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ON THE DISCONTINUITIES OF HAUSDORFF DIMENSION IN
GENERIC DYNAMICAL LAGRANGE SPECTRUM

CHRISTIAN CAMILO SILVA VILLAMIL

ABSTRACT. Let ¢y be a C?-conservative diffeomorphism of a compact surface S
and let Ag be a mixing horseshoe of pg. Given a smooth real function f defined
in S and some diffeomorphism ¢, close to g, let L, s be the Lagrange spectrum
associated to the hyperbolic continuation A(p) of the horseshoe Ay and f. We show
that, for generic choices of ¢ and f, if L, is the map that gives the Hausdorff
dimension of the set L, ¢ N (—o0,t) for t € R, then there are at most two points
that can be limit of a infinite sequence of discontinuities of L, ;.
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1. INTRODUCTION

1.1. Classical spectra. The classical Lagrange and Markov spectra are closed sub-
sets of the real line related to Diophantine approximations. They arise naturally in
the study of rational approximations of irrational numbers and of indefinite binary
quadratic forms, respectively. More precisely, given an irrational number «, let

1
() ;== limsup ————
pa— |q(qa—p)|

p,qEN

be its best constant of Diophantine approximation. The set
L:={la):aeR—-Q and {(a) < o0}

consisting of all finite best constants of Diophantine approximations is the so-called
Lagrange spectrum.

Similarly, given a real quadratic form q(z,y) = ax? + bxy + cy?, let A(q) = b* — 4ac
its discriminant. We define the Markov spectrum as follows

A(q)

inf T,
(z,)€Z?—{(0,0)} la(@y)l

M=

< 00 : ¢ is indefinite and A(g) > 0

The reader can find more information about the structure of these sets in the
classical book [13] of Cusick and Flahive, but let us mention here that:

e Markov showed that £ N (—00,3) = M N (—00,3) = {\/9—4/22 : n € N}
where z, are the Markov numbers, that is, the largest coordinate of a triple
(T, Yn, 2n) € N? verifying the Markov equation

22 +y + 22 =37, Ynzn.

e Hall showed that £ (and then M) contain a half-line and Freiman determined
the biggest half-line contained in the spectra, namely [c, +00) where

. 2221564096 + 283748/462
- 491993569

e Moreira proved in [IT] several results on the geometry of the Markov and
Lagrange spectra, for example, that the map d : R — [0, 1], given by

d(t) = HD(L N (—o0,t)) = HD(M N (—oc0, 1)),

(where HD(X) denotes the Hausdorff dimension of the set X)) is continuous,
surjective and such that max{t € R:d(t) = 0} = 3.

For our purposes, it is worth to point out here that the Lagrange and Markov
spectra have the following dynamical interpretation in terms of the continued fraction
algorithm: Denote by [ag, a1, .. .] the continued fraction ag + +1 —. Let ¥ = N7 the

a1+—

~ 4.52782956 . ..
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space of bi-infinite sequences of positive integers, o : ¥ — ¥ be the left-shift map
0((an)nez) = (ans1)nez, and let f: 3 — R be the function

f((an)nEZ) = [a(); g, .. ] + [07 a_1,Q_9,... ]
Then,

L= {hmsupf( "(0)) < oo : eez} and ./\/l:{supf( (@) < o0 : eez}

n—oo n—oo

In the sequel, we consider the natural generalization of this dynamical version of
the classical Lagrange and Markov spectra in the context of horseshoesﬂ of smooth
diffeomorphisms of compact surfaces.

1.2. Dynamical spectra. Let ¢ : S — S be a diffeomorphism of a C** compact

surface S with a mixing horseshoe A and let f : S — R be a differentiable function.

