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Abstract 

BACKGROUND: Radiology reports are typically written in a free-text format, making clinical information 

difficult to extract and use. Recently the adoption of structured reporting (SR) has been recommended by 

various medical societies thanks to the advantages it offers, e.g. standardization, completeness and 

information retrieval. We propose a pipeline to extract information from free-text radiology reports, that fits 

with the items of the reference SR registry proposed by a national society of interventional and medical 

radiology, focusing on CT staging of patients with lymphoma. 

METHODS: Our work aims to leverage the potential of Natural Language Processing (NLP) and 

Transformer-based models to deal with automatic SR registry filling. With the availability of 174 radiology 

reports, we investigate a rule-free generative Question Answering approach based on a domain-specific 

version of T5 (IT5). Two strategies (batch-truncation and ex-post combination) are implemented to comply 

with the model’s context length limitations. Performance is evaluated in terms of strict accuracy, f1, and format 

accuracy, and compared with the widely used GPT-3.5 Large Language Model. A 5-point Likert scale 

questionnaire is used to collect human-expert feedback on the similarity between medical annotations and 

generated answers. 

RESULTS: The combination of fine-tuning and batch splitting allows IT5 to achieve notable results; it 

performs on par with GPT-3.5 albeit its size being a thousand times smaller in terms of parameters. Human-

based assessment scores show a high correlation (Spearman’s correlation coefficients>0.88, p-values<0.001) 

with AI performance metrics (f1) and confirm the superior ability of LLMs (i.e., GPT-3.5, 175B of parameters) 

in generating plausible human-like statements. 



   

 

   

 

CONCLUSIONS: In our experimental setting, a smaller fine-tuned Transformer-based model with a modest 

number of parameters (i.e., IT5, 220M) performs well as a clinical information extraction system for automatic 

SR registry filling task, with superior ability to discern when an N.A. answer is the most correct result to a 

user query. 
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1 Introduction 

One of the main challenges of Artificial Intelligence (AI) is the automatic processing of large amounts of 

unstructured textual data. Natural Language Processing (NLP) is a subfield of AI concerned with the 

development of algorithms capable of processing, analyzing and understanding large amounts of such data 

(text or speech) in human language. The application of these methods in the biomedical domain is called 

Clinical NLP (cNLP) and refers to the analysis of clinical narratives and their manipulation and interrogation. 

English is by far the most resource rich language that has contributed to the development of the cNLP; on the 

other hand, its use and subsequent performance evaluation are still limited for other languages, e.g. Italian, due 

to a lack of available data [1]. Annotations on clinical narratives by medical experts are often necessary to 

train supervised machine learning algorithms. Unfortunately, a medical observation can be affected by the 

interpretation, experience and abbreviations used by the specific author [2]. All these considerations constitute 

key challenges for the current SoA of Natural Language Understanding (NLU). 

In radiology, a large amount of textual data is generated daily in the form of free-text reports (e.g., 

transcriptions). Many medical societies (e.g. European Society of Radiology and Radiological Society of North 

America [3,4]) recognize the increasing need for the adoption of structured reporting (SR) in clinical practice 

and encourage all institutions to conceive reference registries. These premises motivated the Italian Society of 

Medical and Interventional Radiology (SIRM) to design structured reports for CT scans of patients with 

oncological conditions such as Breast, Lung, Colon, Rectum, Lymphoma, Pancreas, and Stomach cancer, as 

well as Covid19 [5]. However, the fast rate at which unstructured clinical information is being created calls 

for NLP solutions to transform existing reports into structured representations [2,6]. 

1.1 Background 

1.1.1 Radiology reports 

Radiology reports convey information about the clinical findings and the radiologist interpretation: accurate 

reporting of imaging is critical to patient care, as its content can influence both diagnosis and treatment 

decisions. Although SIRM has provided a definition [7], there is no universal consensus on what constitutes a 

clear and comprehensive radiology report: in general, this should include an exhaustive description of 

techniques, the key findings, the answer to the clinical query, and the radiologist’s conclusions. 



   

 

   

 

The European Society of Radiology (ESR) and the Radiological Society of North America (RSNA) have 

recognized the increasing need for the adoption of structured reporting (SR) in clinical practice [3,4]. SR is 

defined by Nobel et al. [8] as “an IT-based method to import and arrange the medical content into the 

radiological report”. SR registries are digital documents in modular format, i.e. they use standardized templates 

oriented to the content and to the diagnostic query and are divided into sections (or levels) consisting of an 

ordered set of items, which require to be filled in, preferably and where possible, using standard terminology 

[3,9,10]. They have a significant role in advancing comprehensibility, standardization, completeness of 

information content, communication, data retrieval and large-scale data mining (e.g. diagnostic surveillance, 

disease classification, quality compliance, eligibility for clinical trials, epidemiological analysis) [3,9–12]; 

focusing on the quality, quantification and accessibility of information [13,14]. SR may improve workflow in 

the radiological and clinical routine (through its integration with existing tools and protocols, e.g. RIS/PACS 

infrastructures, free-text dictation etc.) by reducing inter-reader variability and reporting times compared to 

conventional reporting [3,9]. 

