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Abstract

A variety of local index formulas is constructed for quantum Hamiltonians with pe-
riodic boundary conditions. All dimensions of physical space as well as many symmetry
constraints are covered, notably one-dimensional systems in Class DIII as well as two- and
three-dimensional systems in Class AII. The constructions are based on several periodic
variations of the spectral localizer and are rooted in the existence of underlying fuzzy tori.
For these latter, a general invariant theory is developed.

MSC 2010: 81R60, 37B30, 46L80, 81V70, 47S40

1 Overview

In several works [14, 15, 5] it was shown that the index pairing between K-theory and K-
homology elements can be computed as the half-signature of a suitably constructed finite di-
mensional matrix, called the spectral localizer. The main motivation for these works is the
application to topological insulators for which the bulk topological invariants (Chern numbers
and winding numbers) then become readily accessible in numerical computations. As will be
described below, the technique is based on the principle of placing the physical system in a
linearly growing Dirac trap and hence the spectral localizer is an intrinsically non-periodic ob-
ject. On the other hand, it is well-known that periodic approximations often provide stable
algorithms for bulk quantities in solid state systems (for invariants, this is described in [17]).
This work constructs new periodic versions of the spectral localizer, for sake of conciseness
referred to as periodic spectral localizers, which also allow to compute the topological invariants
numerically, possibly in a more stable manner than with the non-periodic spectral localizer
used in other works. Apart from this practical aspect, a further more theoretical insight is that
the periodic spectral localizers can be understood as the K-theory representatives of associated
fuzzy tori. Furthermore, the periodic spectral localizers may inspire extensions to interacting
systems (with periodic boundary conditions) with a computable gapped ground state.

Let us directly describe the periodic spectral localizer for a bounded tight-binding Hamil-
tonian H on the Hilbert space H = ℓ2(Zd,CL) over an even dimensional lattice Zd with L local
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degrees of freedom. This Hamiltonian is supposed to be of finite range R and periodic in space,
namely the L×L matrices ⟨x|H|y⟩ vanish for |x−y| > R and ⟨x+pjej|H|y+pjej⟩ = ⟨x|H|y⟩ for
some periods pj ∈ N in the direction of the unit vectors ej, j = 1, . . . , d. The final assumption
on H is that it describes an insulator, i.e. it has a spectral gap at the Fermi level µ. After an
energy shift, µ = 0 and the Fermi projection is P = χ(H < 0). For any such insulator it is well-
known (e.g. [18]) that there is an associated (even strong) Chern number Chd(P ) ∈ Z. This
paper provides yet another way to compute this topological invariant. Moreover, the formula
that is proven to work in the asymptotic regime of large volumes allows to associate numerical
topological invariants to rather small systems.

For that purpose, let ρ ∈ N be a system size such that 2ρ is an integer multiple of each of the
pj. Then let Hper

ρ be the restriction of H to Hρ = ℓ2((Z/(2ρZ))d,CL) with periodic boundary
conditions. Then the associated (even) periodic spectral localizer is a finite dimensional matrix
on (Hρ ⊕Hρ)⊗ Cd′ defined by

Lper

η,ρ =

(∑d
j=1

(
1− cos(π

ρ
Xj)
) ∑d

j=1 sin(
π
ρ
Xj) γ̂

∗
j∑d

j=1 sin(
π
ρ
Xj) γ̂j −

∑d
j=1

(
1− cos(π

ρ
Xj)
))+

1

η

(
−Hper

ρ 0
0 Hper

ρ

)
, (1)

where Xj are the components j = 1, . . . , d of the position operators on the lattice, furthermore
γ̂1, . . . , γ̂d−1 is a selfadjoint irreducible representation on Cd′ of the Clifford algebra with d− 1
generators, namely γ̂iγ̂j+ γ̂j γ̂i = 2 δi,j for i, j = 1, . . . , d−1, and γ̂d = ı1 with ı =

√
−1. Finally,

η > 0 is a parameter that should roughly be chosen as ∥H∥, see Remark 3 below. Note that
the first summand in (1) is the restriction of a diagonal operator onto (Hρ ⊕Hρ)⊗ Cd′ and it
is periodic in all d directions of the discrete torus (Z/(2ρZ))d ∼= Zd ∩ [−ρ+ 1, ρ]d.

Theorem 1 Let d be even and H be a finite-range periodic operator on H = ℓ2(Zd,CL). Also
let ρ ∈ N be such that 2ρ is an integer multiple of the periods and ρ ≥ 2R. Suppose

ρ ≥ C d4M ∥H∥3 η2

g6
, (2)

where g = ∥H−1∥−1, M = maxj=1,...,d ∥[Xj, H]∥, and finally C = 15 · 106. Moreover, η ≥ g
4
is

such that (
1− g

∥H∥

)2
+ 4
(
1− η

∥H∥

)
≤ g2

4 d η ∥H∥
. (3)

Then the periodic spectral localizer is gapped with lower bound

(Lper

η,ρ)
2 ≥ g2

600 d η2
1 , (4)

and the strong invariant given by the d-th Chern number of P = χ(H < 0) is equal to the
half-signature of the periodic spectral localizer, namely

Chd(P ) =
1

2
Sig(Lper

η,ρ) . (5)
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Remark 2 Let us start out by comparing the periodic spectral localizer Lper
η,ρ with the spectral

localizer Lκ,ρ used in prior works [14, 15, 5], and also explain the connection between the
two of them. The latter matrix Lκ,ρ is defined on the same finite-dimensional Hilbert space
(Hρ ⊕Hρ)⊗ Cd′ by

Lκ,ρ = κ

(
0

∑d
j=1Xj γ̂

∗
j∑d

j=1Xj γ̂j 0

)
+

(
−Hρ 0
0 Hρ

)
. (6)

Here the boundary condition on Hρ merely needs to be local, notably it can be either periodic
or simply be Dirichlet. The first matrix, without the factor κ, is called the Dirac operator D
and is off-diagonal as the dimension d is even. The spectral localizer Lκ,ρ is clearly not periodic
in the above sense because the position operators take large positive and negative values at the
boundaries of the discrete cube Zd∩ [−ρ+1, ρ]d. The main result of [15] (see also [5]) is that the
equality (5) holds with Lper

η,ρ on the r.h.s. replaced by Lκ,ρ, provided conditions on κ and ρ hold
that are quantitatively weaker than (2). In the latter regime, the spectral asymmetry of both
operators Lper

η,ρ and Lκ,ρ is acquired near the center of the finite volume where both operators are
roughly the same which gives an intuitive understanding why Theorem 1 should hold (based on
the earlier results [14, 15]). Indeed, the proof of Theorem 1 consists of constructing a homotopy
from Lκ,ρ to L

per
η,ρ inside the finite-dimensional invertible selfadjoint matrices. The essential step

is a deformation of the first summand in (1), which is explicitly given in (25) below. It further
results from the strategy of proof in Section 2 that the Hamiltonian can be tapered down, see
(23). This means that in the regime of (2) the contribution to the signature results merely
from the central part of the finite volume. Hence the half-signature in (5) is a local topological
marker in this regime, just as the half-signature of the spectral localizer of [14, 15]. However,
one can use the r.h.s. of (5) also for much smaller ρ for which periodic boundary conditions
are relevant so that the signature invariant is a global or bulk topological invariant. All of this
is numerically confirmed in Remark 6 on the example of a one-dimensional topological system,
but there is definitely a need for further investigations. ⋄
Remark 3 Besides being the volume, the parameter ρ sets the length scale of the position
operator close to the origin because sin(π

ρ
xj) ∼ π

ρ
xj and 1 − cos(π

ρ
xj) ∼ 1

2
(π
ρ
xj)

2. Comparing

with the (non-periodic) spectral localizer (spelled out in (6)), 1
ρ
hence plays the same role as

the parameter κ in prior works [14, 15, 5]. Having this in mind, the condition in (2) is a more
stringent version of the main hypothesis in these works. Note that, given a gapped Hamiltonian
H, it can always be guaranteed by choosing ρ sufficiently large. The second bound (3) is a new
supplementary condition. For a flat band Hamiltonian which by definition satisfies g = ∥H∥,
the condition becomes η ≥ g

2
(1 +

√
1− 1

4d
). In particular, η = 1 is allowed for a flat band

Hamiltonian with g = ∥H∥ = 1. As will be explained in second part of this introduction
and Section 5, this is reminiscent of the fact that the flat band Hamiltonian together with
suitable functions of the position operators forms a graded fuzzy torus. On the other hand, if
one chooses η = ∥H∥ (without imposing the flat band condition), then the bound (3) becomes
∥H∥
g

− 1 ≤ 1
2
√
d
which means that H has to be relatively close to a flat band Hamiltonian in the

sense that ∥H∥ is not allowed to be much bigger than g = ∥H−1∥−1. Furthermore, (3) is always
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satisfied if η ≥ 5
4
∥H∥ (simply because then the l.h.s. becomes negative due to g ≤ ∥H∥). Note,

however, that for large η, (2) enforces ρ to be larger, and furthermore the gap of Lper
η,ρ closes,

see the bound (4), and then its signature may not be numerically stable any more. Hence from
a numerical perspective, it may be best to choose η of the order of ∥H∥ and actually somewhat
smaller than ∥H∥ so that the periodic spectral localizer is associated to a fuzzy torus of small
width (in the sense of Definition 19 below). In conclusion, the discussion shows that one should
chose η ≈ ∥H∥ and in the sequel not consider it as a free parameter. ⋄
Remark 4 The bounds (2) and (3) have an intrinsic scale invariance. Actually, replacing H,
M , g and η by λH, λM , λg and λη respectively where λ > 0 is a scaling parameter, leaves the
conditions invariant. All four quantities are expressed in energy units, while ρ is a space unit.
From a quantitative aspect, we believe that hypothesis (3) is relatively close to optimal, while
the condition (2) is certainly off by several orders of magnitude and even the dependence on g
is likely much worse than needed. Let us stress that once η is chosen as in Remark 3, there is
no further parameter other than ρ. One can then analyze numerically the behavior for small ρ
and safely use the half-signature as local topological marker, as long as it is stable. ⋄
Remark 5 As pointed out in Remark 3, the condition (3) is easiest to satisfy if H is already
somewhat close to a flat band Hamiltonian. This can be attained by replacing a given initial
gapped finite-range periodic Hamiltonian H ′ by a suitable polynomial H = q(H ′) which is then
also periodic and of finite range, even though the range is increased by a factor given by the
degree of the polynomial q. The polynomial q should be chosen odd with q(x) > 0 for x > 0 so
that H also has a spectral gap at 0, and, moreover, to have a degree as small as possible. Based
on the spectral information of H ′, it is straightforward to construct a suitable polynomial. ⋄
Remark 6 As already discussed in Remarks 2 and 4, we expect the signature of Lper

η,ρ to be sta-
ble for much smaller system sizes ρ. Let us support this belief by some numerics in the numeri-
cally most simple situation of a chiral model in dimension d = 1, namely the so-called SSH model
(see [18] for a detailed description of this much studied object). The chiral Hamiltonian is then
an off-diagonal 2×2 matrix with off-diagonal entry A given by an invertible tight-binding oper-
ator on ℓ2(Z) which in Dirac Bra-Ket notation is given by A|x⟩ = (m+mx)||x⟩+(1+ tx)|x+1⟩,
wherem > 0, (mx)x∈Z and (tx)x∈Z are independent and identically distributed random variables
in [−λ, λ] with λ < 1. For λ and m sufficiently small, the operator A has a non-commutative
winding number equal to −1 in the present situation. According to Theorem 15 (the odd-
dimensional equivalent to Theorem 1), it can be computed using the following odd periodic
spectral localizer discussed in Section 3:

Lper

η,ρ =

(
sin(π

ρ
X) 1− cos(π

ρ
X)

1− cos(π
ρ
X) − sin(π

ρ
X)

)
− 1

η

(
0 Aper

ρ

(Aper
ρ )∗ 0

)
. (7)

HereX = X1 is the position operator and the right summand is the periodized SSH Hamiltonian
Hper
ρ in finite volume. Numerics readily show that its half-signature is −1 for a large span of ρ

and λ, simply confirming Theorem 15. If the periodic boundary conditions are used, this reliably
works for ρ as small as 4. Also interesting is that drastic modifications of the Hamiltonian do
not alter the signature index if ρ is sufficiently large: instead of Hper

ρ , one can use H̃per
ρ obtained

fromHper
ρ by setting all matrix elements ⟨x|Hper

ρ |y⟩ = 0 for either |x| > (1− s)ρ or |y| > (1− s)ρ

4



-2 -1 0 1 2
0

10

20

30

40

50

60

Full DOS Hamiltonian

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
0

10

20

30

40

50

60
Local low DOS Hamiltonian

-4 -2 0 2 4
0

10

20

30

40

Full DOS SpecLocAveraged

Figure 1: Plots of the full eigenvalue distribution for one realization of the Hamiltonian H̃per
ρ

described in Remark 6, then its central part and in the third plot the eigenvalue distribution
of Lper

1,ρ. The random variables are uniformly distributed, λ = 0.5, m = 0.9 ı, ρ = 300 and
s = 0.05. Hence the Hilbert space is of dimension 600 states and due to s = 0.05 the kernel of
H̃per
ρ has about 60 states, and Lper

1,ρ has about 60 times the eigenvalues close to −2 and 2 each.
The half-signature of Lper

1,ρ is still −1.

where s ∈ [0, 1). Any s > 0 will eliminate the periodic boundary conditions and, moreover,
leads to a large kernel of H, roughly of dimension 4ρs. Nevertheless, this kernel results from
regions where the first summand in (7) has large off-diagonal parts and hence does not lead to
a kernel of Lper

η,ρ. In the central region [−(1− s)ρ, (1− s)ρ]∩Z where Lper
η,ρ extracts the topology

by means of its spectral asymmetry, the modified Hamiltonian H̃per
ρ coincides with the Hper

ρ .
Indeed, numerics clearly show that the half-signature is still −1 as long as (1− s)ρ ≈ 30. This
clearly shows that the periodic spectral localizer in the regime of large ρ reads out the topology
locally close to the origin (where sin is linear and 1− cos vanishes). ⋄

Remark 7 In Section 4, it is shown how to deal with the strong Z2-invariants for Hamiltonians
lying in the suitable Cartan-Altland-Zirnbauer symmetry classes. In principle, one can also
access weak invariants by the techniques of the present work. Indeed, the experienced reader
will easily locate the relevant formulas for fuzzy tori in Section 5, but this is here not explained
in detail for solid state applications. ⋄
Remark 8 Theorem 1 is stated for periodic Hamiltonians. However, for space homogeneous
random operators (in the sense of Bellissard [2], see also [18]), there is a natural construction
of periodic approximants [17]. For sufficiently large sizes of these approximants, the Chern
numbers coincide with those at infinite volume and can be computed using periodic boundary
conditions [17]. In order to avoid introducing the notational machinery, these results are not
spelled out in detail. ⋄
Remark 9 From a KK-theoretic perspective (explained in some detail elsewhere), both Lper