Following the above characterization of the classical spectra, we define the maps

Uy o A — Rand my;: A = R given by £, ¢(x) = limsup f(¢"(x)) and my, f(z) =
n—oo

sup f(¢"(z)) for x € A and call 4, ;(z) the Lagrange value of = associated to f and
neZ
¢ and also m, () the Markov value of = associated to f and ¢. The setsﬂ

Lop=1Llos(A)={lys(z):x €A}
and
Mg =mg () = {my(2) : v € A}
are called Lagrange Spectrum of (v, f) and Markov Spectrum of (o, f).
In this paper, we are interested in the study of the real function

(11) L%f(t) == HD(,C%JC N (—OO, t))

The description of this function is closely related to the study of the behavior of the
family of sets {At}teR, where for t € R

A= — e I3 (00, ]) = {a € A Vn € Z, f(p"(x)) < t}.

neL

In order to do that, we will explore the combinatorial nature of |y and its con-
nection with the unstable and stable Cantor sets associated to A. More specifically,
fix a Markov partition {R,}sca of A with sufficiently small diameter consisting of
rectangles R, ~ I x I? delimited by compact pieces I, I}, of stable and unstable

a’
manifolds of certain points of A, see [16] theorem 2, page 172. The set B C A% of
li.e., a non-empty compact invariant hyperbolic set of saddle type which is transitive, locally
maximal, and not reduced to a periodic orbit (cf. [I6] for more details).
2we omit the reference to the horseshoe A because in our context it will be always determined by
the diffeomorphism .
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admissible transitions consist of pairs (a,b) such that p(R,) N Ry, # 0; so, we can
define the transition matrix B by

by =1 if ©(R,) N Ry # B and by, = 0 otherwise, for (a,b) € A2

Let ¥4 = {a = (an)nez : a, € A for all n € Z} and consider the homeomorphism of
Y4, the shift, o : ¥ 4 — X 4 defined by o(a), = a,11. Let X = {Q € XA bapan, = 1},
this set is closed and o-invariant subspace of ¥ 4. Still denote by o the restriction
of o to ¥, the pair (Xg,0) is a subshift of finite type, see [6] chapter 10. The dy-
namics of ¢ on A is topologically conjugate to the sub-shift ¥5, namely, there is a
homeomorphism II : A — ¥z such that p oIl =1l o 0.

As we generally will deal with sequences, we transfer the function f from A to a
function (still denoted f) on ¥p. In this way, we set

Y =1I(Ay) ={0 € Xp: sggf(o"(&)) <t}

Recall that the stable and unstable manifolds of A can be extended to locally
invariant C17 foliations in a neighborhood of A for some o > 0. Using these foliations
it is possible define projections 7% : R, — I3 x {i%} and 7% : R, — {i2} x I* of the
rectangles into the connected components I x {i%} and {i3} x I* of the stable and
unstable boundaries of R,, where ¢} € 0I? and i} € 0I; are fixed arbitrarily. In this
way, we have the unstable and stable Cantor sets

K" = U T (ANR,) and K* := U T (AN R,).
acA acA

In fact K* and K* are C'" dynamically defined, associated to some expanding
maps s and 1, defined in the following way: If y € R,, N p(R,,) we put

Vs(ma, (y) = ma, (07 (1)
and if z € Ry, N ¢ *(R,,) we put

Uu(ma, (2)) = m, (0(2)).

Moreira’s theorem of [11] was generalized first in [I] in the context of conservative
diffeomorphism with some horseshoe with Hausdorff dimension smaller than 1 and
later was removed the condition on the dimension of the horseshoe in [9]. More
specifically, the authors proved that for typical choices of the dynamic and of the
real function, the intersections of the corresponding dynamical Markov and Lagrange
spectra with half-lines (—oo,?) have the same Hausdorff dimension, and this defines
a continuous function of ¢ whose image is [0, min{1, D}|, where D is the Hausdorff
dimension of the horseshoe.

Our main theorem (cf. Theorem below) is quite related to the result of the
previous paragraph but, in our case, we will work away from the two points that
determine “the canonical interval” where L, ; can have a discontinuity. Here, we
drop the hypothesis of the neighborhood of the initial conservative diffeomorphism
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be in the space of conservative diffeomorphisms. However, we can only conclude
finiteness of the number of discontinuities but not continuity else.