Despite general awareness, currently the diffusion and implementation of SR in clinical routine is limited, and 

most of the information is conveyed through conventional narrative reporting, hindering the rapid extraction, 

communication and use of clinical information by clinicians and healthcare systems. Indeed, a survey [9] 

conducted among Italian radiologists registered with SIRM showed that while SR is considered a desideratum, 

56% of the interviewees never used it in their daily clinical practice. The main reasons are the data entry (which 

is time-consuming and labor-intensive when using mouse and keyboard), the lack of available commercial 

products for efficient and simple SR, the rigidity of the templates (e.g. complex clinical cases are sometimes 

difficult to categorize), and the low willingness to radically change personal work habits [9,15–17]. Improved 

standardization and automated AI-driven solutions may be helpful to promote SR adoption; it is thus evident 

that NLP techniques are key to transforming existing reports into a structured form, thus reducing human 

workload [2,12] while bringing all the advantages of SR. 

1.1.2 Structured CT-based reports for Lymphoma patient staging 

Lymphomas are blood tumors that result from genetic mutations in lymphocytes, which accumulate 

uncontrollably in the lymph nodes and circulate through the lymphatic and cardiovascular systems. This 

disease may affect not only lymphatic sites (the organs of the lymphatic system, i.e., the thymus and spleen, 

or a group of lymph nodes) but also extranodal sites (i.e., the lungs, liver, bone and spinal cord, kidneys, brain). 

A specialist can make the diagnosis and categorize lymphoma by reviewing the morphology, 

immunohistochemistry, flow cytometry and (if appropriate) molecular studies. A very important step is the 

staging of the disease, which suggests prognostic information and to keep disease progression monitored. 

Computed Tomography (CT) should be performed to obtain high quality images, accurate measurements and 

to discriminate between single large nodal masses and aggregations; it can allow the specialist to assess the 

extent, number and location of the lymph node stations affected by the tumor and, therefore, the stage [14]. 



   

 

   

 

A panel of experts of SIRM designed structured CT-based reports for the staging of patients with lymphoma. 

The final version of this SR registry (Granata et al. [14]) collects the clinical and radiological data of patients 

with lymphoma. It has four sections: Patient Clinical Data, Clinical Evaluation, Imaging Protocol and Report. 

As suggested by the radiologists, the entire analysis in this article focuses on the latter section, which includes 

the items related to the diagnosis, grouped into four macro groups defined by the “Site” of the lesion of the 

primary tumor (Lymph node disease, Bulky disease, Spleen and Extranodal disease). To properly perform the 

staging phase, radiologists can take advantage of SR guiding them in fully describing the findings in the exam, 

thereby reducing reporting and data entry errors [14,16]. 

1.2 Research goals 

In this article, we investigate the potential of NLP to transform previously written free-text radiology reports 

into a structured format, i.e., to extract from the reports the information needed to automatically fill in the 

items of the SR registry. Our pipeline relies upon generative, Transformer-based language models [18]: the 

current SoA in most of NLP tasks. 

To achieve our goal, the following research questions are helpful to select and develop the most appropriate 

computational pipeline: 

▪ RQ1: Can generative, Transformer-based language models help in filling radiology registries? 

▪ RQ2: Radiology notes can be very long. What’s the best strategy to address inputs exceeding language 

models context-size capabilities? 

Finally, given the increasing popularity of large language models (LLMs), characterized by extremely high 

computational and economic costs: 

▪ RQ3: Can smaller fine-tuned models achieve competitive performance while providing a more 

affordable solution for radiology SR registry filling? 

1.3 Related works 

AI has the potential to improve several aspects of the work performed by radiologists: planning, triage, 

interpretation of outcomes and their post-processing, imaging, reporting, clinical decision-making, etc. [2] 

NLP techniques are largely employed in radiology [6], e.g. to identify and extract concepts mentioned in 

reports, to classify reports or to generate structured outputs. The main areas of research concern diagnostic 

surveillance, cohort building for epidemiological studies, query-based case retrieval, quality assessment of 

radiology practice, clinical support services, etc. The literature offers many examples of biomedical text 

mining applications, which depend on the specific purpose and performance to be achieved, although 

sometimes using the same methodologies [19]. 

Previous analyses involving medical registry filling have focused on rule-based systems, such as those of Jorg 

et al. [15], Odisho et al. [20] and Sagheb et al. [21], based on regular expression and sometimes enhanced by 

ontologies and dictionaries. Esuli et al. [22] have relied on ML systems, while Viani et al. [23] on recurrent 

neural networks. Tavabi et al. [24] have proposed an interpretable classification approach by extracting 

sentences from clinical notes using Term Frequency–Inverse Document Frequency (TF-IDF). The transformer 



   

 

   

 

architecture, well known for the attention mechanism of Vaswani et al. [18], has been successfully applied to 

radiological reports, e.g., by Nowak et al. [25], Yan et al. [26] and Putelli et al. [27]; in another similar context, 

Buonocore et al. [28] explored a new rule-free extractive Question Answering (QA) approach based on BERT 

for cardiology registry filling in Italian. 

Similarly, in this article, we want to solve the SR registry filling task without using rules and/or regular 

expressions, or any formal knowledge representation method, but rather by using a generative Transformer-

based model: a scenario that has not yet been applied specifically to Italian radiology reports, and constitutes 

an original contribution of the present article. 

2 Materials and Methods 

The following analysis consists in examining the specific use case and the available dataset (Section Error! 