η,ρ

and Lκ,ρ are representatives of a Kasparov product of two even KK-cycles [P ] ∈ KK0(C,A)
and [D] ∈ KK0(A,C) for a suitable algebra A. The two gradings are apparent in (6), but
once the Kasparov product is computed, one can deform it without respecting the grading of
the separate Fredholm modules [D] and [P ]. This is reflected by the lack of grading of the first
summand in expression (1) of the periodic spectral localizer. ⋄
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Let us conclude this introduction with a brief discussion of the notion of a fuzzy d-torus in
connection with the periodic spectral localizer. This is discussed in detail in Section 5 which
we believe to be of considerable independent interest, possibly serving as a guideline to the
construction of numerically computable local index formulas for other fuzzy versions of classical
geometric objects. Abstract index formulas (not suitable for numerical implementation) have
been known for a long time [8, 6, 7], and invariants for the special case of fuzzy spheres were
already studied in other works, in particular [11, 15]. More specifically, a fuzzy d-torus consists
by definition of d operators A1, . . . , Ad which are almost unitary and almost commute, see
Definition 19. Motivated by standard models of topological insulators (see Chapter 2 in [18])
and the work [12], let us associate a selfadjoint operator to the fuzzy torus:

G =
ı

2

d∑
j=1

(A∗
j − Aj)⊗ γj +

(
(d− 1)1− 1

2

d∑
j=1

(A∗
j + Aj)

)
⊗ γd+1 , (8)

where γ1, . . . , γd+1 is an irreducible representation of the Clifford algebra with d+1 generators.
In Section 5 it is shown that G is gapped and hence defines an even K-theory class which in
the case of a matrix torus of even dimension d can be read out as half-signature. At the root
of the construction of (8) is a classical map from the torus Td to the sphere Sd of mapping
degree 1. This map is analyzed in detail in Appendix B. Using variations of this map, one
can construct a large set of invariants associated to the fuzzy torus, see Section 5. In the
context of Theorem 1, there are two fuzzy tori of matrices, namely eı

π
ρ
X1 , . . . , eı

π
ρ
Xd , Hper

ρ and

Pρe
ıπ
ρ
X1Pρ, . . . , Pρe

ıπ
ρ
XdPρ where Pρ = χ(Hper

ρ < 0). The first one is a (d+1)-torus consisting of
d + 1 operators, but the last operator Hper

ρ in the list is selfadjoint; such a fuzzy (d + 1)-torus
is called a graded d-torus (see again Definition 19). Essentially the G-operator associated to
the graded fuzzy d-torus eı

π
ρ
X1 , . . . , eı

π
ρ
Xd , Hper

ρ is the periodic spectral localizer. On the other

hand, Pρe
ıπ
ρ
X1Pρ, . . . , Pρe

ıπ
ρ
XdPρ is an un-graded fuzzy d-torus. The latter is the reduced out

version of the former and both have the same topological content (see Proposition 33). Indeed,
for d = 2, this second fuzzy torus already played a role in [6, 7] and the recent work by Toniolo
on quantum Hall systems [23]. Combined with Theorem 1 one obtains:

Theorem 10 Let G = G(Pρe
ıπ
ρ
X1Pρ, . . . , Pρe

ıπ
ρ
XdPρ) be constructed as in (8). For ρ sufficiently

large, one has

Chd(P ) =
1

2
Sig(G) . (9)

The remainder of the paper is organized as follows. Section 2 is dedicated to the proof of
Theorem 1. Section 3 describes the odd dimensional version of the periodic spectral localizer.
Then Section 4 shows how to modify the periodic spectral localizer so that it can be used to
compute Z2-invariants in systems with real symmetries such as time-reversal and particle-hole
symmetry. Finally Section 5 introduces the general notion of a fuzzy torus and shows how
to extract K-theoretic topological invariants from it. Finally Appendix A recalls the tight
connection between mapping degree and Chern number, which is then applied in Appendix B
in order to analyze the classical maps behind the index construction of the periodic spectral
localizer.
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2 Periodic spectral localizer in even dimension

This section provides the proof of Theorem 1. Let H = H∗ be a bounded selfadjoint operator
on H = ℓ2(Zd,CL) of finite range R which is periodic in all d directions with periods p =
(p1, . . . , pd) ∈ Nd. As above let ρ ∈ N be such that 2ρ is an integer multiple of all these pj.
Then H is 2ρ periodic in each of the d directions. It is well-known that such an operator can
be partially diagonalized by a Bloch-Floquet transformation Fρ : ℓ

2(Zd,CL) → L2(Tdρ,C(2ρ)dL)
where Tdρ = (R/4πρZ)d:

FρH F∗
ρ =

∫ ⊕

Td
ρ

dk H(k) . (10)

Then the periodic Hamiltonian appearing in (1) is Hper
ρ = H(0). Actually, any fiber H(k) could

be used as well and Theorem 1 remains valid. The first key observation, following directly from
the direct integral representation is that

spec(Hper

ρ ) ⊂ spec(H) .

In particular, Hper
ρ also has a gap around the Fermi level µ = 0 of size at least g = ∥H−1∥−1.

Next let us introduce the periodic function ξ : R → [−1, 1] by

ξ(x) = sin(π
2
x) , (11)

and then set ξρ(x) = ξ(x
ρ
). Due to the addition theorems, one then has

eı
π
ρ
x = 1− 2 ξρ(x)

2 + ı 2 ξρ(x)
√

1− ξρ(x)2 (12)

for x ∈ [−ρ, ρ]. The main estimates of the next lemma are folklore (e.g. [1]), but for the
convenience of the reader a full proof is nevertheless provided.

Lemma 11 For j = 1, . . . , d and ρ ∈ R, one has∥∥[ξρ(Xj), H
]∥∥ ≤ π

2ρ
∥[Xj, H]∥ . (13)

Furthermore if ρ ∈ N is such that 2ρ is an integer multiple of the periods of H one has the
following commutator bounds for Hper

ρ :∥∥[ cos(π
ρ
Xj), H

per

ρ

]∥∥ ≤ π

ρ
∥[Xj, H]∥ , (14)∥∥[ sin(π

ρ
Xj), H

per

ρ

]∥∥ ≤ π

ρ
∥[Xj, H]∥ , (15)∥∥[|ξρ(Xj)|, Hper

ρ

]∥∥2 ≤ 25π

32 ρ
∥H∥ ∥[Xj, H]∥ . (16)

7



Proof. Let us start out by noting that ξρ(Xj) is a linear combination of eı
π
2ρ
Xj and e−ı

π
2ρ
Xj ,

see (11). Therefore DuHamel’s formula implies

∥[ξ(Xj), H]∥ ≤ 1

2

(
∥[eı

π
2ρ
Xj , H]∥ + ∥[e−ı

π
2ρ
Xj , H]∥

)
≤ π

2ρ
∥[Xj, H]∥ ,

which shows (13). As cos(π
ρ
Xj) is a periodic multiplication operator one has

∥[cos(π
ρ
Xj), H

per

ρ ]∥ ≤ ∥[cos(π
ρ
Xj), H]∥

and then (14) follows from DuHamel’s formula as above. Further, (15) holds by the same
argument. To show (16) note that

|ξρ(Xj)|2 =
1− cos(π

ρ
Xj)

2
.

Then using the main theorem in [16] stating that for any positve semidefinite bounded operator
T on Hρ and any bounded operator S on Hρ

∥[T
1
2 , S]∥ ≤ 5

4
∥S∥

1
2∥[T, S]∥

1
2 ,

one obtains∥∥[|ξρ(Xj)|, Hper

ρ

]∥∥ ≤ 5

4
∥Hper

ρ ∥
1
2

∥∥∥[12(1− cos(π
ρ
Xj)), H

per

ρ

]∥∥∥ 1
2 ≤ 5

√
π

4
√
2ρ

∥H∥
1
2∥[Xj, H]∥

1
2 ,

where in the last step (14) was used. The square of this bound is precisely (16). 2

The next result shows that the signature in (5) is well-defined. Some elements of the proof
below are inspired by [12], others follow [15, 5].

Proposition 12 If all conditions of Theorem 1 hold, then the periodic spectral localizer satisfies
the bound (4). Moreover, if two parameter sets (η, ρ) and (η′, ρ′) both satisfy all conditions,
then

Sig(Lper

η,ρ) = Sig(Lper

η′,ρ′) .

Proof. Let us start out with several preliminaries. To shorten notations let us denote Hper
ρ

simply by Hρ, sin(
π
ρ
Xj) by sρ,j and cos(π

ρ
Xj) by cρ,j. Further let us introduce the Clifford

representation γ1, . . . , γd+1 by

γ1 = γ̂1 ⊗ σ1 , . . . , γd−1 = γ̂d−1 ⊗ σ1 , γd = 1⊗ σ2 , γd+1 = 1⊗ σ3 ,

where σ1, σ2 and σ3 are the Pauli matrices. Finally let us set H̃ρ = 1
η
Hρ. Then the periodic

spectral localizer as given in (1) becomes

Lper

η,ρ =
d∑
j=1

sρ,j γj +
( d∑
j=1

(1− cρ,j)− H̃ρ

)
γd+1 . (17)

8



Next let us introduce a tapering function as in [15, 5] by setting G(x) = 1
2
(χ(4x+3)−χ(4x−3))

with χ : R → [−1, 1] being be the odd non-decreasing switch function with χ(±x) = ±1 for
x ≥ 1 given by χ(x) = x(2 − |x|) for x ∈ [−1, 1]. Then set Gρ(x) = G(x

ρ
). One finds that Gρ

satisfies by construction Gρ(x) = 1 for |x| ≤ ρ
2
and Gρ(x) = 0 for |x| ≥ ρ, and, moreover, it is

an even function. Furthermore, by Lemma 4 in [14] one has ∥[Gρ(D), H⊕H]∥ ≤ 8
ρ
∥[D,H⊕H]∥

where D =
∑d

j=1Xjγj (see also [5]). As Gρ is even and D0 =
∑d

j=1Xj γ̂j is normal, the operator
Gρ(D) is diagonal with diagonal entry Gρ(|D0|) = Gρ(|D∗

0|). Therefore the commutator bound
can also be stated as

∥[Gρ(|D0|), H]∥ ≤ 8

ρ
∥[D0, H]∥ . (18)

Then introduce an interpolating function Gρ,t : R → [0, 1] by Gρ,t(x) = tG ρ
2
(x)+(1−t). Finally

let us also set
Gt = Gρ,t(|D0|) , H̃ρ,ρ′,t = Gt H̃ρ′ Gt ,

where ρ′ ∈ [ρ, 2ρ] satisfies all conditions of Theorem 1. The path

t ∈ [0, 1] 7→ Lper

η,ρ,ρ′(t) =
d∑
j=1

sρ′,j γj +
( d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)
γd+1 (19)

connects Lper

η,ρ,ρ′(0) = Lper

η,ρ′ to an operator on (Hρ′ ⊕Hρ′)⊗ Cd′ that can be restricted to (Hρ ⊕
Hρ)⊗ Cd′ easily. After these preparation, let us now start by computing the square

Lper

η,ρ,ρ′(t)
2 =

 d∑
j=1

s2ρ′,j +

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2
⊗ 1 +

∑
1≤j<l≤d

[sρ′,j, sρ′,l]⊗ γjγl

+
d∑
j=1

[
sρ′,j,

d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

]
⊗ γjγd+1

≥

 d∑
j=1

s2ρ′,j +

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2
⊗ 1 −

d∑
j=1

∥[sρ′,j, H̃ρ,ρ′,t]∥1 . (20)

because [sρ′,j, sρ′,l] = [sρ′,j, cρ′,l] = 0 for all j, l = 1, . . . , d. Hence

d∑
j=1

s2ρ′,j +

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2

=
d∑
j=1

s2ρ′,j +
( d∑
j=1

(1− cρ′,j)
)2

+ (H̃ρ,ρ′,t)
2 − Gρ,t

d∑
j=1

(
(1− cρ′,j)H̃ρ′ + H̃ρ′(1− cρ′,j)

)
Gρ,t

=
d∑
j=1

s2ρ′,j +
( d∑
j=1

(1− cρ′,j)
)2

+ (H̃ρ,ρ′,t)
2 − λGρ,t

d∑
j=1

(
(1− cρ′,j)Ĥρ′ + Ĥρ′(1− cρ′,j)

)
Gρ,t ,

9



where λ > 0 is a parameter to be chosen later and Ĥρ′ =
H̃ρ′

λ
. Using s2ρ′,j + c2ρ′,j = 1 for all

j = 1, . . . , d one directly checks

d∑
j=1

s2ρ′,j +
( d∑
j=1

(1− cρ′,j)
)2

≥
d∑
j=1

s2ρ′,j +
d∑
j=1

(1− cρ′,j)
2 = 2

d∑
j=1

(1− cρ′,j) .

Replacing in the above gives

d∑
j=1

s2ρ′,j+

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2

= 2(1 − λG2
ρ,t)

d∑
j=1

(1− cρ′,j) + (H̃ρ,ρ′,t)
2

+ λGρ,t

d∑
j=1

(
(1− cρ′,j)(1− Ĥρ′) + (1− Ĥρ′)(1− cρ′,j)

)
Gρ,t .

Now let us use the elementary identity

1− Ĥρ′ =
1

2
(Ĥρ′ − 1)2 +

1

2
(1− Ĥ2

ρ′) , (21)

which implies that

d∑
j=1

s2ρ′,j +

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2

≥ 2(1 − λG2
ρ,t)

d∑
j=1

(1− cρ′,j) + (H̃ρ,ρ′,t)
2

+
λ

2
Gρ,t

( d∑
j=1

((1− cρ′,j)(Ĥρ′ − 1)2 + (Ĥρ′ − 1)2(1− cρ′,j))
)
Gρ,t

+
λ

2
Gρ,t

( d∑
j=1

((1− cρ′,j)(1− Ĥ2
ρ′) + (1− Ĥ2

ρ′)(1− cρ′,j))
)
Gρ,t .

Both of the last two summands require a detailed analysis. In order to deal with the first of
them, let us use

(1− cρ′,j)(Ĥρ′ − 1)2 =
(
(Ĥρ′ − 1)(1− cρ′,j) + [1− cρ′,j, Ĥρ′ − 1]

)
(Ĥρ′ − 1)

and
(Ĥρ′ − 1)2(1− cρ′,j) = (Ĥρ′ − 1)

(
(1− cρ′,j)(Ĥρ′ − 1)− [1− cρ′,j, Ĥρ′ − 1]

)
as well as (Ĥρ′ − 1)(1− cρ′,j)(Ĥρ′ − 1) ≥ 0. One gets

(1− cρ′,j)(Ĥρ′ − 1)2 + (Ĥρ′ − 1)2(1− cρ′,j) ≥ −2∥[1− cρ′,j, Ĥρ′ − 1]∥∥Ĥρ′ − 1∥1
≥ −2∥[cρ′,j, Ĥρ′ ]∥(∥Ĥρ′∥+ 1)1 .