1.3. Statement of the main theorem. Let ¢y be a smooth conservative diffeomor-
phism of a surface S possessing a mixing horseshoe Ay. Denote by ¢/ a C? neighbor-
hood of g in the space Diff*(S) of smooth diffeomorphisms of S such that Ay admits
a continuation A for every ¢ € U. Using the notations of the previous subsection,
our objective is to study the discontinuities of the map L, s defined by

t— Ly s(t)=HD(Ly, ;N (—00,1)).
In order to do this, we consider the interval I, ; = [c, f, Gy |, Where
Cof=sup{t e R: L, ¢(t) =min L, ; = 0}
and
Cppi=inf{t €e R: L, ;(t) =max Ly, ;= HD(L, )}
which is the interval where L, ¢ can have discontinuities. With this notation, our

main result is the following

Theorem 1.1. If U C Diff’(S) is sufficiently small, then there exists a residual
subset U* C U with the property that for every o € U* and any r > 2, there exists a
CT-residual set P, n C C"(S,R) such that given f € P, one has

max L, ;= HD(L, ) =min{l, HD(A)}

and
Cyp,f = Min £;7f = min{x : x is an accumulation point of L, s}.
FEven more,
o I[f HD(A) < 1 then Ly ¢ has finitely many discontinuities in any closed sub
interval I C I,y that doesn’t contain cy ;.

o If HD(A) > 1 then L,y has finitely many discontinuities in any closed sub
interval I C I, ¢ that doesn’t contain neither c, y nor Cy 5.

As a consequence, we immediately have the corollaries

Corollary 1.2. If HD(Ay) < 1, then by choosing U small, given ¢ € U*, f €
Pyon and € > 0 the function L, has finitely many discontinuities in the interval
[cp.f + €,00). Therefore, c, ¢ is the only possible limit of an infinite sequence of
discontinuities of Ly ¢.

Corollary 1.3. If HD(Ay) > 1, then by choosing U small, given ¢ € U*, f € Pya
and € > 0 small, the function L, s has finitely many discontinuities in the interval
[Co.f + € Cpp — €]. Therefore, c, s and ¢, ¢ are the only possible limits of an infinite
sequence of discontinuities of Ly ¢.
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2. PRELIMINARY RESULTS

2.1. Stable and unstable dimensions. Given a Markov partition P = {R,}aca,
recall that the geometrical description of A in terms of the Markov partition P has a
combinatorial counterpart in terms of the Markov shift ¥z C A%. Given an admissible
finite sequence @ = (aq, ..., a,) € A™ (i.e., (a;,a;41) € B for all 1 <i < n), we define
I'"(a) ={z € K*: 9. (z) € I'"(a;,ai41), i =1,2,....n — 1}
and if of = (an, @p_1, ..., a;), we define
(") ={y e K* ' (y) € I*(a;, ai_1), i =2,...,n}.
In a similar way, let 0 = (a4, a5, 11, ..., as,) € A2 an admissible word where
S1,89 € Z, $1 < S and fix s; < s < sy9. Define
So—8
R(97 S) = ﬂ gpim<Ram+s)'
m=s1—s

Note that if z € R(6;s) N A then the symbolic representation of z is in the way
IM(z) =(...,as ... As-1;0s, G541 - - - As, - . . ), Where the letter following to ; is in the 0
position of the sequence.