Reference source not found.), then finding the most appropriate model (Section Error! Reference source 

not found.) (RQ1) and designing a suitable pipeline (Section Error! Reference source not found.). To better 

analyze the problem at hand, two different strategies are compared (RQ2), and the best one is further compared 

to the most popular and cost-effective LLM at the time of writing, i.e., GPT-3.5 (RQ3). 

2.1 Dataset 

The dataset consists of 174 free-text radiology reports (in Italian language) on CT examinations investigating 

lymph-node lesions, supplied by the Department of Radiology, I.R.C.C.S. Policlinico San Matteo Foundation 

of Pavia, Italy. The reports were provided, subject to the approval of the ethics committee, completely 

anonymized and limited to the portion of text related to the techniques used during the CT examination, the 

anatomical areas involved, the radiological findings and the relevant observations and conclusions. Their 

length varies from a minimum of 152 words (408 tokens, in terms of minimum reading and writing units of 

text for language models) to a maximum of 1150 words (2729 tokens). Two radiology physicians from the 

same department (annotators) and with the same experience were asked to fill in a spreadsheet, shown in Figure 

1, for each report (analogous to the SR registry), independently.  

 

 

 

 

 

 

 

 

 

 



   

 

   

 

 

 

Figure 1 Spreadsheet provided to radiologists to collect annotations. Each entry (spreadsheet row) corresponds to a single report, 

identified by the General Information (gray fields in lower left corner). 

This represents the annotated dataset used to train the AI model later described. In this scenario, the verb “to 

annotate” means to complete the items of the spreadsheet without necessarily transcribing faithfully the words 

found in the text, as a radiologist would do in clinical practice, allowing permutation of terms and paraphrases. 

In order to assess the reliability and reproducibility of the work and the Inter Annotator Agreement (IAA), we 

deliberately allowed a fraction of overlapping reports (15% of the total amount of reports) among annotators. 

The IAA is on average about 0.7, falling within the range of “Substantial Agreement” (0.61-0.80) [29]. 

Missing values have been processed for each instance of the source dataset, distinguishing into two categories 

depending on the information they conveyed: (a) missing at random or undetected data, appearing in the 

annotations as “-” or “N.A.” have been mapped into “NaN”; (b) fields that are intended to be empty (e.g., 



   

 

   

 

specifiers conditioned on the occurrence of given event, reported in previous items) have been mapped into 

“not applicable”. 

The items in the SR registry (36) cover a wide range of information, but only part of such items is sufficiently 

represented in the reports to be included in the training set. In particular, we identified a subset of features 

using the best trade-off between IAA and data completeness (i.e., smallest percentage of missing values) as a 

selection criterion. We hence focused on the subset “Lymph node disease” (14 items) resulting in six features, 

described in Table 1: three categorical features, one free-text and two continuous numerical features. Instances 

with “Site” equal to “Bulky” or “Spleen” were excluded.  

The final dataset contains 1020 instances (340 for factual, 170 for free-text, 510 for multichoice). 

2.2 AI model and NLP task selection 

Our work leverages the Transformer architecture proposed by Vaswani et al. [18], an encoder-decoder 

structure relying entirely on the attention mechanism to represent input-output global dependencies. 

Transformer-based models are trained through a particular type of semi-supervised learning consisting of two 

phases: (1) pre-training, during which the model receives a large amount of unlabeled textual data as input and 

computes a general representation of it in an unsupervised manner; and (2) fine-tuning: supervised training 

using a limited set of domain-specific and labeled examples. 

Different types of Transformer-based models have been proposed over the years, differing in structure and 

purpose: encoder-only models (e.g., BERT) used only the encoder block of the Transformer and are useful for 

input comprehension tasks (e.g., text classification, named entity recognition); decoder-only models (e.g., 

GPT) or encoder-decoder models (e.g., T5) leverage the decoder stack to solve text generation tasks such as 

machine translation, text summarization and question answering. The presence of free-text items, with 

rephrasing and reworkings, combined with the complexity and information density of input clinical notes, 

makes the encoder-decoder paradigm the best candidate for our SR registry filling task. 

A popular encoder-decoder model is T5 (Text-to-Text Transfer Transformer), proposed by Raffel et al. [30], 

which has helped to advance the state of the art for many NLP tasks. Its architecture is particularly suitable for 

sequential tasks that cannot be performed by encoder-only models and can be laborious for decoder-only 

models due to the lack of explicit conditioning on the source context [31]. Among the key features of T5, there 

is the way it addresses NLP tasks using a text-to-text format, i.e. processing text as input and producing text 

as output; this enables the use of the same model, goal, training and decoding procedure for each task [32]. 

Although multilingual variants of the model have been introduced, they provide suboptimal performances for 

languages other than English compared to monolingual variants, like IT5, a monolingual version of T5 

introduced by Sarti & Nissim [31] for the Italian language, released with different parameter sizes. For our 

study, we chose the computationally lightweight IT5 Base version (220M of parameters) and selected a 

generative Question Answering (QA) approach. The IT5 model for QA1 has been trained on the SQuAD-IT 

 
1 HuggingFace repository: it5/it5-base-question-answering 



   

 

   

 

dataset [33], which consists of a set of about 50000 (non-biomedical) Italian-specific paragraph-question-

answers triplets. 

2.3 Experimental design 

To test the model on our dataset, we draft a question for each feature selected from the SR registry, grouping 

them according to the type of answer required (as shown in Table 1): multichoice, free-text and factual. 

