4.2. We have:

(i) If E is a globally generated vector bundle on X, then E is q-ample if and only if dimF ≤ q for
every fiber F of ϕ = ϕE : P(E) → PH0(E).

(ii) If E is globally generated, then it is n-ample. Also n + r − 1 − ν(E) ≤ qmin(E) ≤ n, where r is
the rank of E and ν(E) is the numerical dimension of OP(E)(1).

Proof. (i) is just [S, Prop. 1.7]. The first part of (ii) follows either by [S, Prop. 1.7] or by (i), since
dimϕ−1(y) = dimΠy ≤ n for every y ∈ ϕ(P(E)). Thus qmin(E) ≤ n. Since E is qmin(E)-ample, for any
fiber F of ϕ, we have by (i) that n+ r − 1− ν(E) ≤ dimF ≤ qmin(E). This proves (ii). �

We have the following characterization, which is a special case of [S, Prop. 1.7].

Proposition 4.3. Let X be a smooth variety of dimension n ≥ 1. Let E be a globally generated vector

bundle on X and let q ≥ 0 be an integer. Then the following are equivalent:

(i) E is q-ample;

(ii) E|Z does not have a trivial direct summand for every subvariety Z ⊆ X of dimension q + 1;

(iii) h0(E∗
|Z) = 0 for every subvariety Z ⊆ X of dimension q + 1.

Proof. The equivalence (ii)-(iii) follows by [O, Lemma 3.9]. As for the equivalence (i)-(ii), assume first
that E|Z does not have a trivial direct summand for every subvariety Z ⊆ X of dimension q + 1. If

E is not q-ample, there exists by Remark 4.2(i) an y ∈ ϕ(P(E)) such that dimϕ−1(y) ≥ q + 1. Set
M = Πy. By Lemma 3.3(ii) we have that M ∼= ϕ−1(y), hence dimM ≥ q + 1. Also, Lemma 3.3(iii)
implies that E|M ∼= OM ⊕G, for some vector bundle G on M . But then, for any subvariety Z ⊆ M with
dimZ = q + 1, we have that E|Z ∼= OZ ⊕ G|Z , contradicting the hypothesis. Vice versa, assume that E
is q-ample and let Z ⊆ X be a subvariety of dimension q + 1. If E|Z ∼= OZ ⊕ G, for some vector bundle
G on Z, then Z ∼= P(OZ) ⊆ P(E|Z) ⊆ P(E) and

OP(E)(1)|P(OZ )
∼= OP(E|Z )(1)|P(OZ )

∼= OP(OZ)(1) ∼= OZ

hence ϕ(P(OZ)) is a point. Therefore ϕ has a fiber of dimension at least q + 1, contradicting Remark
4.2(i). �
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5. Proofs of the main results

In the case of Ulrich vector bundles, we can do better than Proposition 4.3.

Proof of Theorem 1. Recall that E is globally generated since it is 0-regular. The equivalence (ii)-(iii)
follows by [O, Lemma 3.9]. As for the equivalence (i)-(ii), assume first that E is q-ample. Then either
X does not contain a linear space of dimension q+1 or it follows by Proposition 4.3 that E|M does not
have a trivial direct summand for every linear space M ⊆ X of dimension q + 1. To see the converse,
let y ∈ ϕ(P(E)) and let Πy = π(ϕ−1(y)), so that Πy

∼= ϕ−1(y) by Lemma 3.3(ii). By [LS, Thm. 2] we
have that Πy is a linear space contained in X. Now, if X does not contain a linear space of dimension
q + 1, then dimϕ−1(y) = dimΠy ≤ q for every y ∈ ϕ(P(E)). Hence E is q-ample by Remark 4.2(i).
On the other hand, assume that E|M does not have a trivial direct summand for every linear space
M ⊆ X of dimension q+1. If E is not q-ample, there exists by Remark 4.2(i) an y ∈ ϕ(P(E)) such that
dimϕ−1(y) ≥ q+1. Hence dimΠy ≥ q+1, and picking a linear subspace M ⊆ Πy with dimM = q+1,
we get a contradiction by Lemma 3.3(iii). �

We also have.