≥ −4max{∥Ĥρ′∥, 1} ∥[cρ′,j, Ĥρ′ ]∥1

≥ − 4π

ρ′λ2η2
max{∥H∥, λη} ∥[Xj, H]∥1 ,

10



where the last step follows from Lemma 11. This combined with G2
t ≤ 1 leads to

d∑
j=1

s2ρ′,j +

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2

≥ 2(1 − λG2
ρ,t)

d∑
j=1

(1− cρ′,j) + (H̃ρ,ρ′,t)
2 − 2π

λη2ρ′
max{∥H∥, λη} dM 1

+
λ

2
Gρ,t

( d∑
j=1

((1− cρ′,j)(1− Ĥ2
ρ′) + (1− Ĥ2

ρ′)(1− cρ′,j))
)
Gρ,t .

For the last summand, let us use that (12) implies
1−cρ′,j

2
= |ξρ′,j|2 where ξρ′,j = sin( π

2ρ′
Xj).

Thus

(1− cρ′,j)(1− Ĥ2
ρ′) + (1− Ĥ2

ρ′)(1− cρ′,j)

= 4 |ξρ′,j|(1− Ĥ2
ρ′)|ξρ′,j| − 2 |ξρ′,j|[(1− Ĥ2

ρ′), |ξρ′,j|]− 2 [|ξρ′,j|, (1− Ĥ2
ρ′)]|ξρ′,j|

≥ − 2 ∥1− Ĥ2
ρ′∥ (1− cρ′,j) − 8

5
√
π

λ2η24
√
2ρ′

∥[Xj, H]∥
1
2 ∥H∥

3
2 1

Replacing in the above, one then gets

d∑
j=1

s2ρ′,j +

(
d∑
j=1

(1− cρ′,j)− H̃ρ,ρ′,t

)2

≥
(
2 −

(
2λ+ ∥λ1− λ−1H̃2

ρ′∥
)
G2
ρ,t

) d∑
j=1

(1− cρ′,j)

+ (H̃ρ,ρ′,t)
2 − 2π

λη2ρ′
max{∥H∥, λη} dM 1

− 5
√
π

λη2
√
2ρ′

∥H∥
3
2d
√
M 1 .

Now let us focus on the summand (H̃ρ,ρ′,t)
2. Due to (H̃ρ,ρ′,t)

2 ≥ g2 1 and again G2
ρ,t ≤ 1

(H̃ρ,ρ′,t)
2 = 1

η2

(
G2
ρ,tH

2
ρ′G

2
ρ,t + G2

ρ,tHρ′ [Gρ,t, Hρ′ ]Gρ,t + Gρ,t[Hρ′ , Gρ,t]Gρ,tHρ′Gρ,t

)
≥ g2

η2
G4
ρ,t − 2

η2
∥H∥ ∥[Gρ,t, Hρ′ ]∥1 .

The commutator can be bounded using (18):

∥[Gρ,t, Hρ′ ]∥ = t∥[G ρ
2
(|D0|), Hρ′ ]∥ = t∥[G ρ

2
(|D0|), H]∥ ≤ 16

ρ
∥[D0, H]∥,

where [G ρ
2
(|D0|), Hρ′ ⊕ Hρ′ ] = [G ρ

2
(|D0|), H] as R + ρ

2
≤ ρ ≤ ρ′ so that periodic boundary

11



conditions do not interfere in the commutator. Replacing this, one concludes from (20)

Lper

η,ρ,ρ′(t)
2 ≥

(
2 −

(
2λ+ ∥λ1− λ−1H̃2

ρ′∥
)
G2
ρ,t

) d∑
j=1

(1− cρ′,j) +
g2

η2
G4
ρ,t

− 2π

λη2ρ′
max{∥H∥, λη} dM 1 − 5

√
π

λη2
√
2ρ′

∥H∥
3
2d
√
M 1

− 32∥H∥
ρη2

∥[D0, H]∥1 − 1

η

d∑
j=1

∥[sρ′,j, H]∥1 .

Using
∑d

j=1(1−cρ′,j) ≤ 2d and also bounding ∥[sρ′,j, Hρ′ ]∥ ≤ π
ρ′
M by Lemma 11 and ∥[D0, H]∥ ≤

dM , this implies

Lper

η,ρ,ρ′(t)
2 ≥

(
2 −

(
2λ+ ∥λ1− λ−1H̃2

ρ′∥
)
G2
ρ,t +

g2

4dη2
G4
ρ,t

) d∑
j=1

(1− cρ′,j) +
g2

2η2
G4
ρ,t

− 2π

λη2ρ′
max{∥H∥, λη} dM 1 − 5

√
π

λη2
√
2ρ′

∥H∥
3
2d
√
M 1

− 32∥H∥
ρη2

dM − π

ηρ′
dM 1 .

Now the parenthesis in the first summand seen as a function of G2
ρ,t has a negative derivative

for all G2
ρ,t ∈ [0, 1] as long as

2λ+ ∥λ1− λ−1H̃2
ρ′∥ ≥ g2

2dη2
,

which, after discarding the summand ∥λ1 − λ−1H̃2
ρ′∥, actually always holds for λ ≥ g

η
and

η ≥ g
4d

(which is required in Theorem 1). Then the minimum of the parenthesis is taken at
G2
t = 1. Hence

Lper

η,ρ,ρ′(t)
2 ≥

(
2 −

(
2λ+ ∥λ1− λ−1H̃2

ρ′∥
)
+

g2

4dη2

) d∑
j=1

(1− cρ′,j) +
g2

2η2
G4
ρ,t

− 2π

λη2ρ′
max{∥H∥, λη} dM1 − 5

√
π

λη2
√
2ρ′

∥H∥
3
2d
√
M1

− 32∥H∥
ρη2

dM1 − π

ηρ′
dM1

≥
(
2 −

(
2λ+ ∥λ1− λ−1H̃2

ρ′∥
)
+

g2

8dη2

) d∑
j=1

(1− cρ′,j) +
g2π2

2560dη2
1

− 2π

λη2ρ′
max{∥H∥, λη} dM1 − 5

√
π

λη2
√
2ρ′

∥H∥
3
2d
√
M1

− 32∥H∥
ρη2

dM1 − π

ηρ′
dM1 ,
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because
∑d

j=1(1− cρ′,j) ≥
1
5

∑d
j=1

π2

(ρ′)2
X2
j ≥ π2ρ2

80(ρ′)2
(1−G4

t ) ≥ π2

320
(1−G4

t ) where the second step

holds as (1 − G4
t )χ
(∑d

j=1X
2
j ≤ ρ2

16

)
= 0 and the final step used the bound ρ′ ≤ 2ρ. Because

spec(Hρ′) ⊂ spec(H)

∥λ1− λ−1H̃2
ρ′∥ ≤ ∥λ1− λ−1H2

η2
∥ .

Thus let us minimize f(λ) = 2λ + ∥λ1 − λ−1H2

η2
∥ over λ ∈ [ g

η
, ∥H∥

η
]. By spectral calculus and

elementary analysis one finds

min
ηλ∈[g,∥H∥]

f(λ) = min
ηλ∈[g,∥H∥]

λ
(
2 + max

{
1− g2

λ2η2
,
∥H∥2

λ2η2
− 1
})

= f(λc)

where (λc)
2 = ∥H∥2+g2

2η2
. Thus

f(λc) =
1

η

g2 + 3∥H∥2√
2
√
g2 + ∥H∥2

=
∥H∥
η

(√
1− 1

2
(1− g2

∥H∥2 ) +
1√

1− 1
2
(1− g2

∥H∥2 )

)
≤ ∥H∥

η

(
2 +

1

8

(
1− g2

∥H∥2
)2) ≤ ∥H∥

η

(
2 +

1

2

(
1− g

∥H∥
)2)

,

where the first inequality follows from
√
1 + ϵ + 1√

1+ϵ
≤ 2 + 1

2
ϵ2 holding for ϵ ∈ [−1

2
, 1]. Then

the term in the parenthesis satisfies

2−
(
2λ+∥λ1−λ−1H̃2

ρ′∥
)
+

g2

4dη2
≥ 2−f(λc)+

g2

8dη2
≥ 2−∥H∥

η

(
2+

1

2

(
1− g

∥H∥
)2)

+
g2

8dη2
≥ 0 ,

where the last inequality is precisely the bound (3) divided by ∥H∥
2η

. Due to ∥H∥ ≥ ηλc ≥ g

and the equality max{∥H∥, λcη} = ∥H∥ one hence deduces

Lper

η,ρ,ρ′(t)
2 ≥ g2π2

2560dη2
1 − 2π

gηρ′
∥H∥ dM1 − 5

√
π

gη
√
2ρ′

∥H∥
3
2d
√
M1

− 128∥H∥
ρηg

dM1 − π

ηρ′g
d ∥H∥M1

≥ g2

300dη2
1 − 128 + 3π

gηρ
∥H∥ dM1 − 5

√
π

gη
√
2ρ′

∥H∥
3
2d
√
M1 ,

where 1 ≤ ∥H∥
g

and η ≥ g
4
was used. Now ρ is bounded below by (2) and ρ′ bis bounded below

by ρ. Then elementary numerical estimates show that

Lper

η,ρ,ρ′(t)
2 ≥ g2

600 d η2
, (22)

uniformly in t ∈ [0, 1]. For t = 0 this implies (4), namely the first claim of the proposition.

Now let (η, ρ) and (η′, ρ′) both satisfy all the conditions of Theorem 1 and suppose, without
restriction, that ρ′ ∈ [ρ, 2ρ]. Continuity of Lper

η,ρ in η together with the bound (22) shows that

13



Sig(Lper

η,ρ′) = Sig(Lper

η′,ρ′). Hence one can assume η′ = η. Then the above argument shows that
the signature does not change along the paths t ∈ [0, 1] 7→ Lper

η,ρ,ρ(t) and t ∈ [0, 1] 7→ Lper

η,ρ,ρ′(t).
But

Lper

η,ρ,ρ′(1) = Lper

η,ρ,ρ′(1)H ρ
2

⊕ (Dper

ρ′ )Hρ′⊖H ρ
2

,

where Dper

ρ′ is the first summand in (1) with ρ replaced by ρ′ and the lower index H ρ
2
and

(Hρ′ ⊖H ρ
2
) indicates its restriction to (H ρ

2
⊕H ρ

2
)⊗Cd′ and ((Hρ′ ⊕Hρ′)⊖ (H ρ

2
⊕H ρ

2
))⊗Cd′

respectively. As Sig((Dper

ρ′ )H′
ρ⊖H ρ

2

) = 0 it is sufficient to show

Sig(Lper

η,ρ,ρ′(1)H ρ
2

) = Sig(Lper

η,ρ,ρ(1)H ρ
2

) .

This follows as the path

t ∈ [0, 1] 7→
d∑
j=1

sin( π
tρ+(1−t)ρ′Xj) γj +

( d∑
j=1

(1−cos( π
tρ+(1−t)ρ′Xj))−

1

η
G ρ

2
(|D0|)HG ρ

2
(|D0|)

)
γd+1 ,

of operators on (H ρ
2
⊕H ρ

2
)⊗ Cd′ entirely lies in the invertibles, which can be checked directly

by an argument very similar to the one showing that the path in (19) lies in the invertibles. 2

In the proof of Proposition 12 it was shown that Lper
η,ρ can be homotopically deformed into

Lper

η,ρ,ρ(1) =
d∑
j=1

sin(π
ρ
Xj) γj +

d∑
j=1

(
1− cos(π

ρ
Xj)
)
γd+1 − 1

η
GρH

per

ρ Gρ γd+1 (23)

without closing the gap, provided the conditions of Theorem 1 hold. In particular, one has
Sig(Lper

η,ρ) = Sig(Lper
η,ρ,ρ(1)). Here Gρ = G ρ

2
(|D0|) is a tapering function so that GρH

per
ρ Gρ is

a tempered Hamiltonian which is localized strictly inside the volume [−ρ
2
, ρ
2
]d. In particular,

the boundary conditions on the Hamiltonian are irrelevant, namely GρH
per
ρ Gρ = GρHGρ. As

already stressed in Section 1, this reflects that the signature is a local topological invariant
associated to the Hamiltonian.

The next step in the proof of Theorem 1 will be to deform the first two summands in (23).
To spell out that homotopy, it will be useful to express Lper

η,ρ,ρ(1) through the function ξ by
means of the formula (12):

Lper

η,ρ,ρ(1) = 2
( d∑
j=1

ξρ,j

√
1− ξ2ρ,j γj +

d∑
j=1

ξ2ρ,jγd+1

)
− 1

η
GρHGργd+1 , (24)

where ξρ,j = sin( π
2ρ
Xj), see (11). Then the homotopy in the parameter s ∈ [0, 1] will be given

by

Lper

η,ρ(1, s) = 2
( d∑
j=1

ξρ,j

√
1− s2ξ2ρ,j γj +

d∑
j=1

sξ2ρ,jγd+1

)
− 1

η
GρHGρ γd+1 . (25)

Clearly Lper
η,ρ(1, 1) = Lper

η,ρ,ρ(1), but moreover Lper
η,ρ(1, 0) is essentially the spectral localizer with

the damped Hamiltonian GρHGρ. It was already proved in earlier works [14, 15, 5] that the

14



half-signature of the spectral localizer with this damped Hamiltonian is equal to the index
pairing Ind(PFP + 1 − P ) with F as below, which by an index theorem [18] is in turn equal
to the Chern number. Hence a central element of the proof of Theorem 1 consists in checking
that the homotopy s ∈ [0, 1] 7→ Lper

η,ρ(1, s) lies in the invertible matrices.

Proposition 13 For (η, ρ) satisfying the conditions of Theorem 1,

1

2
Sig(Lper

η,ρ) = Ind(PFP + 1− P ) ,

where P = χ(H < 0) and F = D0|D0|−1 is the phase of D0 =
∑d

j=1Xj γ̂j, suitably regularized
at the origin.

Proof. The main result of [15, 5] states that PFP + 1− P is a Fredholm operator with index
that can be computed as the half-signature of the finite-volume restrictions Lκ,ρ of the spectral
localizer defined in (6), provided that the parameters κ > 0 and ρ <∞ are sufficiently small and
large respectively. As also the signature of the periodic spectral localizer Lper

η,ρ and its damped
version Lper

η,ρ,ρ(1) is stable for such parameters by Proposition 12, it hence merely has to be
shown that for such parameters Lper

η,ρ,ρ(1) is homotopic to Lκ,ρ inside of the invertible matrices
so that the signature does not change. Being able to choose ρ sufficiently large considerably
simplifies the proof because one can simply neglect all commutators of the type [G ρ

2
(|D0|), H]

and [ξ2ρ,j, H] as they are of order O(1
ρ
). Here G ρ

2
is the same function as used in the proof of

Proposition 12. Furthermore, it is possible to choose η = 5
4
∥H∥ because then the bound (3) is

automatically satisfied.