Table 1 Subdivision of features and related questions in three groups according to the type of answer they require: multichoice, free-

text and factual. English translation for the Question fields, from top to bottom: Is only lymph node disease diagnosed? How many 

lymph node stations does the tumor affect? What stage is lymphoma? Where are the lymph node stations affected by the tumor? What 

is the largest axial dimension of the primary tumor? What is the dimension of the axis perpendicular to the maximum diameter of the 

primary tumor?  

Group and 
characteristics 

Feature Question Answer 

Multichoice: 
categorical response 
bound to a list of 
options 

Lymph only (categorical) La diagnosi è solo di malattia dei linfonodi?  True, False 

Number of stations 
(categorical) 

Quante sono le stazioni linfonodali 
interessate dal tumore? 

1, 2+ 

Stage (categorical) Qual è lo stadio del linfoma? Limited disease (stage I-
II), Advanced disease 
(stage III-IV) 

Free-text: unbound 
response (e.g., a set of 
terms or sentences) 

Site (free-text) Dove si trovano le stazioni linfonodali 
interessate dal tumore? 

Free-text 

Factual: semi-bound 
numerical response 

Axial plane size 
(continuous) 

Quanto è la dimensione massima sul piano 
assiale del tumore primario? 

Number mm 

Perpendicular axis size 
(continuous) 

Quanto è la dimensione dell'asse 
perpendicolare al diametro massimo del 
tumore primario? 

Number mm 

 

We concatenate information from each radiology report with the question and allowed options where possible, 

labeling it as input-text, while labeling the correct answer as output-text (as reported in Figure 2). 

Since the average length of radiology reports (1220 tokens) exceeds the maximum input text length allowed 

by T5 (512 tokens), two different processing strategies are employed and compared: 

(1) Batch-truncation: it consists of considering only the first batch (i.e., first 512 tokens) of each report; 

(2) Ex-post combination: it consists of using the texts integrally by splitting them into 512-token-long 

batches and then combining the best outputs per report downstream of obtaining the results (after two 

sequential validations). 

For both the strategies, we implement stratified 5-fold cross-validation (CV) to fine tune the model and 

evaluate its performance. Preliminary analyses have shown biased results for the multichoice type due to the 

presence of a significantly unbalanced feature (i.e., Number of stations (1/2+)), which we fixed by under-

sampling the majority class. For ex-post combination strategy, we have tuned some text-generation 



   

 

   

 

hyperparameters on each validation set to improve the results of free-text answers (see Supplementary 

Materials Section 1). 

When using generative language models for structured reporting, it is important to control text generation to 

ensure consistency with the standardized expected output. For this reason, two generation techniques are 

implemented: the first, called unconstrained generation, lets the model generate freely; the second, called 

constrained generation, uses constrained beam search [34] to reduce the combinations of tokens that can be 

explored during generation to a finite set of allowed sequences (i.e., a whitelist of possible answers), preventing 

forbidden answers from being generated. For multichoice items, the whitelist is populated with the possible 

values each item can assume; for factual items, like measurements, the whitelist includes only the tokens 

included in the original text; for free-text items, constrained generation is not used since it’s not possible to 

define any whitelist a priori. 

To confirm the capabilities of the optimized IT5 model in extracting information for SR registry filling task, 

we compare the best IT5 configuration with the most capable and cost-effective large-scale model available at 

the time of designing this work, i.e., GPT 3.5 Turbo, which is several orders of magnitude bigger and supports 

much longer input texts. Since constrained generation requires direct manipulation of the logits, which are not 

accessible in closed-source environments like OpenAI’s GPT, we leverage prompt engineering techniques to 

design ad-hoc prompts to better guide the model in performing the SR registry filling task. 

Quantitative evaluation metrics are coupled with human-expert feedback by providing radiologists a 

questionnaire [35–37] about the quality of the free-text generated answers to assess which model reflects better 

the way radiologists fill structured reports. Specifically, the degree of completeness and correctness are 

evaluated using two independent 5-point ordinal Likert scales (more details are reported in Supplementary 

materials Section 2). Finally, statistical analyses are performed to compare the scores. 

An overview of the overall analysis is shown in Figure 2. The source code for the experimental setup is 

available on github2. 

  

 
2 https://github.com/bmi-labmedinfo/nlp-radiology-paper.git  

https://github.com/bmi-labmedinfo/nlp-radiology-paper.git


   

 

   

 

 

Figure 2 SR registry filling pipeline overview. The data gathering is designed to collect CT reports with radiological findings that can 

be classified as Lymph node disease, Bulky disease, Spleen or combinations thereof, i.e., falling within the macro “Site” of the SR 

registry. The annotations of the reports are preprocessed: first, missing data are replaced by "Nan" or "not applicable"; second, 

annotations not belonging to the selected feature subset are dropped. Each instance is transformed as input_text and output_text, as 

shown in the gray box (English translation for input_text: examination performed with md spiral technique under baseline conditions 

and after intravenous administration of non-ionic iodinated contrast [...] Options: 1) true 2) false. Question: Is only lymph node disease 

diagnosed?) 

The following steps are repeated for each fold of the 5-fold cross-validation. A model is fine-tuned on the training set for IT5 strategies; 

pre-trained and fine-tuned models are tested on the test set and their results go through a validation phase where quantitative metrics 

results are collected and compared to human-expert feedback ratings. Post-processing steps refer to free-text answers and involve the 

removing of truncated words, repeated sentences, “not applicable”, and final punctuation. 