Proof of Corollary 1. First we prove (i). If E is not (n − 1)-ample, then it follows by Theorem 1 that
X = P

n and E ∼= OX ⊕ G, for some vector bundle G on X. But then OX is Ulrich and therefore
(X,OX (1), E) = (Pn,OPn(1),O⊕r

Pn ) by [ACLR, Lemma 4.2](vi) and [ES, Prop. 2.1] (or [Be, Thm. 2.3]).

On the other hand, if (X,OX (1), E) = (Pn,OPn(1),O⊕r
Pn ), then P(E) ∼= P

r−1 × P
n and ϕ = π1 :

P
r−1 × P

n → P
r−1 has n-dimensional fibers, hence O⊕r

Pn is not (n − 1)-ample by Remark 4.2(i). This

proves (i). As for (ii), using Theorem 1, we just need to prove that X ⊂ P
N does not contain linear

spaces of dimension n − 1 unless (X,OX (1), E) = (Pn,OPn(1),O⊕r
Pn ). To this end, let A be the ample

generator of N1(X) and let H ∈ |OX(1)|, so that H ≡ hA. If X contains a linear space M of dimension
n− 1, then M ≡ aA for some integer a ≥ 1, and therefore

1 = MHn−1 = ahn−1An

hence a = h = An = 1 and then Hn = 1, so that (X,OX (1), E) = (Pn,OPn(1),O⊕r
Pn ) by [ES, Prop. 2.1]

(or [Be, Thm. 2.3]). This proves (ii). �

6. Augmented base loci of Ulrich bundles

Given a vector bundle E , it follows by [BKKMSU, Thm. 1.1] that B+(E) 6= ∅ if and only if E is
not ample if and only if E is not 0-ample. More generally, given q ≥ 0, we have by Proposition 4.3
that E is not q-ample if and only if there exists a subvariety Z ⊆ X of dimension q + 1 such that E|Z
has a trivial direct summand. For any such subvariety, we have that Z ∼= P(OZ) ⊆ P(E) and, since
OP(E)(1)|P(OZ ) = OP(OZ )(1) ∼= OZ , it follows that P(OZ) ⊆ B+(OP(E)(1)). If π : P(E) → X is the
natural map, then [BKKMSU, Prop. 3.2] implies that

Z = π(P(OZ)) ⊆ π(B+(OP(E)(1))) = B+(E).

It is well-known, using for example [BBP, Prop. 2.3], that one cannot expect, in general, that B+(E)
is the union of all such Z’s, already in the case of line bundles.

Now assume that E is Ulrich and not ample. It follows by [LS, Thm. 1] that there is a line L ⊆ X

such that E|L is not ample. It was recently proved by Buttinelli [Bu, Thm. 2] that

B+(E) =
⋃

L

L

where L runs among all lines contained in X such that E|L is not ample. Equivalently L runs among
all lines contained in X such that E|L has a trivial direct summand. This is the case q = 0 of a more
general question. In fact, when E is not q-ample, we have by Theorem 1 that there is a linear space
M ⊆ X of dimension q + 1 such that E|M has a trivial direct summand. As above, this implies that
M ⊆ B+(E). Question: is B+(E) the union of all such M ’s?
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Murialdo 1, 00146, Roma, Italy. e-mail angelo.lopez@mat.uniroma3.it

Debaditya Raychaudhury, Department of Mathematics, University of Arizona, 617 N Santa Rita Ave.,

Tucson, AZ 85721, USA. email: draychaudhury@math.arizona.edu


	1. Introduction
	2. Notation
	3. Generalities on vector bundles
	4. q-ample vector bundles
	5. Proofs of the main results
	6. Augmented base loci of Ulrich bundles
	References