Let us start out by proving that the path s ∈ [0, 1] 7→ Lper
η,ρ(1, s) defined in (25) lies in the

invertible matrices forρ sufficiently large. The proof will essentially follow the first part of the
proof of Proposition 12, namely one simply checks that Lper

η,ρ(1, s)
2 > 0 for all s ∈ [0, 1]. Setting

Gρ = G ρ
2
(|D0|) and Ĥ = 1

η
H = 4

5
H

∥H∥ and, moreover, discarding commutators as described

above, the square of (25) can be computed using

( d∑
j=1

ξρ,j

√
1− s2ξ2ρ,j γj +

d∑
j=1

s ξ2ρ,jγd+1

)2
≥

d∑
j=1

ξ2ρ,j

and thus satisfies

Lper

η,ρ(1, s)
2 ≥ 4

d∑
j=1

ξ2ρ,j +G2
ρĤ

2G2
ρ − 2s

( d∑
j=1

ξ2ρ,jGρĤGρ +GρĤGρ

d∑
j=1

ξ2ρ,j

)
+O

(
1√
ρ

)
= 4

d∑
j=1

ξ2ρ,j(1− sG2
ρ) +G2

ρĤ
2G2

ρ + 2sGρ

( d∑
j=1

ξ2ρ,j(1− Ĥ) + (1− Ĥ)
d∑
j=1

ξ2ρ,j

)
Gρ +O

(
1√
ρ

)
,

with a remainder that is uniformly bounded in s ∈ [0, 1]. In the first summand one can use
the lower bound 1 − sG2

ρ ≥ 1 − G2
ρ. In the second summand, let us simply use G2

ρĤ
2G2

ρ ≥

15



16
25

g2

∥H∥2G
4
ρ. Finally, the last summand is non-negative up to errors O(1

ρ
) because 1 − Ĥ ≥ 1

5
1

and ξ2ρ,j(1− Ĥ) = ξρ,j(1− Ĥ)ξρ,j +O(1
ρ
) by Lemma 11. Hence

Lper

η,ρ(1, s)
2 ≥ 4

d∑
j=1

ξ2ρ,j(1−G2
ρ) +

16

25

g2

∥H∥2
G4
ρ + O

(
1√
ρ

)
.

Now one uses the geometric fact that
∑d

j=1 ξ
2
ρ,j(1 − G2

ρ) ≥ sin( π
8
√
d
)2(1 − G2

ρ) and the bound

1−G2 +G4 ≥ 3
4
holding for any number G ∈ [0, 1] to conclude

Lper

η,ρ(1, s)
2 ≥ min

{
16

25

g2

∥H∥2
, 4 sin( π

8
√
d
)2
}
(1−G2

ρ +G4
ρ) + O

(
1√
ρ

)
≥ 3

4
min

{
16

25

g2

∥H∥2
, 4 sin( π

8
√
d
)2
}

+ O
(

1√
ρ

)
.

The next (and essentially final) step is to homotopiclly deform

Lper

η,ρ(1, 0) =

(
−GρĤGρ 2

∑d
j=1 ξρ,j γ̂

∗
j

2
∑d

j=1 ξρ,j γ̂j GρĤGρ

)
into

L̂κ,ρ =

(
−GρĤGρ κ

∑d
j=1Xj γ̂

∗
j

κ
∑d

j=1Xj γ̂j GρĤGρ

)
,

inside of the invertible matrices. This can readily be checked for the straight-line path from
Lper
η,ρ(1, 0) to L̂κ,ρ. But due to the stability of the signature, one has Sig(L̂κ,ρ) = Sig(Lκ,ρ) for

κ sufficiently small and ρ sufficiently large. But by [15, Theorem 3] or [5, Theorem 10.3.1] the
index of PFP + 1− P equals the half-signature of Lκ,ρ. 2

Proof of Theorem 1: By a well-known index theorem [18] the Chern number Chd(P ) is equal
to the index pairing appearing in Proposition 13, which hence directly implies the claim. 2

Remark 14 As already stressed in the introduction, the quantitative aspects of the proofs in
this section are far from optimal. Considerably better (but still not optimal) estimates can be
obtained by working with

Lper

κ,η,ρ =

(∑d
j=1

(
1− cos(πχκ(Xj))

) ∑d
j=1 sin(πχκ(Xj)) γ̂

∗
j∑d

j=1 sin(πχκ(Xj)) γ̂j −
∑d

j=1

(
1− cos(πχκ(Xj))

))+
1

η

(
−Hper

ρ 0
0 Hper

ρ

)
,

where χκ(x) = χ(κx) is constructed from a suitable switch function χ and κ > 0 is a sup-
plementary parameter. Modifying the above proofs one can show that Chd(P ) =

1
2
Sig(Lper

κ,η,ρ)
provided that (3) holds as well as the bounds

κ ≤ g3

890 d2M ∥H∥ η
, ρ ≥ 4

√
d

κ
.

Note that this merely requires ρ ≥ C ′M∥H∥η/g3 for some constant C ′, which is considerably
weaker than (2). However, the advantage of Lper

η,ρ given in (1) over Lper
κ,η,ρ is the simplicity of

the formula as well as the fact that Lper
η,ρ essentially contains no other free parameter than the

volume (as discussed in Remark 3, one can safely choose η ≈ ∥H∥). ⋄
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3 Odd periodic spectral localizer

In this brief section, the odd-dimensional counterpart to Theorem 1 is described. Hence let H
be a finite-range tight-binding Hamiltonian on the Hilbert space H = ℓ2(Zd,CL) with d odd
and L even and with a spectral gap at 0. On the fiber CL let J be a selfadjoint unitary with
eigenvalues 1 and −1 of equal multiplicity L

2
. The Hamiltonian is supposed to be chiral in the

sense that JHJ = −H. This implies that it is off-diagonal in the grading of J :

H =

(
0 A
A∗ 0

)
, J =

(
1 0
0 −1

)
, (26)

where hence A is an invertible short-range periodic operator on ℓ2(Zd,CL
2 ). As such it has a

strong invariant Chd(A) ∈ Z called either a (higher) winding number or also an odd Chern
number [18]. Previous results [14, 5] allow to compute it as the signature of the spectral
localizer. Here a similar connection is established to the (odd) periodic spectral localizer which
is defined to be the finite-dimensional matrix on Hρ⊗Cd′ where Hρ = ℓ2((Z/(2ρZ))d,CL) given
by

Lper

η,ρ =

( ∑d
j=1 sin(

π
ρ
Xj) γj

∑d
j=1

(
1− cos(π

ρ
Xj)
)∑d

j=1

(
1− cos(π

ρ
Xj)
)

−
∑d

j=1 sin(
π
ρ
Xj) γj

)
− 1

η
Hper

ρ . (27)

Just as in (1), the size ρ is a multiple of the periodicities of H, Hper
ρ is the Hamiltonian with

periodic boundary conditions on Hρ and γ1, . . . , γd is an irreducible Clifford representation
acting on Cd′ . Note that Hper

ρ is again off-diagonal and its upper right entry is denoted by Aper
ρ .

Theorem 15 Let d be odd. Suppose that H is a finite-range periodic operator on H =
ℓ2(Zd,CL) of the form (26). Let η and ρ satisfy the same conditions as in Theorem 1, in
particular the bounds (2) and (3). Then Lper

η,ρ defined in (27) is gapped with the bound (4) and
the odd Chern number is

Chd(A) =
1

2
Sig(Lper

η,ρ) . (28)

All the comments of Section 1 transpose to the odd-dimensional case. Example 26 in
Section 5 explains that, in the case of a flat band Hamiltonian, the signature invariant in
Theorem 15 is in fact associated to a fuzzy torus associated to H.

Sketch of proof of Theorem 15. A detailed proof will not be provided as it merely a mod-
ification of the proof of Theorem 1. However, let us briefly sketch the strategy of the argu-
ment. Unless differences are stressed, the same notations as in Section 2 will be used. Here
Gρ,t = Gρ,t(D) for t ∈ [0, 1] and D =

∑d
j=1Xj γj. By an argument similar to the one leading

to Proposition 12, one shows that the path t ∈ [0, 1] 7→ Lper

η,ρ,ρ′(t) for

Lper

η,ρ,ρ′(t) =

( ∑d
j=1 sin(

π
ρ
Xj) γj

∑d
j=1

(
1− cos(π

ρ
Xj)
)∑d

j=1

(
1− cos(π

ρ
Xj)
)

−
∑d

j=1 sin(
π
ρ
Xj) γj

)
ρ′

− 1

η

(
0 Gρ,tA

per

ρ′ Gρ,t

Gρ,t(A
per

ρ′ )
∗Gρ,t 0

)
ρ′

lies in the invertibles and fulfills the bound (4) if η and ρ satisfy the conditions of Theorem 15
and ρ′ fulfills ρ ≤ ρ′ ≤ 2ρ. Then, as in the proof of Proposition 12 one can conclude that
Sig(Lper

η,ρ) is independent of η and ρ in the permitted range of parameters.
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To show that the half-signature of the periodic spectral localizer equals the Chern number
of A let us use the path s ∈ [0, 1] 7→ Lper

κ,η,ρ(1, s) given by

Lper

η,ρ(1, s) =

 2
∑d

j=1 ξρ,j
√

1− s2ξ2ρ,j γj 2s
∑d

j=1 ξ
2
ρ,j − 1

η
GρA

per
ρ Gρ

2s
∑d

j=1 ξ
2
ρ,j − 1

η
Gρ(A

per
ρ )∗Gρ −2

∑d
j=1 ξρ,j

√
1− s2ξ2ρ,j γj


ρ

(29)

with ξρ,j = sin( π
2ρ
Xj) as in (11). As in the proof of Proposition 13, one checks that Lper

η,ρ(1, s) is

invertible for ρ sufficiently large. Thus Sig(Lper
η,ρ) = Sig(Lper

η,ρ(1, 0)). Finally, by transposing the
techniques of the proof of Proposition 13, Lper

η,ρ(1, 0) can be deformed inside the set of invertibles
into the odd spectral localizer introduced in Section 1.4 of [14] but with A replaced by −A.
Then as Chd(A) = Chd(−A) Theorem 1 in [14] allows to conclude. 2

4 Z2-invariants via periodic spectral localizer

This section addresses the real cases of the CAZ (Cartan-Altland-Zirnbauer) classification.
They all impose a symmetry property on the Hamiltonian that involves a complex conjugation
(real structure, denoted by an overline) on the complex Hilbert space. There are 64 such cases,
stemming from an 8-periodicity in both dimension d and the CAZ classes (both routed in Bott
periodicity). Only 16 of these cases are known to lead to Z2-valued strong invariants [19, 10]. In
previous works [13, 4] it was shown that a real skew-adjoint version of the spectral localizer, the
so-called skew localizer, can be used to compute these Z2-indices. In this section the associated
skew periodic localizer is introduced for the physically most relevant low-dimensional cases,
and it is shown that the sign of its Pfaffian is connected to the Z2-invariants. An exhaustive
treatment of all cases as in [4] is not provided here.

Let us now sketch the general common scheme. Like in [4], the skew periodic localizer
is constructed from the periodic localizer by a basis change and multiplication by ı. More
explicitly, in each of the relevant CAZ classes in even dimension d, there is a unitary R :
(Hρ ⊕Hρ)⊗ Cd′ → (Hρ ⊕Hρ)⊗ Cd′ such that the skew periodic localizer given by

Lskew,per

η,ρ = ı R∗Lper

η,ρR

is a real and skew-adjoint operator on (Hρ⊕Hρ)⊗Cd′ . For odd d, the only modification is that
R : Hρ⊗Cd′ → Hρ⊗Cd′ and Lskew,per

η,ρ then acts on Hρ⊗Cd′ . Cleary R depends on ρ, but as R
is local, this dependence is suppressed in the notation. For even d and (η, ρ) as in Theorem 1
and for odd d and (η, ρ) as in Theorem 15 this operator is invertible and therefore has a non-

vanishing Pfaffian. Moreover, let D̃ be a suitable perturbation of the first summand of the
periodic spectral localizer (1) or (27) by a term localized at the origin such that D̃ is invertible

and such that Dskew = ı R∗D̃R is real and skew-adjoint. Then its Pfaffian is well-defined, does
not vanish and the Z2-index associated to the Hamiltonian H is in each case proven to be given
by

Ind2(T ) = sgn(Pf(Lskew,per

η,ρ )) sgn(Pf(Dskew

ρ )) ∈ Z2 , (30)
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where Ind2(T ) = dim(Ker(T ))mod 2 in the 16 relevant cases is defined as in [10] using the
Fredholm operators T = PFP + (1 − P ) or T = EAE + (1 − E) with F being the Dirac
phase and E the Hardy projection. Let us stress that the sign of the Pfaffian depends on the
choice of basis and that for a suitable choice one can always arrange that sgn(Pf(Dskew

ρ )) = 1
so that the equality (30) takes a more simple form. Let us also note that the index pairing
and therefore also the Z2-index does depend on the perturbation of the first summand of the
periodic spectral localizer at the origin. In the following this scheme is materialized in some of
the important cases by constructing the unitary R. Also explicit formulas for Lskew,per

η,ρ will be
provided in these cases.

Case d = 1 for CAZ class DIII: For d = 1 the Dirac operator is just the position operator
D = X. Let us add the projection onto its kernel to make it invertible, namely D̃ = X + p0
where p0 is the orthogonal projection onto Ker(D) = span(|0⟩). Let H be a finite-range periodic
Hamiltonian on ℓ2(Z,CL) with L even that is in CAZ class DIII namely that has a odd time-
reversal symmetry and an even particle-hole symmetry. In a suitably chosen basis, H is of the
form (26) with an A ∈ B(ℓ2(Z,CL

2 )) fulfilling the additional symmetry

(ı σ2)
∗A∗ı σ2 = A (31)

where σ2 denotes the second Pauli matrix acting only on the fiber. The index pairing is
T = EAE + 1− E where E = χ(D̃ ≥ 0). Then set

Q =

(
0 ı σ2

−ı σ2 0

)
, R =

1 + ı

2

(
1 σ2

−σ2 1

)
. (32)

Then Q is a self-adjoint real unitary and R is a particular choice for the root, namely R2 = Q
(in principle one may choose other roots, but this choice leads to nice formulas below). The
one-dimensional periodic spectral localizer is

Lper

η,ρ =

(
sin(π

ρ
X) 1− cos(π

ρ
X)

1− cos(π
ρ
X) − sin(π

ρ
X)

)
− 1

η

(
0 Aper

ρ

(Aper
ρ )∗ 0

)
where Aper

ρ is the off-diagonal entry of Hper
ρ . As Aper

ρ fulfills the same symmetry relation as A,

namely (31) holds with A replaced by Aper
ρ , one then has QLper

κ,η,ρQ = −Lper
κ,η,ρ. Then set

Lskew,per

η,ρ = ı R∗Lper

η,ρR , Dskew

ρ = ı R∗D̃ρR ,

where

D̃ρ =

(
sin(π

ρ
X) + p0 1− cos(π

ρ
X)

1− cos(π
ρ
X) − sin(π

ρ
X)− p0

)
ρ

.