The validation phase for ex-post combination is divided in two steps: first, all the batches are validated with respect to their output_text, 

after which batches are grouped by id and reassembled differently according to the type of the answer (batch with higher confidence 

for multichoice and factual, concatenation of batches with confidence higher than the empirical threshold of 0.2 for free-text, or just a 

single batch when confidence is 1). Then, the resulting reassembled answers go through the final validation process, in the same way 

as batch-truncation and GPT-3.5. 

2.4 Evaluation metrics 

To quantify and track the performance during fine-tuning, we compute the ROUGE metric [38] (in its Longest 

Common Sequence variant), BERTScore [31,39], F1-score and loss on the dev set, using the latter as an early 

stopping criterion, saving the best checkpoint for each fold. The performance over final answers obtained by 

each strategy and model is reported comparing generated answers and annotators’ answers in terms of strict 

accuracy (SA), F1 and format accuracy (FA). In this context, F1 computes the tokens in common (considering 

Precision as the ratio of the number of common tokens over the total number of predicted tokens, while Recall 

as the ratio of common tokens over the total number of true answer’s tokens), SA refers to the percentage of 

correct answers (i.e., exact match), and FA assesses whether the format of the predicted answer coincides with 

the expected one (e.g., size of the tumor reported as an integer number followed by the “mm” unit of 

measurement). 



   

 

   

 

3 Results 

Table 2, Table 3 and Table 4 report the overall (as micro-average over all types of answer in CV folds) and 

type-wise average results of the validation of the models performed on test sets. For each strategy, the best 

results (by type and overall) are highlighted in bold. 

Table 2 Overall and type-wise average results (with standard deviation) of IT5 batch-truncation. 

type IT5: Batch-truncation 

 Pre-trained model Fine-tuned model 

 unconstrained constrained unconstrained constrained 

 SA F1 FA SA F1 FA SA F1 FA SA F1 FA 

Factual 
0.6 

±0.8 
51.5 
±2.3 

19.7 
±4.5 

0.6 
±0.8 

51.4 
±2.3 

18.8 
±4.5 

17.1   
±3.5 

68.8 
±2.8 

85.6 
±2.8 

2.4 
±2.9 

52.9 
±3 

30 
±5.8 

Multichoice 
0.3 

±0.6 
26.4 
±2.4 

1.1 
±1.1 

46.2 
±6.3 

74.5 
±3.8 

100 
±0 

57.1 
±6.7 

75.1 
±7 

100 
±0 

57.1 
±6.7 

75.1 
±7 

100 
±0 

Free-text 
0   ±0 

16.3 
±2.1 

100    
±0 

- - - 
27.8 
±9.8 

39 
±10 

100 
±0 

- - - 

Overall 
0.3 

±0.3 
34.2 
±1.9 

27.4 
±1.8 

19.5 
±2.7 

54.3 
±2.5 

68.5 
±1.7 

35.9 
±2.5 

65.7 
±2.7 

94.4 
±1.1 

30.2 
±2.3 

59.5 
±2.5 

72.8 
±2.2 

 

Table 3 Overall and type-wise average results (with standard deviation) of IT5 ex-post combination. * indicates the very best results 

among all models. 

type IT5: Ex-post combination 

 Pre-trained model  Fine-tuned model  

 unconstrained constrained unconstrained constrained 

 SA F1 FA SA F1 FA SA F1 FA SA F1 FA 

Factual 
1.2 

±1.2 
63.8 
±2.2 

47.9 
±4.2 

1.5 
±1.8 

63.3 
±2.1 

45.3 
±3.9 

46.5* 
±10.4 

87.1* 
±2.9 

88.2* 
±5.2 

13.2 
±4.3 

70.3 
±2.6 

50.3 
±8.9 

Multichoice 
1.6 

±1.8 
34.3 
±3 

2.2 
±2.1 

51.3 
±5.7 

75.6 
±3.5 

100   
±0 

64.7* 
±9.2 

78.1* 
±10.1 

100* 
±0 

64.7 
±9.2 

78.1 
±10.1 

100 
±0 

Free-text 
0   ±0 

26.7 
±2.8 

100    
±0 

- - - 
33.7* 
±12.6 

56.3* 
±12.5 

100* 
±0 

- - - 

Overall 
1.1 

±0.7 
44.3 
±2.5 

38.9 
±2.1 

22.1 
±2.2 

61.4 
±2.6 

78.7 
±1.5 

51.7* 
±6.7 

77.4* 
±6.2 

95.4* 
±2 

38.7 
±5.7 

70.9 
±5.4 

80.7 
±3.5 

 

 

 

 

 

 

 

 

 

 



   

 

   

 

Table 4 Overall and type-wise average results (with standard deviation) of GPT-3.5. 

type GPT-3.5 

 Pre-trained model Fine-tuned model 

 unconstrained constrained unconstrained constrained 

 SA F1 FA SA F1 FA SA F1 FA SA F1 FA 

Factual 5.9 
±2.3 

17.5 
±3.2 

29.4 
±5.6 

N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 

Multichoice 54.4 
±2.9 

64.4 
±2.7 

6.3 
±2.3 

Free-text 2.4 
±2.5 

33.8 
±9.6 

100 
±0 

Overall 25.5 
±1 

40.3 
±2.2 

33.4 
±2.4 

 

For IT5 models (Table 2 and Table 3), the constrained generation (constrained columns) improves only 

multichoice and overall pre-trained models results (at the expense of an increase in the dispersion of results 

for SA and F1); the best results (in bold) gather in the fine-tuned unconstrained generation condition. 