Both Lskew,per
η,ρ and Dskew

ρ are bounded real and skew-adjoint operators. Explicitly one finds:

Lskew,per

η,ρ =

(
−
(
1− cos(π

ρ
X)− 1

η
ℜ(Aper

ρ )
)
ıσ2 sin(π

ρ
X)ıσ2 +

1
η
ℑ(Aper

ρ )

sin(π
ρ
X)ıσ2 − 1

η
ℑ(Aper

ρ )∗ ıσ2
(
1− cos(π

ρ
X)− 1

η
ℜ(Aper

ρ )
)) ,

where ℜ(B) = 1
2
(B + B) and ℑ(B) = 1

2ı
(B − B) are real (note that they are different from

ℜe(B) = 1
2
(B +B∗) and ℑm(B) = 1

2ı
(B −B∗)).
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Proposition 16 For (η, ρ) as in Theorem 1, Lskew,per
η,ρ and Dskew are invertible and (30) holds.

Proof. First of all Lper
η,ρ and therefore Lskew,per

η,ρ is invertible by Theorem 15. Therefore and as
Dskew
ρ is a real skew-adjoint invertible by construction, the r.h.s. of (30) is well-defined. One

has to show that it is independent of η and ρ. For Lper

η,ρ,ρ′(t), as in the proof of Theorem 15,

QLper

η,ρ,ρ′(t)Q = −Lper

η,ρ,ρ′(t)

for all t ∈ [0, 1]. Therefore ı R∗Lper

η,ρ,ρ′(t)R is a real skew-adjoint invertible and thus its Pfaffian
is well-defined, does not vanish and the sign of this Pfaffian is independent of t. Now let (η, ρ)
and (η′, ρ′) both satisfy all the conditions of Theorem 1 and suppose, without restriction, that
ρ ≤ ρ′ ≤ 2ρ. Continuity of Lskew,per

η,ρ in η allows to assume η = η′. By the above argument it is
sffucient to show

sgn(Pf(ı R∗Lper

η,ρ,ρ(1)R))sgn(Pf(D
skew

ρ )) = sgn(Pf(ı R∗Lper

η,ρ,ρ′(1)R))sgn(Pf(D
skew

ρ′ )) .

But
Lper

η,ρ,ρ′(1) = Lper

η,ρ,ρ′(1)H ρ
2

⊕ (D̃ρ′)Hρ′⊖H ρ
2

,

where the lower index H ρ
2
indicates the restriction to H ρ

2
⊗C2 and the lower index (H′

ρ ⊖H ρ
2
)

indicates the restriction to (Hρ′ ⊖H ρ
2
)⊗ C2. Thus

sgn(Pf(ı R∗Lper

η,ρ,ρ′(1)R))sgn(Pf(D
skew

ρ′ )) = sgn(Pf((ı R∗Lper

η,ρ,ρ′(1)R)H ρ
2

))sgn(Pf((Dskew

ρ′ )Hρ′⊖H ρ
2

))

sgn(Pf((Dskew

ρ′ )H ρ
2

))sgn(Pf((Dskew

ρ′ )Hρ′⊖H ρ
2

))

= sgn(Pf((ı R∗Lper

η,ρ,ρ′(1)R)H ρ
2

))sgn(Pf((Dskew

ρ′ )H ρ
2

)) .

By the same argument

sgn(Pf(ı R∗Lper

η,ρ,ρ(1)R))sgn(Pf(D
skew

ρ )) = sgn(Pf((ı R∗Lper

η,ρ,ρ(1)R)H ρ
2

))sgn(Pf((Dskew

ρ )H ρ
2

)) .

Because the paths t ∈ [0, 1] 7→ (ı R∗Lper

η,ρ,tρ+(1−t)ρ′(1)R)H ρ
2

and t ∈ [0, 1] 7→ (Dskew

tρ+(1−t)ρ′)H ρ
2

both

lay in the real skew-adjoint invertibles

sgn(Pf((ı R∗Lper

η,ρ,ρ′(1)R)H ρ
2

)) = sgn(Pf((ı R∗Lper

η,ρ,ρ(1)R)H ρ
2

))

and
sgn(Pf((Dskew

ρ′ )H ρ
2

)) = sgn(Pf(Dskew

H ρ
2

)) .

for any fixed basis of H ρ
2
⊗ C2. This shows that the r.h.s. of (30) is independent of (η, ρ) in

the permitted range of parameters.

Thus it remains to show (30) where ρ can be chosen as large as needed. For Lper
η,ρ(1, s) as in

the proof of Theorem 15
QLper

η,ρ(1, s)Q = −Lper

η,ρ,ρ′(1, s)
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for all s ∈ [0, 1]. Thus ı R∗Lper
η,ρ(1, s)R is a path of real skew-adjoint invertibles. Thus for fixed

and sufficiently large ρ, the Pfaffain of the skew periodic localizer has the same sign as the
Pfaffain of the skew localizer L̂κ,ρ for the considered index pairing introduced in Section 5.2 of
[4] but for −A instead of A. In the same way, one checks that the sign of the Pfaffian of Dskew

ρ

equals the sign of the Pfaffian of (ı R∗((D + p0) ⊕ (D + p0))R)ρ. Then the claim follows from
Theorem 26 in [4] as Ind2(EAE + (1− E)) = Ind2(−EAE + (1− E)). 2

Case d = 2 for CAZ class AII: For d = 2 the Dirac operator is D = X1γ1 +X2γ2. Thus its
off-diagonal entry is D0 = X1 + ıX2. Again in order to eliminate the kernel, D0 is replaced by
D0 + p0 with a projection p0 on the origin. For sake of simplicity let us suppress this in the
notations. In the present case, the index pairing is T = PFP + 1 − P where F = D0|D0|−1

is the Dirac phase and P = χ(H < 0). Then the symmetry of the Hamiltonian is σ2Hσ2 = H
where σ2 is the second Pauli matrix which commutes with X1 and X2. Then for Q as in (32) the
periodic spectral localizer defined by (1) satisfies QLper

η,ρQ = −Lper
η,ρ. Finally the skew periodic

localizer and Dskew are again defined by

Lskew,per

η,ρ = ı R∗Lper

η,ρR , Dskew = ı R∗DρR ,

for R as in (32). Both are real and skew-adjoint and the explicit form of the skew periodic
localizer is

Lskew,per

η,ρ =

(
−ıσ2 sin(πρX1) ıσ2

∑2
j=1(1− cos(π

ρ
Xj)) + sin(π

ρ
X2)

ıσ2
∑2

j=1(1− cos(π
ρ
Xj))− sin(π

ρ
X2) ıσ2 sin(

π
ρ
X1)

)

+
1

η

(
ℑ(H) −ıσ2ℜ(H)

−ıσ2ℜ(H) −ℑ(H)

)
.

By essentially the same proof as in Proposition 16 one obtains:

Proposition 17 For (η, ρ) as in Theorem 1, Lskew,per
η,ρ and Dskew

ρ are invertible and (30) holds.

Case d = 3 for CAZ class AII: For d = 3 the Dirac operator is D = X1γ1 +X2γ2 +X3γ3.
Then let us set D̃ = D + γ1p0. Let H be a finite-range periodic Hamiltonian on ℓ2(Z,CL)
that is in CAZ class AII namely that has an odd time-reversal symmetry σ2Hσ2 = H. The
index pairing is T = E(1− 2P )E + 1−E where E = χ(D̃ ≥ 0) and P = χ(H ≤ 0). The skew
periodic localizer can be obtained form the even or odd periodic spectral localizer.

The even periodic spectral localizer, given by (1), fulfills QLper
η,ρQ = −Lper

η,ρ for

Q =

(
0 σ2γ2

σ2γ2 0

)
. (33)

One possible choice of R is

R =
1

2

(
(1− ı)R (1 + ı)R
(1 + ı)R (1− ı)R

)
, (34)
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where R2 = σ2γ2 and R = R∗ = R−1. The skew periodic localizer is off-diagonal

Lskew,per

η,ρ =

(
0 Bρ

−B∗
ρ 0

)
, (35)

for Bρ = R∗(ı
∑3

j=1 sin(
π
ρ
Xj)γj − 31+

∑3
j=1 cos(

π
ρ
Xj) +

1
η
Hper
ρ )R.

Proposition 18 For (η, ρ) as in Theorem 1, Lskew,per
η,ρ and Dskew

ρ are invertible and one has (30).
Choosing the even periodic spectral localizer and R as in (34) one obtains

Ind2(T ) = sgn(det(Bρ)) sgn(det(Cρ))

for Bρ as above and Cρ = R∗(ı
∑3

j=1 sin(
π
ρ
Xj)γj + γ1p0 − 31+

∑3
j=1 cos(

π
ρ
Xj))R.

5 Fuzzy tori and their invariants

This section develops a general theory of fuzzy tori and their invariants. Here the terminology
of fuzzy geometric object is meant in the following sense: consider a classical geometric object
(compact or non-compact) as a subset of an Euclidean space Rd defined by a set of equations
in the components of x = (x1, . . . , xd) ∈ Rd; replace these coordinates or functions of them by
operators in some algebra and ask the defining equations to be satisfied only approximately,
namely up to errors in operator norm; then these operators are called a fuzzy geometric object.
As this is a particular case of algebras defined by relation, an abstract study of the K-theoretic
invariants of such fuzzy objects has been known for a long time [8, 6, 7]. The construction
of these invariants was essentially based on the replacement of the fuzzy object into classical
maps from the geometric object to a sphere [11]. This leads to correct, but not very practical
maps. Here we rather use relatively easy polynomial maps into the dotted Euclidean space and
show that they do allow to construct the invariants, actually in a much easier manner that can
be implemented numerically. The focus is only on fuzzy tori, because of their great relevance
for solid state systems and hence connections to the first part of the paper. More precisely,
it is shown how these abstract constructions applied to natural fuzzy tori associated to the
situations analyzed in Sections 1 to 3 directly lead to the periodic spectral localizers.

Definition 19 Let A be a C∗-algebra of operators on a separable Hilbert space H and let A∼

denote its unitization. Then d invertible operators A1, . . . , Ad ∈ A∼ form a d-dimensional fuzzy
torus of width δ ∈ [0, 1), or simply a fuzzy d-torus, if for all j, i = 1, . . . , d

∥AjA∗
j − 1∥ ≤ δ , ∥A∗

jAj − 1∥ ≤ δ , ∥[Aj, Ai]∥ ≤ δ . (36)

If, moreover, is given a selfadjoint,

(Ad+1)
∗ = Ad+1 (37)

such that A1, . . . , Ad+1 ∈ A∼ form a (d + 1)-dimensional fuzzy torus of width δ ∈ [0, 1), then
A1, . . . , Ad+1 ∈ A∼ are said to form a graded fuzzy d-torus of width δ ≥ 0.
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Recall the definition of the real and imaginary part of an operator A:

ℜe(A) =
1

2
(A+ A∗) , ℑm(A) =

1

2ı
(A− A∗) .

Definition 20 Associated to a fuzzy d-torus A1, . . . , Ad ∈ A∼ and a subset I ⊂ {1, . . . , d}, the
operator GI = GI(A1, . . . , Ad) is defined by

GI =

|I|∑
j=1

ℑm(Aij)⊗ γj +

(|I| − 1)1−
|I|∑
j=1

ℜe(Aij)

⊗ γ|I|+1 , (38)

where I = {i1, . . . , i|I|} and γ1, . . . , γd+1 is an irreducible selfadjoint representation of the Clif-
ford algebra with d + 1 generators. Furthermore, if A1, . . . , Ad+1 ∈ A∼ form a graded fuzzy
d-torus, then an operator ĜI = ĜI(A1, . . . , Ad+1) is introduced by

ĜI =

|I|∑
j=1

ℑm(Aij)⊗ γj +

|I|1−
|I|∑
j=1

ℜe(Aij)− Ad+1

⊗ γ|I|+1 . (39)

By construction, GI = G∗
I and Ĝ∗

I = ĜI are selfadjoint operators on H ⊗ Cd′ for some d′.

The results below show that GI and ĜI are invertible for sufficiently small δ, so that their
positive spectral projections fix K-theory classes which for matrices can simply be read out via
the signature. Underlying the construction in (38) are certain maps g|I|,|I|−1 : Td → Rd+1 \ {0}
which for even |I| are analyzed in detail in Appendix B. In particular, it is shown that the
normalized maps g|I|,|I|−1/∥g|I|,|I|−1∥ : Td → Sd have a mapping degree equal to 1. One then
gets GI : Td → Cd′×d′ by multiplying the coefficients with an irreducible representation of |I|+1
Clifford generators:

GI(e
ıθ) =

|I|∑
j=1

sin(θij)⊗ γj +

(|I| − 1)1−
|I|∑
j=1

cos(θij)

⊗ γ|I|+1 .

As GI(e
ıθ) remains gapped, Sig(GI(e

ıθ)) is independent of θ and Sig(GI(e
ıθ)) = Sig(GI(1)) = 0.

The same holds for fuzzy tori composed of commuting unitary matrices:

Proposition 21 If a fuzzy d-torus consists of commuting unitary matrices A1, . . . , Ad, one has
Sig(GI) = 0 and Sig(ĜI) = 0 for all I.

Proof. As the matrices can be simultaneously diagonalized, the above argument applies to all
common eigenspaces. 2

For non-commuting (but almost commuting) matrices, the signatures of GI and ĜI can be
different from zero though, see the examples below. Hence these signatures allow to distinguish
different homotopy classes of fuzzy d-tori. As shown in Proposition 33 below, the definition
(39) of ĜI essentially reduces to the same map. Furthermore, one has the following elementary
fact:
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Lemma 22 For odd |I|, there exists a further Clifford generator Γ = γ|I|+2 on the same repre-

sentation space for which ΓGIΓ = −GI and ΓĜIΓ = −ĜI .

Remark 23 The formulas (38) and (39) look very much alike, but there is nevertheless a
crucial difference that will be explained now. Given a graded fuzzy d-torus A1, . . . , Ad+1 ∈
A∼, one can, of course view it by definition as an (d + 1)-dimensional fuzzy torus and hence
associate the operators GI = GI(A1, . . . , Ad+1). It requires the use of an irreducible selfadjoint
representation of the Clifford algebra with |I|+2 generators even though, for d+1 ∈ I and due
to ℑm(Ad+1) = 0, the generator γ|I|+1 does not appear in the formula. Therefore, the operator
GI satisfies the chirality relation γ|I|+1GIγ|I|+1 = −GI , no matter whether |I| is even or odd.
For odd |I|, it is not possible to add a further Clifford generator on the representation space.
On the other hand, if |I| is even, there then does exist an extra generator γ|I|+3. Choosing the
representation such that

γ1 = γ̂1⊗σ1 , . . . , γ|I| = γ̂|I|⊗σ1 , γ|I|+2 = γ̂|I|+1⊗σ1 , γ|I|+1 = 1⊗σ2 , γ|I|+3 = 1⊗σ3 ,

where σ1, σ2 and σ3 are the Pauli matrices and γ̂1, . . . , γ̂|I|+1 is an irreducible selfadjoint repre-
sentation of the Clifford algebra with |I|+1 generators, one then has the two chirality relations

σ2GIσ2 = −GI , σ3GIσ3 = −GI .

By an elementary argument with 2 × 2 matrices, the second relation implies that GI is off-
diagonal in the grading of the Pauli matrices, and the first relation that the off-diagonal entry
is selfadjoint. Actually, setting Î = I \ {d+1} and comparing with the definition of ĜÎ written
with the γ̂j instead of the γj, one finds

GI =

(
0 ĜÎ

ĜÎ 0

)
, |I| even .

Hence ĜÎ is the reduced-out form of GI . Note that the spectra satisfy spec(GI) = spec(ĜÎ) ∪
(−spec(ĜÎ)). In particular, the spectrum of GI is always symmetric, while that of ĜÎ may have
a spectral asymmetry. ⋄

Before starting with the analysis of the gap of GI and ĜI and their K-theoretic interpreta-
tions, let us provide several examples of fuzzy tori.

Example 24 Let θ ∈ Rd×d be an anti-symmetric matrix and Aθ = C∗(U1, . . . , Ud) be the
d-dimensional rotation algebra generated by d unitaries U1, . . . , Ud satisfying UiUj = eıθi,jUjUi.

One has the bound ∥[Ui, Uj]∥ ≤ (2(1 − cos(θi,j)))
1
2 . Hence if |θi,j| ≤ δ, then ∥[Ui, Uj]∥ ≤ δ. If

this holds for all i ̸= j, then U1, . . . , Ud form a fuzzy d-torus of width δ. ⋄

Example 25 Let A ∈ C1(Td,CL×L) be a continuously differentiable function from the classical
d-torus to the invertible L× L-matrices. This is viewed as a fiberwise multiplication operator
on L2(Td,CL). It is supposed to lead to small norms ∥A∗A − 1∥ and ∥AA∗ − 1∥, namely is
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almost unitary. It is well-known that A has odd Chern numbers (also called higher winding
numbers) given by

Chd(A) =
(1
2
(d− 1))!

d!

( ı

2π

) d+1
2

∫
Td

Tr
((
A−1dA

)d)
.

Let ı∂j for j = 1, . . . , d be the (selfadjoint) coordinate vector fields on the torus. Then eıπχκ(ı∂j)

is defined by functional calculus from a scaled smooth switch function χκ(x) = χ(κx). For κ
sufficiently small, an argument similar to the one leading to Lemma 11 implies that

eıπχκ(ı∂1) , . . . , eıπχκ(ı∂d) , A

form a fuzzy (d + 1)-torus in the algebra of bounded operators on L2(Td,CL). Its width can
be determined from κ and the above two norms. Note that, due to χκ(ı∂j) = χ(κı∂j), κ plays
the role of Planck’s constant here. Also let us stress that associated to a classical d-torus Td
is a fuzzy (d + 1)-torus. Hence there there is a natural dimensional shift here. There is an
associated self-adjoint operator G = G{1,...,d+1}. If one chooses the Clifford representation

γ1 ⊗ σ3 , . . . , γd ⊗ σ3 , 1⊗ σ2 , 1⊗ σ1 ,

it is given by

G =

( ∑d
j=1 sin(πχκ(ı∂j)) γj d−

∑d
j=1 cos(πχκ(ı∂j))

d−
∑d

j=1 cos(πχκ(ı∂j)) −
∑d

j=1 sin(πχκ(ı∂j)) γj

)
−
(

0 A
A∗ 0

)
. (40)

Note that if d is even, then the Clifford representation admits another generator γd+1 ⊗ 1 with
respect to which G is odd. ⋄

Example 26 Upon Fourier transform F : ℓ2(Zd,CL) → L2(Td,CL), Example 25 essentially
becomes the situation described in Section 3 because F∗ı∂jF = Xj and the finite range con-
dition in Section 3 corresponds to a finite frequency condition. Then F∗AF is a 1-periodic
operator on ℓ2(Zd,CL) which for sake of simplicity is simply denoted by A again. Then
eıπχκ(X1), . . . , eıπχκ(Xd), A form a fuzzy (d + 1)-torus in the algebra of bounded operators on
ℓ2(Zd,CL), actually rather the much smaller algebra generated by the algebra A1 of 1-periodic
short-range operators and the algebra K compact operators on ℓ2(Zd,CL) (as a vector space,
this algebra is A1 ⊕ K, but the multiplication is not fiberwise). The associated operator
G = G{1,...,d+1} is, as in (40),

G =

( ∑d
j=1 sin(πχκ(Xj)) γj d−

∑d
j=1 cos(πχκ(Xj))

d−
∑d

j=1 cos(πχκ(Xj)) −
∑d

j=1 sin(πχκ(Xj)) γj

)
−
(

0 A
A∗ 0

)
.

In this formula, one can now let A be a 2ρ periodic operator. Furthermore, choosing χ(x) = x
for |x| ≤ 1 and χ(x) = sgn(x) for |x| ≥ 1 as well as κ = 1

ρ
, one then obtains an operator G with

a restriction Gρ to Hρ = ℓ2((Z/(2ρZ))d,CL) coinciding with the odd periodic spectral localizer
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with η = 1, provided one replaces A by Aρ with periodic boundary conditions. The spectral
asymmetry of G entirely results from the spectral asymmetry of this finite-dimensional piece Gρ

(as can readily be shown for ρ sufficiently large and the arguments in Section 2 that modifying
the boundary conditions does not alter the signature either) and can hence be measured by the
half-signature of the odd periodic spectral localizer. The fuzzy torus (of square matrices of size
(2ρ)dL) leading to Gρ is given by eı

π
ρ
X1 , . . . , eı

π
ρ
Xd , Aρ. Actually, the framework can further be

extended to operators A from the algebra A of covariant operators as defined in [2, 18]. Then
the fuzzy torus lies in the algebra A⊕K. ⋄

Example 27 Suppose that H = H∗ is an invertible finite-range operator on ℓ2(Zd,CL). Then
the operators

eıπχκ(X1) , . . . , eıπχκ(Xd) , H .

form a graded fuzzy d-torus. Associated is therefore an operator Ĝ = Ĝ{1,...,d}. If the irreducible
representation of the Clifford algebra with d+ 1 generators is chosen to be

γ1 ⊗ σ1 , . . . , γd−1 ⊗ σ1 , 1⊗ σ2 , 1⊗ σ3

where γ1, . . . , γd−1 is an irreducible representation of the Clifford algebra with d− 1 generators
(the tensor products will be dropped in the following), then one finds

Ĝ =
d−1∑
j=1

ℑm(eıπχκ(Xj)) γj σ1 + ℑm(eıπχκ(Xd))σ2 +
(
d1−

d∑
j=1

ℜe(eıπχκ(X1))−H
)
σ3

=

(
−H + d1−

∑d
j=1 cos(πχκ(Xj))

∑d−1
j=1 sin(πχκ(Xj)) γj − ı sin(πχκ(Xd))∑d−1

j=1 sin(πχκ(Xj)) γj + ı sin(πχκ(Xd)) H − d1+
∑d

j=1 cos(πχκ(Xj))

)
.

Replacing the γj by γ̂j and proceeding as in Example 26, one recovers the even periodic spectral

localizer with η = 1 as the finite-volume restriction of Ĝ. ⋄

Example 28 Suppose given a C∗-dynamical system (A,Rd, α) consisting of a C∗-algebra (for
simplicity given as subalgebra of the bounded operators on some Hilbert space H and a con-
tinuous group action α of Rd on A. The action is implemented (in a unique manner, up to
isomorphisms) by a strongly continuous unitary group action U on H, namely αx(A) = U∗

xAUx
for A ∈ A and x ∈ Rd. If e1, . . . , ed is a basis of Rd, then t ∈ R 7→ Utej is a strongly con-

tinuous one-parameter group with generator Xj. Then define unitaries eıχκ(Xj) by spectral
calculus. Further be given an invertible operator A ∈ A fixing a class in K1(A). This operator
is supposed to be sufficiently smooth w.r.t. the action α (see [20] for a detailed description of
conditions that assure the existence of semi-finite index parings in the presence of an α-invariant
tracial state on A). One then has an associated fuzzy (d + 1)-torus eıχκ(X1), . . . , eıχκ(Xd), A of
width converging to 0 as κ → 0 (no detailed proof of this fact is provided here, as it read-
ily follows from the techniques of Lemma 11 and [5]). Similarly, given a sufficiently smooth
gapped selfadjoint operator H ∈ A specifying a class in K0(A), one has a graded fuzzy d-torus
eıχκ(X1), . . . , eıχκ(Xd), H. From both of these tori, one can build lower-dimensional tori associ-
ated to choices of a subset I ⊂ {1, . . . , d}. Note that these constructions are generalizations of
the Examples 26 and 27. ⋄
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The next two results give simple criteria on the width δ assuring that G-operators are
invertible. We will focus on the case G = G{1,...,d} simply because the GI with |I| < d are
associated to a fuzzy |I|-torus so that the below results cover this case as well. As the estimate
of the gap is more simple and transparent, let us first restrict to a fuzzy d-torus given by unitary
instead of invertible operators. Note that this case is sufficient for Example 24.

Proposition 29 For unitaries U1, . . . , Ud ∈ U(H), the operator G = G{1,...,d}(U1, . . . , Ud) sat-
isfies

G2 ≥

(
1− 7

∑
1≤j<i≤d

∥[Uj, Ui]∥

)
1 . (41)

In particular, G is invertible if the unitaries U1, . . . , Ud ∈ U(H) form a fuzzy d-torus of width
δ satisfying 1−

(
d
2

)
7δ > 0.

Proof. The argument is essentially identical to the one leading to Proposition 4.3 in [12].
Using the Clifford relations, one finds

G2 =

 d∑
j=1

ℑm(Uj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Uj)

)2
⊗ 1+

∑
1≤j<i≤d

[ℑm(Uj),ℑm(Ui)]⊗ γjγi

+
d∑
j=1

[ℑm(Uj), (d− 1)1−
d∑
i=1

ℜe(Ui)]⊗ γjγd+1 .

Using that

∥[ℑm(Uj),ℑm(Ui)]∥ ≤ ∥[Uj, Ui]∥ , ∥[ℑm(Uj),ℜe(Ui)]∥ ≤ ∥[Uj, Ui]∥

and that γj is unitary for all j one obtains

G2 ≥

 d∑
j=1

ℑm(Uj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Uj)

)2
⊗ 1 − 3

∑
1≤j<i≤d

∥[Uj, Ui]∥1 . (42)

Moreover,

d∑
j=1

ℑm(Uj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Uj)

)2

=
d∑
j=1

ℑm(Uj)
2 + (d− 1)21− 2(d− 1)

d∑
j=1

ℜe(Uj) +

(
d∑
j=1

ℜe(Uj)

)2

= d1+ (d− 1)21− 2(d− 1)
d∑
j=1

ℜe(Uj) +
d∑

1≤j<i≤d

(ℜe(Uj)ℜe(Ui) + ℜe(Ui)ℜe(Uj)) ,
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where the last step follows from ℑm(Uj)
2 + ℜe(Uj)2 = 1. This simplifies to

d∑
j=1

ℑm(Uj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Uj)

)2

= 1+
∑

1≤j<i≤d

(
(1−ℜe(Uj))(1−ℜe(Ui)) + (1−ℜe(Ui))(1−ℜe(Uj))

)
. (43)

One directly checks that 1−ℜe(Uj) = 1
2
(Uj − 1)(Uj − 1)∗ and therefore

d∑
j=1

ℑm(Uj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Uj)

)2

= 1+
1

4

∑
1≤j<i≤d

(
(Uj − 1)(Uj − 1)∗(Ui − 1)(Ui − 1)∗ + (Ui − 1)(Ui − 1)∗(Uj − 1)(Uj − 1)∗

)
= 1+

1

4

∑
1≤j<i≤d

(
(Uj − 1)(Ui − 1)(Ui − 1)∗(Uj − 1)∗ + (Uj − 1)[(Uj − 1)∗, (Ui − 1)](Ui − 1)∗

+ (Uj − 1)(Ui − 1)[(Uj − 1)∗, (Ui − 1)∗] + (Ui − 1)(Uj − 1)(Uj − 1)∗(Ui − 1)∗

+ (Ui − 1)[(Ui − 1)∗, (Uj − 1)](Uj − 1)∗ + (Ui − 1)(Uj − 1)[(Ui − 1)∗, (Uj − 1)∗]
)
.

Using that the first and fourth summand are non-negative and ∥(Uj − 1)∥ ≤ 2, ∥(Ui− 1)∥ ≤ 2,
one obtains

d∑
j=1

ℑm(Uj)
2+

(
(d− 1)1−

d∑
j=1

ℜe(Uj)

)2

≥
(
1− 4

∑
1≤j<i≤d

∥[Uj, Ui]∥
)
1 .

Combining with (42) the claim (41) follows. 2

Example 30 Let us continue with Example 24 of the non-commutative torus. If |θi,j| ≤ δ for
all i ̸= j and δ < 2

7
d(d − 1), then GI = GI(U1, . . . , Ud) is gapped by Proposition 29. If 1

2π
θ

consists only of rational numbers, it is well-known that the unitaries U1, . . . , Ud can be chosen
to be finite-dimensional matrices. In this case also GI is a finite dimensional matrix and one can
hence define the invariants νI =

1
2
Sig(GI) which are integer-valued because the representation

space of the Clifford algebra is even-dimensional so that also the selfadjoint matrix GI acts on
an even-dimensional vector space. Let us now focus on the case d = 2 and I = {1, 2}. Then
θ is a scalar which is supposed to be θ = 2π

N
. Choosing the Clifford representation to be the

standard Pauli matrices, the associated operator G = G{1,2}(U1, U2) is then

G =

(
1−ℜe(U1)−ℜe(U2) ℑm(U1)− ıℑm(U2)
ℑm(U1) + ıℑm(U2) −1+ ℜe(U1) + ℜe(U2)

)
.