For this reason, from now on the terms batch-truncation and ex-post combination refers exclusively to the 

fine-tuned and unconstrained generation conditions. Of these two, ex-post combination turns out to be the best 

strategy, even outperforming GPT-3.5 (as shown in Figure 3). 

 

Figure 3 Comparison between the procedures (with standard deviation) divided by metric. 

3.1 Comparative analysis of model performances 

Paired t-test and Wilcoxon signed-rank test have been used on 5-fold CV metrics results to check for 

statistically significant differences between the two IT5 strategies, and to compare ex-post combination (best 

candidate) with GPT-3.5. The resulting p-values are shown in Figure 4. 



   

 

   

 

 

Figure 4 Heat Maps of the p-values obtained by the comparison between batch-truncation and ex-post combination (on the left) and 

between ex-post combination and GPT-3.5 (on the right). The red mark on the colorbar indicates the significance threshold (0.05) for 

p-values: below this threshold the differences are statistically significant, while above (burgundy cells) the differences are non-

significant; white (with no value) indicates that the p-value could not be computed because the differences between the metrics were 

all equal to zero. 

The comparison between batch-truncation and ex-post combination shows a not statistically significant 

difference between the two strategies for SAmultichoice (p-value=0.27) and F1multichoice (p-value=0.61), while for 

ex-post combination and GPT-3.5 differences are not statistically significant for SAmultichoice (p-value=0.081) 

and F1free-text (p-value=0.062). 

Regarding the multichoice type, in both comparisons the similarities are in the generation of responses for the 

“Stage” (limited/advanced) and “Number of stations” (1/2+) features (as shown in Figure 5).  



   

 

   

 

 

Figure 5 Confusion matrices showing the number of correct and incorrect matches for the multichoice type. For each model, matrices 

refer to “Lymph only” (true/false), “Stage” (limited/advanced) and “Number of stations” (1/2+) features, respectively. For the 

“Stage” feature, GPT-3.5 sometimes is unable to give an answer, so the label "undefined" has been added to group all predicted 

answers other than limited/advanced. 

Regarding the free-text type, the formal way in which the F1 metric is defined does not consider whether the 

model is able to properly answer with “not applicable” when actually appropriate (57 out of 62 for ex-post 

combination, while 4 out of 62 for GPT-3.5), as shown in Figure 6; instead, it evaluates the similarity between 

the predicted and true answer and is thus driven by “narrative” answers (which all differ from “not applicable”). 

Further in-depth considerations are discussed in the Section 4. 

 

Figure 6 Confusion matrices showing the number of correct and incorrect matches for ex-post combination and GPT-3.5; the label 

“narrative” groups all the free-text answers other than “not applicable”. It is important to note that “narrative” matches do not 

suggest that the answers coincide; rather, they indicate that both the predicted and true answer differ from “not applicable”. 



   

 

   

 

3.2 Human-expert based evaluation 

The evaluation of models’ answers by the medical experts, comparing for IT5 ex-post combination and GPT-

3.5, achieves Cohen’s kappa values <0.3 (considering all scores together and split per model) for IAA, which 

falls within the range of “Fair Agreement” (0.21-0.40) [29]. Distributions of Likert-scale answers are shown 

in Figure 7. 

 

Figure 7 Distribution of Likert-scale answers (from 1 to 5) grouped by evaluation criterion (correctness on the left and completeness 

on the right) and model (colors). For both criteria, the distributions related to GPT-3.5 (correctness: 3.50±1.6 and completeness: 

3.81±1.10) have a higher central tendency than IT5 ex-post combination (correctness: 2.51±0.97 and completeness: 2.43±0.90). 

The differences between the common answers are tested for normality by the Shapiro-Wilk test, reporting 

correctness and completeness p-values<0.001 (i.e., they do not follow a normal distribution). Therefore, we 

use the non-parametric Wilcoxon signed-rank test that shows a statistically significant difference (correctness 

and completeness p-values<0.001). Central tendencies suggest that GPT-3.5 answers have higher scores than 

ex-post combination. 

We check the correlation between the two independent criteria and between them and F1 by computing 

Spearman’s correlation coefficient with the corresponding significance test. A significant correlation exists 

between the completeness and correctness criteria (p-values<0.001), and also with F1 (p-values<0.001) for 

both models. 

4 Discussion 

The results we obtained for IT5 strategies, especially for ex-post combination, suggest that batch partitioning 

has good potential (even without fine-tuning the model using domain-specific training examples, i.e., utilizing 

pre-trained only models): inevitably, batch truncation allows the model to have awareness of only a severely 

limited portion of the text, where the desired response is likely to be contained only partially or not at all (e.g. 

the free-text item requires listing the location of the lymph node lesions, which are scattered throughout the 

text of the report), resulting in sub-optimal performance. 

The comparison of these strategies shows very similar behavior in generating multichoice answers; however, 

the two models differ in approaching responses related to the “Lymph only” feature (as shown in Figure 5). 