By Proposition 29, G is gapped provided thatN ≥ 14π. In reality, the gap is already open forN
much smaller. Associated is then the invariant 1

2
Sig(G(U1, U2)) ∈ Z. Due to [6, Proposition 5.1]

and [7, Theorem 6.15] it is known that this integer is equal to the winding number of the path
t ∈ [0, 1] 7→ det(tU1U2 − (1− t)U2U1). ⋄
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Example 31 This example is a continuation of Example 25, albeit with a function A = U ∈
C1(Td,U(L)) with values in the unitary matrices. For such a function, Proposition 29 applies.
Therefore the G-operator given in (40) is gapped. It is still an operator on an infinite dimen-
sional Hilbert space and has no finite-dimensional invariant subspaces (even if U only contains
a finite number of frequencies). Nevertheless, the operator has a spectral asymmetry which
can be extracted by projecting G down to frequencies of modulus less then ρ. If Gρ denotes
this restriction, then the proof of Theorem 1 shows that Chd(U) =

1
2
Sig(Gρ) for ρ sufficiently

large. Let us note that the essential spectrum of the operator G in infinite volume consists of
{−1, 1}. In particular, G does not have a compact resolvent so that it is not possible to define
an η-invariant, other than for the spectral localizer [14, 5]. Furthermore, let us note that for d
even, the symmetry γd+1Gργd+1 = −Gρ implies that Sig(Gρ) = 0. However, for d even, one can
choose I of odd cardinality |I| < d and then the spectral asymmetry of the associated operators
GI determines the odd Chern numbers of lower degree. ⋄

Proposition 29 does not allow to show the G-operators associated to Examples 26 and 27
are gapped because A and H are not necessarily unitary, even though all other operators of the
fuzzy tori are unitary which, moreover, commute with each other. Of course, the situation of
Example 27 is dealt with in detail in the proof of Theorem 1 given in Section 2. The next result
generalizes Proposition 29 to invertible operators A1, . . . , Ad ∈ B(H) that form a fuzzy d-torus.
This also provides the gap estimate of Theorem 1, albeit with considerably worse constants.

Proposition 32 If A1, . . . , Ad ∈ B(H) form a fuzzy d-torus of width δ ∈ (0, 1
2
] the selfadjoint

operator G = G(A1, . . . , Ad) satisfies

G2 ≥
(
1 − 33 d2δ

)
1 . (44)

In particular, G is invertible if δ < 1
33 d2

.

Proof. Using the Clifford relations one has

G2 =

 d∑
j=1

ℑm(Aj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Aj)

)2
+

∑
1≤j<i≤d

[ℑm(Aj),ℑm(Ai)]⊗ γjγi

+
d∑
j=1

[ℑm(Aj), (d− 1)1−
d∑
i=1

ℜe(Ai)]⊗ γjγd+1

≥

 d∑
j=1

ℑm(Aj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Aj)

)2


−

( ∑
1≤j<i≤d

∥[ℑm(Aj),ℑm(Ai)]∥ −
d∑

j,i=1

∥[ℑm(Aj),ℜe(Ai)]∥

)
. (45)

Using that spec(|Aj|) ⊂ [(1− δ)
1
2 , (1 + δ)

1
2 ] and δ ≤ 1

2
, one checks that

∥Aj∥ = ∥|Aj|∥ ≤ (1 + δ)
1
2 ≤ 1 +

δ

2
, ∥A−1

j ∥2 ≤ (1− δ)−1 ≤ 1 + 2δ . (46)
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Therefore

∥[Ai, A∗
j ]∥ = ∥A−1

j (AjAiA
∗
jAj − AjA

∗
jAiAj)A

−1
j ∥

≤ ∥A−1
j ∥2 ∥AjAi(A∗

jAj − 1) + [Aj, Ai] + (1− AjA
∗
j)AiAj∥

≤ (1 + 2δ)
(
2(1 + δ)δ + δ

)
≤ 8 δ . (47)

This leads to

∥[ℑm(Aj),ℑm(Ai)]∥ ≤ 1

4

(∥∥[Aj, Ai]∥∥+ ∥∥[Ai, A∗
j ]
∥∥+ ∥∥[A∗

i , Aj]
∥∥+ ∥∥[A∗

j , A
∗
i ]
∥∥) ≤ 1

2
(δ + 8δ) = 5 δ .

In the same way one shows the bound

∥[ℑm(Aj),ℜe(Ai)]∥ ≤ 1

4

(∥∥[Aj, Ai]∥∥+ ∥∥[Ai, A∗
j ]
∥∥+ ∥∥[Aj, A∗

i ]
∥∥+ ∥∥[A∗

i , A
∗
j ]
∥∥) ≤ 5 δ ,

for j ̸= i. For j = i a slightly better estimate holds

∥[ℑm(Aj),ℜe(Aj)]∥ =
1

2
∥AjA∗

j − A∗
jAj∥ ≤ δ .

Inserting this into (45) leads to

G2 −

 d∑
j=1

ℑm(Aj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Aj)

)2
 ≥ −

(
dδ + 15

(
d

2

)
δ

)
1 ≥ −9 d2 δ 1 .

(48)

It thus remains to prove a lower bound on the term in the parenthesis. Using

ℑm(Aj)
2 + ℜe(Aj)2 =

1

2
(AjA

∗
j + A∗

jAj) ≥ 1− 1

2
∥(AjA∗

j − 1) + (A∗
jAj − 1)∥1 ≥ (1− δ)1 ,

one finds

d∑
j=1

ℑm(Aj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Aj)

)2

≥ d(1− δ)1+ (d− 1)21− 2(d− 1)
d∑
j=1

ℜe(Aj) +
d∑

1≤j<i≤d

(
ℜe(Aj)ℜe(Ai) + ℜe(Ai)ℜe(Aj)

)
= 1+

∑
1≤j<i≤d

(
(1−ℜe(Aj))(1−ℜe(Ai)) + (1−ℜe(Ai))(1−ℜe(Aj))

)
− dδ1 . (49)

One directly checks that

1

2
(Aj − 1)(Aj − 1)∗ − (1−ℜe(Aj)) =

1

2
(AjA

∗
j − 1)
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and therefore, by the first part of (36),∥∥1
2
(Aj − 1)(Aj − 1)∗ − (1−ℜe(Aj))

∥∥ ≤ 1

2
δ .

Moreover, using (46)

∥1−ℜe(Aj)∥ ≤ 1 + (1 + δ)
1
2 ≤ 5

2
, ∥Aj − 1∥2 ≤

(
1 + (1 + δ)

1
2

)2 ≤ 5 .

Using the last two bounds one gets∥∥1
4
(Aj − 1)(Aj − 1)∗(Ai − 1)(Ai − 1)∗ − (1−ℜe(Aj))(1−ℜe(Ai))

∥∥
≤
∥∥1
2
(Aj − 1)(Aj − 1)∗

(1
2
(Ai − 1)(Ai − 1)∗ − (1−ℜe(Ai))

)∥∥
+
∥∥(1

2
(Aj − 1)(Aj − 1)∗ − (1−ℜe(Aj))

)
(1−ℜe(Ai)

∥∥
≤ 1

2
5
1

2
δ +

1

2
δ
5

2
=

5

2
δ .

Inserting this into (49) leads to

d∑
j=1

ℑm(Aj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Aj)

)2

≥ 1+
1

4

∑
1≤j<i≤d

(
(Aj − 1)(Aj − 1)∗(Ai − 1)(Ai − 1)∗ + (Ai − 1)(Ai − 1)∗(Aj − 1)(Aj − 1)∗

)
− d δ 1− 2

(
d

2

)
5

2
δ

≥ 1+
1

4

∑
1≤j<i≤d

(
(Aj − 1)(Ai − 1)(Ai − 1)∗(Aj − 1)∗

+ (Aj − 1)[(Aj − 1)∗, (Ai − 1)](Ai − 1)∗ + (Aj − 1)(Ai − 1)[(Aj − 1)∗, (Ai − 1)∗]

+ (Ai − 1)(Aj − 1)(Aj − 1)∗(Ai − 1)∗ + (Ai − 1)[(Ai − 1)∗, (Aj − 1)](Aj − 1)∗

+ (Ai − 1)(Aj − 1)[(Ai − 1)∗, (Aj − 1)∗]
)
− 7

2
d2 δ 1 .

The first and fourth summand are non-negative and can thus be left out for a lower bound. In
the other four summands, the commutators reduce to [A∗

j , Ai] or [A
∗
j , A

∗
i ] which can be bound

directly by (36) or by (47). Using, moreover, again ∥Aj − 1∥ ≤ 5, one thus obtains

d∑
j=1

ℑm(Aj)
2 +

(
(d− 1)1−

d∑
j=1

ℜe(Aj)

)2

≥
(
1− 9

4

(
d

2

)
(δ + 8δ + 8δ + δ)

)
1 − 7

2
d2 δ 1

≥
(
1− 24 d2 δ

)
1 .

31



Combining with (48) one obtains (44). 2

The next result shows that a graded fuzzy d-torus can always be reduced to a suitably
associated ungraded fuzzy d-torus.

Proposition 33 Let A1, . . . , Ad, Ad+1 = A∗
d+1 ∈ A∼ be graded fuzzy d-torus of a sufficiently

small width δ ≤ 1
2
. Let P denote the Riesz projection on the positive spectrum of Ad+1. Then

PA1P, . . . , PAdP form a fuzzy d-torus of width 6δ on the Hilbert space PH. Setting GP =
G{1,...,d}(PA1P, . . . , PAdP ), the operator Ĝ = Ĝ{1,...,d}(A1, . . . , Ad, Ad+1) is homotopic to GP ⊕
(1− P )γd+1 inside the invertible operators.

Proof. As ∥A2
d+1 − 1∥ ≤ δ by assumption, Ad+1 is close to a symmetry and its spectrum

is separated into two intervals [−
√
1 + δ,−

√
1− δ] and [

√
1− δ,

√
1 + δ], see e.g. (46). Let

P denote the Riesz projection associated to [
√
1− δ,

√
1 + δ]. Then ∥Ad+1 − (2P − 1)∥ ≤

1−
√
1− δ ≤ δ by the spectral mapping theorem. Moreover, the other conditions in (36) imply

∥[Aj, P ]∥ ≤ max
z∈∂B1(±1)

∥(z1− Ad+1)
−1∥2∥[Aj, Ad+1]∥ ≤ 2 δ ,

so that ∥∥Aj − PAjP − (1− P )Aj(1− P )
∥∥ =

∥∥(1− P )[Aj, P ]
∥∥ ≤ 2 δ .

Moreover, since ∥Aj∥ = ∥A∗
jAj∥

1
2 ≤ (1 + δ)

1
2 ≤ 1 + 1

2
δ,∥∥[PAjP, PAiP ]∥∥ ≤

∥∥P [Aj, Ai]P∥∥+ ∥∥P [Aj, P ]AiP∥∥+ ∥∥[P [Ai, P ]AjP∥∥ ≤ 6 δ ,

the operators PA1P, . . . , PAdP forms an (ungraded) fuzzy d-torus on the Hilbert space PH of
width 6δ. (Similarly, also (1−P )A1(1−P ), . . . , (1−P )Ad(1−P ) is an (ungraded) fuzzy d-torus
on the Hilbert space (1 − P )H of width 6δ, but this torus will not be used.) The associated
G-operator is denoted by GP , see the statement of the proposition. One then has∥∥Ĝ − GP ⊕ G̃1−P∥∥ ≤ 5 d δ ,

where

G̃1−P =
d∑
j=1

(1−P )ℑm(Aj)(1−P )⊗ γj +
(
(d+1)(1−P )−

d∑
j=1

(1−P )ℜe(Aj)(1−P )
)
⊗ γd+1 .

Let us stress that this is not the G-operator on (1 − P )H associated to the fuzzy d-torus
(1 − P )A1(1 − P ), . . . , (1 − P )Ad(1 − P ) for I = {1, . . . , d} by the definition (38), simply
because one of the summands is (d + 1)(1 − P ) ⊗ γd+1 rather than (d − 1)(1 − P ) ⊗ γd+1. It

hence remains to show that G̃1−P is homotopic to (1−P )⊗γd+1 inside the invertible operators.
This follows directly from the next lemma. 2

Lemma 34 Given a fuzzy d-torus A1, . . . , Ad of a sufficiently small width δ, the operator

G̃ =
d∑
j=1

ℑm(Aj)⊗ γj +
(
(d+ 1)1−

d∑
j=1

ℜe(Aj)
)
⊗ γd+1

is homotopic to γd+1 inside the invertible operators.
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Proof. The homotopy will be given by the straight-line path t ∈ [0, 1] 7→ G̃(t) = (1−t)γd+1+tG̃.
Explicitly

G̃(t) = γd+1 + t
( d∑
j=1

ℑm(Aj)⊗ γj +
( d∑
j=1

(1−ℜe(Aj))
)
⊗ γd+1

)
.

Now all commutators [ℑm(Aj),ℜe(Ai)] are of order O(δ), see the proof of Proposition 32.
Hence

G̃(t)2 = 1+ 2t
d∑
j=1

(1−ℜe(Aj)) + t2
( d∑
j=1

ℑm(Aj)
2 +

( d∑
j=1

(1−ℜe(Aj))
)2)

+ O(δ) .

But up to errors of order O(δ), one also has 1 − ℜe(Aj) ≥ 0. Hence G̃(t)2 ≥ 1 + O(δ),
which implies the claim. Note that the claim merely reflects that the maps gd,d+1 defined in
Appendix B have a vanishing mapping degree and are hence homotopic to the identity. 2

Now that the crucial property that the operators GI are gapped is proved for fuzzy tori
of sufficiently small width, it is possible to extract topological information from them. Recall
that elements of the K-group K0(A) are homotopy equivalence classes of either projections
or equivalently invertible selfadjoints in matrix algebras of A, and that K1(A) are homotopy
equivalence classes of invertibles in matrix algebras of A or equivalent equivalence classes of
selfadjoint invertible which anti-commute with some symmetry in the matrix degrees of freedom
(see e.g. [14] for some further explanation of this). Based on Proposition 32 and Lemma 22
one therefore has the following.

Corollary 35 Let A1, . . . , Ad be a fuzzy d-torus in a C∗-algebra A of sufficiently small width.
For any index set I ⊂ {1, . . . , d}, one then obtains a class [GI ]0 ∈ K0(A) if I is of even
cardinality and a class [GI ]1 ∈ K1(A) if I is of odd cardinality. For a graded fuzzy torus one

obtains [ĜI ]0 ∈ K0(A) and [ĜI ]1 ∈ K1(A) respectively which can also be represented as the

G-operators of the reduced out fuzzy torus given in Proposition 33, namely [ĜI ] = [GI ].

If the algebra A is given by matrices (or compact operators), then one can read out the

K-theoretic content using the half-signatures 1
2
Sig(GI) ∈ Z and 1

2
Sig(ĜI) ∈ Z if I is of even

cardinality. Again, if GI is obtained by reducing out a fuzzy (d + 1)-torus with G-operators

ĜI , then Sig(GI) = Sig(ĜI).