When the disease affects only lymph nodes (correct answer=true), the information often stands in the first 

batch and batch-truncation answers correctly (64 out of 96); while the other batches carry a lot of noisy and 



   

 

   

 

unnecessary information that mislead ex-post combination (29 correct out of 96). On the other hand, when the 

correct answer=false, ex-post combination always answers correctly (74 out of 74), while batch-truncation 

does not have enough information to answer false (31 correct out of 74). 

The work aims to create a pipeline that can extract data from reports with different writing styles and document 

structures; for this reason, the model should have a view of the entire report, ignoring the fact that the 

information may be summarized in the first or last sentences of the text, confirming that the ex-post 

combination is the better, and more generalizable, of the two strategies. 

Regarding GPT-3.5, suboptimal values can be observed for the factual type mainly due to the inability of the 

model to find the answer in the text, as well as unit-of-measurement or more-than-one-size errors (e.g., the 

model predicted “16x27 mm”, while the correct answer was “16 mm”). The comparison with ex-post 

combination shows a similar behavior in generating free-text answers; we can observe that ex-post combination 

has a clear advantage over GPT-3.5 with regards to the ability to appropriately output “not applicable” as an 

answer (57 out of 62 correctly answered as “not applicable by IT5 ex-post combination, vs. 4 out of 62 by 

GPT-3.5), as shown in Figure 6. On the other hand, GPT-3.5 gives more plausible answers (as highlighted by 

the human-expert-based evaluation, see Section 3.2) that result in a higher F1 score, but always attempt to 

provide an answer (i.e., different from “not applicable”) in any case, whether appropriate or not given the 

information included in the original free-text report. 

The human-expert based evaluation highlights the difficulty in objectively, and uniformly, judging the 

correctness and completeness of a sentence; this is demonstrated by low IAA values. Table 5 shows some 

examples of ratings given by the annotators: they show how (in those cases where reference and model answer 

are very similar) annotator 1 tends to give lower scores while annotator 2 gives the maximum to both criteria. 

Table 5 Examples of human-expert-based evaluation.  

Reference Model answer Annotator 1 Annotator 2 

Latero-cervical, axillary, retro-pectoral, 
mediastinal, mammary, pulmonary 
hilum, paratracheal, epiphrenic, 
intraperitoneal, retroperitoneal 

Latero-cervical, axillary/retro-pectoral, 
mediastinal (mammary, paratracheal, 
of the lung hilum, posterior 
mediastinum, and epiphrenic), 
subcarinal, intra- and retroperitoneal 
stations 

Completeness: 3 

Correctness: 3 

Completeness: 5 

Correctness: 5 

Later-cervically on the left side, at the 
upper thoracic inlet, paratracheal and 
periesophageal bilaterally, mesenteric 

Latero-cervical regions, upper thoracic 
inlet, paratracheal, periesophageal, 
mesenteric (left quadrants) 

Completeness: 4 

Correctness: 2 

Completeness: 5 

Correctness: 5 

 

In general, GPT-3.5 shows a remarkable ability to generate plausible statements, resulting in satisfactorily 

evaluated answers by physicians, most likely thanks to its 175B of parameters allowing it to output very 

realistic, human-like, text. 

The positive correlation between the criteria and F1 suggests that the latter is a good computational 

approximation of what a clinician would rate. 



   

 

   

 

The original contribution of this paper concerns the use of generative Transformer-based models to deal with 

the extraction of information of different types. Indeed, we aim to use the QA approach to generate categorical 

(multichoice), numerical, and free-text answers: related works (see Section 1.3) focus on a single type of data 

(i.e., our multichoice type). 

Our study also shows several limitations. Lower performance is observed in generating responses with type 

free-text; indeed, these items contain a large amount of information, scattered throughout the report and 

mentioned with varying degrees of significance. Another limitation is the collection of reports, both in terms 

of number and content. Although considerable time and effort have been devoted to the annotation of the 

corpus, the size of the dataset is small; by increasing the number and heterogeneity of examples, new 

challenges could question the capabilities of the system, deserving further follow-up investigation and 

evaluation of performances. 

The richness of details and information content is not uniform in all the reports in our dataset: this contributes 

to significant discrepancies between notes, preventing all items of the SR registry from being successfully 

tackled by our proposed approach for SR registry filling. To train the models with high-quality examples, we 

identified the most frequently filled items in the annotations, i.e., reducing the number of features analyzed 

and, consequently, limiting the information to be extracted. 

Further more comprehensive studies are essential to gain a deeper understanding of the potential impact (e.g., 

the usefulness, the reproducibility, and the scalability) of the proposed pipeline. Considering more structurally 

different reports and features, up to a full coverage of the SR registry sections and fields, is a challenging task 

that we aim to address in follow-up research. Another important aspect to consider is time savings: we will 

ask clinicians how long it takes them to fill out the entire SR registry, using slots with an increasing number 

of reports, and compare that to the time they employ when supported by our proposed pipeline. Solutions 

prioritizing speed and precision are likely to be optimal for time-critical tasks and positively impact time spent 

on clerical and documentation tasks, ultimately freeing healthcare professionals time to be dedicated to the 

actual delivery of care. 

5 Conclusion 

In the biomedical domain, the main challenges related to cNLP depend on the complexity of the task (e.g., text 

classification, entity mapping, summarization, QA, etc.) and the characteristics of the texts to be analyzed and 

queried (heterogeneity and corpus size, information content, event definition). This article proposes an SR 

registry filling pipeline for the application of Transformer-based models in healthcare to transform previously 

written free-text reports into a specialized (radiological) SR registry format. 

Our experiment shows that IT5 QA is a viable option to positively answer our RQ1 (Can generative, 

Transformer-based language models help in filling radiology registries?), while RQ2 (What’s the best strategy 

to address inputs exceeding language models context-size capabilities?) is addressed by implementing batch-

truncation and ex-post combination, with the latter showing better results. Regarding RQ3 (Can smaller fine-



   

 

   

 

tuned models achieve competitive performance while providing a more affordable solution for radiology RS 

registry filling?), ex-post combination achieves notable results, especially learning when to give a non-N.A. 

answer, even if showing lower performances in plausibility, according to a human-expert-based evaluation, 

when compared to GPT-3.5. 

For this experimental setting, the results suggest a greater impact of in-domain data fine-tuning; IT5 performs 

well in addressing the SR registry filling task, even with a relatively small fine-tuning dataset. 

Despite the available data, we aimed to create a pipeline that can extract data from reports with different writing 

styles and document structures. For this reason, the ex-post combination strategy outperforms batch-

truncation, especially thanks to a higher degree of generalization and the view of the entire input text. 

Although the models have very different numbers of parameters, the comparison between ex-post combination 

(220M of parameters) and GPT-3.5 (175B of parameters) does not show statistically different performance for 

all the types of answers (especially for multichoice and free-text field types). However, we can observe that 

the smaller fine-tuned model (IT5) learns to understand when a question needs to be actually answered, a 

considerable limitation shown by the pre-trained GPT-3.5 model which, on the other hand, tends to provide 

answers that are more liked by human expert evaluators.  
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Highlights 

• Leveraging NLP and generative Transformer-based models for SR registry filling 

• Rule-free QA approach deals with different types of variables (including free-text) 

• Greater impact of in-domain data fine-tuning combined with batch partitioning 

• Quantitative and qualitative (human-expert-based) evaluation of model answers 

• Small fine-tuned model ensures answer’s appropriateness and fair plausibility 

Supplementary materials 

1 Hyperparameters tuning 

During ex-post combination fine-tuning, we tuned the text-generation hyperparameters shown in S. Table 1 on 

dev sets. The hyperparameters considered in the analysis (except confidence threshold) were chosen from 

those configurable in the GenerationConfig class of the Hugging Face transformers library. 

S. Table 1 Text-generation hyperparameters tuned during ex-post combination fine-tuning. 

Grid search range repetition_penalty num_beams length_penalty confidence threshold 

min value 1 1 1 0.09 

max value 1.6 4 3 0.4 

 

We applied grid search to test each combination of hyperparameters (the ranges are shown in S. Table 1 as 

min value and max value). For each CV fold, the combination of hyperparameters with the maximum f1 and 

strict-accuracy values was used to calculate the mean values of the hyperparameters. 

Average hyperparameters (repetition_penalty=1, num_beams=4, length_penalty=2, confidence 

threshold=0.2) were used in the subsequent generation phase on the test sets. 

2 Human-expert based evaluation 

We designed an instrument to collect human-expert feedback about the quality of the free-text answers 

generated by the models: specifically, on the degree of (i) completeness and (ii) correctness, using two 

independent 5-point ordinal Likert scales. 

We created a spreadsheet (shown in S. Figure 1) contained, for each entry, the id, the reference annotation, the 

model answer to evaluate, two drop-down menus to be completed with a response bound from 1 to 5 (the 

description of the scores is given in S. Table 2) for the criteria (i) and (ii) and an extra field for any observation. 

 

S. Figure 1 Spreadsheet provided to radiologists to collect human-expert feedback.  

The evaluation process was as follows: two radiology physicians (annotators) with the same expertise were 

asked to complete the spreadsheet, without consulting, by comparing each model answer with the 

corresponding reference and linking a score (1-5) for each criterion (i, ii). The experts were blinded to which 

model produced each answer by randomly sorting them.  



   

 

   

 

Only answers generated by fine-tuned unconstrained ex-post combination and GPT-3.5, whose reference and 

prediction were different from “not applicable”, were included, for a total of 205 entries (98 and 107 

respectively). Finally, statistical analyses were performed to compare the scores of the two models (specifically 

the individual ratings randomly selected from each pair of raters’ evaluations) and evaluate their performance.  

S. Table 2 Definition of 5-points Likert scales used in human-expert based evaluation. 

Score Completeness: 

How do you rate the completeness/exhaustiveness 
of the answer generated by the model according to 
the following criterion: have all the sites of the 
lymph node stations involved in the disease been 
reported? 

Correctness 

How do you rate the correctness/accuracy of the 
answer generated by the model? 

1- Unacceptable The answer significantly lacks in the particular 
criterion; too few sites are mentioned. 

The answer is fundamentally incorrect. 

2- Poor The answer lacks in the criterion but not to a 
severe extent; few sites are mentioned. 

The answer has evident inaccuracies. 

3- Fair The answer adequately but not exceptionally 
meets the criterion; enough sites are mentioned. 

The answer contains several inaccuracies that may 
require clarification or verification by a medical 
professional. 

4- Good The answer aligns well with the criterion; most 
sites are mentioned. 

The answer is mostly accurate, with only minor 
discrepancies that do not significantly impact its 
clinical reliability. 

5- Excellent The answer excels in the criterion; all sited are 
mentioned. 

The answer is thoroughly accurate, aligning 
perfectly with clinical knowledge 
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