Proof of Theorem 10. One only has to apply Corollary 35 to Example 27. 2

In the case of two almost commuting unitaries U1, U2 (see Example 30) satisfying that
Sig(G{1,2}(U1, U2)) = 0, it is known [7] that they can be deformed into two commuting unitaries.
Hence one can expect the integers 1

2
Sig(GI(U1, U2)) with I = {1}, {2}, {1, 2} to fully classify all

fuzzy 2-tori. We even suspect that fuzzy matrix tori are completely classified by the signature
invariants constructed above:

Conjecture: Two fuzzy d-tori of matrices having the same signature invariants Sig(GI) and

Sig(ĜI) can be homotopically deformed into each other without closing the gaps of GI and ĜI .
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A Mapping degree versus Chern number

For the convenience of the reader, this appendix provides a detailed proof of the connection
between mapping degree of a differentiable function f : Td → Sd on an even-dimensional
torus and the Chern number of an associated matrix-valued projection Pf : Td → Cd′×d′ with

d′ = 2
d
2 . This fact is used in Appendix B which is crucial for an understanding the motivation

for the periodic spectral localizer and the G-operators in Section 5. While the main statement,
Corollary 37 below, is certainly well-known in the community, we could not localize a detailed
proof.

For d be even and let denote the restrictions of the euclidean coordinate functions to Sd by
xj : Sd → R for j ∈ {1, . . . , d+ 1}. More precisely,

xj(y) = yj , y =

 y1
...

yd+1

 ∈ Sd .

Furthermore, let fj = xj ◦f : Td → R be jth component of the function f for j ∈ {1, . . . , d+1}.
Let γ1, . . . , γd+1 ∈ Cd′×d′ be an irreducible self-adjoint representation of the Clifford algebra with
the convention that

γ1 · · · γd+1 = ı
d
21 . (50)

Then let us define the map Pf : Td → Cd′×d′ by

Pf (k) =
1

2

( d+1∑
j=1

fj(k)γj + 1
)
.

Then Pf (k) is an (orthogonal) projection for all k ∈ Td. Its exterior derivative is dPf =
1
2

∑d+1
j=1 γjdfj, a matrix-valued 1-form on Td. Then let us set

ωf = Tr
(
Pf (dPf ∧ dPf )∧

d
2

)
,

which is a d-form on Td. Using (50) as Tr(1) = 2
d
2 , it is explicitly given by

ωf = Cd

d+1∑
j=1

(−1)j+1fjdf1 ∧ . . . ∧ dfj−1 ∧ dfj+1 ∧ . . . ∧ dfd+1 , Cd =
1

2

1

2d
d!2

d
2 ı

d
2

Similarly, let us define another projection-valued map PW : Sd → Cd′×d′ (called the Weyl
projection) by

PW (p) =
1

2

( d+1∑
j=1

xj(p)γj + 1
)
.

Similar as above, there is an associated d-form on Sd given by

ωW = Tr
(
PW (dPW ∧ dPW )∧

d
2

)
= Cd

d+1∑
j=1

(−1)j+1xjdx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxd+1 .
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Proposition 36 For any differentiable map f : Td → Sd, the differential form ωf on Td equals
the pullback of the differential form ωW by f :

ωf = f ∗ωW .

Proof. For a point k ∈ Td let η1, . . . , ηd : (−a, a) → Td for a > 0 represent tangent vectors of
Td at the point k, namely ηj is a differentiable curve fulfilling ηj(0) = k for all j ∈ {1, . . . , d}.
The tangent vector represented by ηj is denoted by [ηj]. Then one has to show

ωf ([η1], . . . , [ηd]) = ωW (dfk([η1]), . . . , dfk([ηd])) , (51)

where dfk denotes the differential of f at the point k. A direct computation shows

ωf ([η1], . . . , [ηd])

= Cd

d+1∑
j=1

(−1)j+1fjdf1 ∧ . . . ∧ dfj−1 ∧ dfj+1 ∧ . . . ∧ dfd+1([η1], . . . , [ηd])

= Cd

d+1∑
j=1

(−1)j+1fj(k)
1

d!

∑
σ∈Sd

df1([ησ(1)]) · · · dfj−1([ησ(j−1)])dfj+1([ησ(j)]) · · · dfd+1([ησ(d)])

=
Cd
d!

d+1∑
j=1

(−1)j+1fj(k)
∑
σ∈Sd

(f1 ◦ ησ(1))′(0) · · · (fj−1 ◦ ησ(j−1))
′(0)

(fj+1 ◦ ησ(j))′(0) · · · (fd+1 ◦ ησ(d))′(0) .

In a similar manner one checks

ωW (dfk([η1]), . . . , dfk([ηd]))

= Cd

d+1∑
j=1

(−1)j+1xjdx1 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dxd+1(dfk([η1]), . . . , dfk([ηd]))

= Cd

d+1∑
j=1

(−1)j+1xj(f(k))
1

d!

∑
σ∈Sd

dx1(dfk[ησ(1)]) · · · dxj−1(dfk[ησ(j−1)])

dxj+1(dfk[ησ(j)]) · · · dxd+1(dfk[ησ(d)])

=
Cd
d!

d+1∑
j=1

(−1)j+1fj(k)
∑
σ∈Sd

(x1 ◦ f ◦ ησ(1))′(0) · · · (x1 ◦ f ◦ ησ(j−1))
′(0)

(xj+1 ◦ f ◦ ησ(j))′(0) · · · (xd+1 ◦ f ◦ ησ(d))′(0)

=
Cd
d!

d+1∑
j=1

(−1)j+1fj(k)
∑
σ∈Sd

(f1 ◦ ησ(1))′(0) · · · (fj−1 ◦ ησ(j−1))
′(0)

(fj+1 ◦ ησ(j))′(0) · · · (fd+1 ◦ ησ(d))′(0) .

Therefore (51) holds and the claim follows. 2
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Now by a well-known pullback formula (e.g. tom Dieck’s lecture notes [22] contain a detailed
proof) one has ∫

Td

ωf = deg(f)

∫
Sd
ωW ,

where deg(f) is the mapping degree of f , generically defined as the sum over all preimages (of
a fixed point) of the signs of the determinants of the Jacobians. Next recall (e.g. [18]) the
definition of the dth Chern number of a differentiable projection-valued map P : Md → CL×L

on a d-dimensional manifold M:

Chd(P ) = (−1)
d
2 ( 1

2πı
)
d
2
1
d
2
!

∫
Md

Tr
(
P (dP )d

)
.

Then for ωf = Tr
(
Pf (dPf )

d
)
as above, one obtains

Chd(Pf ) = deg(f)(−1)
d
2 ( 1

2πi
)
d
2
1
d
2
!

∫
Sd
ωW = deg(f) Chd(P

W ) .

It hence remains to compute Chd(P
W ) which is again well-known:

Chd(P
W ) = (−1)

d
2 .

(E.g. [3, 21] contains a detailed computation.) Summing up, one concludes:

Corollary 37 For d even and a smooth map f : Td → Sd, the dth Chern number of Pf is

Chd(Pf ) = (−1)
d
2 deg(f) .

B Mapping degree of some maps from torus to sphere

This appendix is about the mapping degrees of the maps gd,m : Td → Rd+1 with d even and
m ∈ R given by

gd,m
(
eıθ1 , . . . , eıθd

)
=
(
sin(θ1), . . . , sin(θd),m−

d∑
n=1

cos(θn)
)
, (52)

where θn ∈ [0, 2π) for n ∈ {1, . . . , d} and (eıθ1 , . . . , eıθd) ∈ Td. It can readily be checked that
the vector on the r.h.s. does not vanish if and only if m ∈ R \ {−d,−d + 2, . . . , d− 2, d}. For
such m, let us then set

fd,m
(
eıθ1 , . . . , eıθd

)
=
∥∥gd,m(eıθ1 , . . . , eıθd)∥∥−1

gd,m
(
eıθ1 , . . . , eıθd

)
. (53)

Then fd,m : Td → Sd is a map onto the unit sphere with same mapping degree deg(fd,m) =
deg(gd,m). By Corollary 37, this mapping degree is equal to the d-th Chern number Chd(Pfd,m).
These Chern numbers were computed in Section 2.2.4 of [18] by analyzing the changes of the
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Chern numbers at the transition points {−d,−d+2, . . . , d−2, d}. The argument involves rather
delicate singular integrals, and this was revisited in detail in [21]. Here a direct alternative
argument based on the computation of the mapping degree of gd,m is provided. Let us stress
that the map gd,d−1 is at the root of the construction of the periodic spectral localizer and the
G-operators associated to fuzzy tori. It leads to a Chern number Chd(Pfd,d−1

) = 1.

To compactify notations, let us set eıθ = (eıθ1 , . . . , eıθd) ∈ Td and x = (x1, . . . , xd+1) ∈ Rd+1

as well as x̂ = (x1, . . . , xd) ∈ Rd. Furthermore, let Td be equipped with the orientation inherited
from the atlas (Uj, φj)j∈{1,2} given by

U1 =
{
eıθ ∈ Td : θn ∈ [0, 2π) \ {π

2
} for n ∈ {1, . . . , d}

}
,

U2 =
{
eıθ ∈ Td : θn ∈ [0, 2π) \ {3π

2
} for n ∈ {1, . . . , d}

}
,

and the charts

φ1

(
eıθ
)
=
( cos(θ1)
1−sin(θ1)

, . . . , cos(θd)
1−sin(θd)

)
, φ2

(
eıθ
)
=
( cos(θ1)
1+sin(θ1)

, . . . , cos(θd)
1+sin(θd)

)
.

Moreover, let Sd be equipped with orientation inherited from the atlas (Vj, ψj)j∈{1,2} given by

V1 =
{
x ∈ Sd ⊂ Rd+1 : xd+1 ̸= 1

}
, V2 =

{
x ∈ Sd ⊂ Rd+1 : xd+1 ̸= −1

}
,

and

ψ1

(
x
)

=
(

x1
1−xd+1

, . . . , xd
1−xd+1

)
, ψ2

(
x
)

=
(

x2
1+xd+1

, x1
1+xd+1

, x3
1+xd+1

, . . . , xd
1+xd+1

)
.

Proposition 38 If Td is equipped with the orientation inherited from the atlas (Uj, φj)j∈{1,2}
and Sd is equipped with the orientation inherited from the atlas (Vj, ψj)j∈{1,2} the degree of the
map fd,m defined by (53) is given by

deg(fd,m) =


∑ d−n−1

2
k=0 (−1)k

(
d
k

)
, n ∈ (0, d+ 1) ∩ 2N+ 1,m ∈ (n− 1, n+ 1) ,∑ d−n−1

2
k=0 (−1)k+1

(
d
k

)
, n ∈ (0, d+ 1) ∩ 2N+ 1,m ∈ (−n− 1,−n+ 1) ,

0 , m ∈ (−∞,−d) ∪ (d,∞) .

Proof. By the homotopy invariance of the mapping degree, it is sufficient to consider the case
m ∈ {−d− 1,−d+ 1, . . . , d+ 1}. For the case m = d+ 1, one can consider the maps

gd,d+1,t

(
eıθ
)

=
(
t sin(θ1), . . . , t sin(θd), 1− t

d∑
n=1

(cos(θn)− 1)
)
,

where t ∈ [0, 1]. Then gd,d+1,1 = gd,d+1 and gd,d+1,0(e
ıθ) = pN where pN = (0, . . . , 0, 1) ∈ Sd is

the north pole. Now the norm satisfies

∥gd,d+1,t

(
eıθ
)
∥2 = t2

d∑
j=1

sin2(θj) + 1 + 2t
d∑
j=1

(1− cos(θj)) + t2
( d∑
j=1

(1− cos(θj))
)2

≥ 1 .
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This implies that t ∈ [0, 1] 7→ fd,d+1,t = ∥gd,d+1,t∥−1gd,d+1,t is a homotopy from fd,d+1 to a
constant map. Hence the mapping degree vanishes. (Note that this argument is essentially
reproduced for fuzzy tori in Lemma 34.) Let us next focus on the case m ∈ {1, 3, . . . , d − 1}.
The other points are dealt with in a similar manner (with the north instead of the south pole
used in the argument below). Consider the south pole given by pS = (0, . . . , 0,−1) ∈ Sd. Its
inverse image is

f−1
d,m(pS) =

{
eıθ ∈ Td : θn ∈ {0, π} for n ∈ {1, . . . , d}, θj = π for at most d−m−1

2
many j

}
.

Then

ψ1 ◦ fd,m ◦ φ−1
2 : Rd \

{
x̂ ∈ Rd : xn ∈ {±1},#{j ∈ {1, . . . , d} : xj = −1} > d−m−1

2

}
→ Rd

is given by

(ψ1 ◦ fd,m ◦ φ−1
2 )
(
x̂
)

=

(
1−x21
x21+1

(
1−m+ 2

d∑
n=1

xn
x2n+1

)−1
, . . . ,

1−x2d
x2d+1

(
1−m+ 2

d∑
n=1

xn
x2n+1

)−1

)
.

Its kth component is

(ψ1 ◦ fd,m ◦ φ−1
2 )
(
x̂
)
k
=

(1− x2k)
∏

n̸=k(x
2
n + 1)

(1−m)
∏d

n=1(x
2
n + 1) + 2

∑d
n=1 xn

∏
j ̸=n(x

2
j + 1)

. (54)

Let us denote the Jacobian matrix of this map by

J = Jψ1◦fd,m◦φ−1
2

: Rd \
{
x̂ ∈ Rd : xn ∈ {±1},#{j ∈ {1, . . . , d} : xj = −1} > d−m−1

2

}
→ Rd .

To determine the mapping degree of f (at the point pS) it is sufficient to compute the restriction
of J to M = φ2(f

−1(pS)) explicitly given by

M =
{
x̂ ∈ Rd : xn ∈ {−1, 1} for n ∈ {1, . . . , d}, xj = −1 for at most d−m−1

2
many j

}
.

One directly checks that the off-diagonal entries of J |M vanish, namely J(x̂)k,l = 0 for all x̂ ∈ M
and k, l ∈ {1, . . . , d}, k ̸= l. The diagonal entries of J |M are

J(x̂)k,k =
−xk2d

((1−m)2d + 2d
∑d

n=1 xj)
2

(55)

for x̂ ∈ M and k ∈ {1, . . . , d}. Therefore sgn(J(x̂)k,k) = −sgn(xk) and

sgn(det(J(x̂))) = (−1)#{j∈{1,...,d}:xj=1} = (−1)#{j∈{1,...,d}:xj=−1} ,

where the last equality holds because d is even. Because

#
{
x̂ ∈ Rd : xn ∈ {−1, 1} for n ∈ {1, . . . , d}, xj = −1 for k many j

}
=

(
d

k

)
,
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one has

deg(fd,m, pS) =

d−n−1
2∑

k=0

(−1)k
(
d

k

)
.

As the mapping degree is independent of the point at which the preimage is taken (provided it
has a finite preimage), this shows the claim for m ∈ {1, 3, . . . , d− 1}. 2
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