In our context of dynamically defined Cantor sets, we can relate the length of the
unstable and stable intervals determined by an admissible word to its length as a

word in the alphabet A via the bounded distortion property that let us conclude that
for some constant ¢; > 0

|[I"(eB)| 7° ()]

(2.1) e < <eand e < <e%,
[14(c)| - [1%(B)] (15 (aT)] - [15(B87)]

and also, for some positive constants A1, Ay < 1, one has

(2.2) e\ < 1) < e A and e\ < |15 (aT)| < e AR

We write 7 (a) for the unstable scale of a, that is, 7™ (a) = [log(1/|I%()])]
and similarly, 7 (a) = |log(1/|I°(aT)])] for the stable scale of a. Write a* =
(ay,a9,...,a,_1) if a = (a1, as, ..., a,) and for r € N define the sets

P™ = {o € A" admissible : 7™ (a) > r and 7 (a*) < r}
and
P = {a € A" admissible : 7®)(a) > r and ) (a*) < r}.
Now, given any X C A compact and g-invariant we define its projections
(X)) = | m(X N R,) and 7°(X) = | J 74X N R,).
acA acA

We also set
Cu(X,7) = {a € P™ : I"(a) N 7"(X) # 0}
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and
Co(X,r)={a e P¥: *(a")nr*(X) # 0}

whose cardinalities are denoted N, (X,r) = |Cu(X,r)| and Ns(X,r) = |Cs(X, 7).

Note that by for a € C,(X,r) one has ecl)\;l)\‘;‘| > |[I*(a*)| > €77 and from
this follows that |a| < r/log(A\;") + log(e“' A5 ')/ log(A; ") and then
(2.3) Ny (X,r) = [Cu(X, )| < e*17tHez
where a; = log|A|/log(A\;') > 0 and ay = log(e\;!) - log|A|/log(A\;!) > 0 depends
only on ¢ and A. Note that the same inequality also holds for Ny(X,r).

In the article [I] the authors proved the following lemma in the case of X = A, for
completeness we give a proof here:

Lemma 2.1. There exists a constant co = ca(p, A) € N such that if X is a compact,
p-tnvariant subset of A, then

N(X,m~+n) <|A|? - Ny (X,m) - Ny(X,n)
and

Ny(X,m+n) <|A|? - Ny(X,m) - Ny(X,n)
for all n,m € N.
Proof. By symmetry, it is suffices to show that the sequence {N, (X, 7)}.en satisfies
the conclusions of the lemma. By [2.1land 2.2 we have for all a, 3, v finite words such
that the concatenation a3~ is admissible

I (afy)| < |1 @)]| - 1B 11" ()] < AT |1 (a)] - [1(B)]

Now, we note that, for each ¢ € N, one can cover 7*(X) with no more than |A|°-
N, (X,n)- N,(X,m) intervals I*(afv) with o € C,(X,n), 5 € C,(X,m), v € A° and
af~y admissible.

Therefore, by taking ¢, = LO;{;‘ € N it follows that we can cover 7*(X) with no
more than |A|® - N,(X,n) - N,(X,m) intervals I*(a/37y) whose unstable scales satisfy
r(apy) > () +r(8) > n+m.

Hence, by definition, we conclude that
NU<X?n + m) < |"4|C2 ’ Nu(Xa n) ’ NU(Xa m)>

as we wanted to see. O

From this lemma we get that for each X C A compact, ¢-invariant there exist the
limits

log Nu(X,7) _ ;¢ loa(lA[” - Nu(X, 1))

Dy,(X) = lim —————F =
r—r00 T T’EN r
- log Ny(X log(|.A|° - Ny(X
co
Du(X) = lim 2BN0T) o log(IAI - No(X, )

r—00 r reN r
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and that the numbers D, (X) and Dy(X) are the limit capacities of 7%(X) and 7°(X)
respectively.

By we have for the constants C' = log A/ log Xy > 1 and C' = e (C+1) > 1 and
any « admissible that

(2.4) CH I ()| < |IP(a")| < C|T*(a)[/C

and for this, we conclude that for every X C A, compact and @-invariant, Dy(X) and
D, (X) are comparable:

(2.5) C'Dyu(X) < Dy(X) < CD,(X)

and so,

(2.6) HD(X) < Dy(X) + Dy(X) < (C +1)Dy(X)
and

(2.7) HD(X) < Dy(X) 4 Dy(X) < (C 4 1)D,(X).

2.2. Sets of finite type and connection of subhorseshoes. The following defi-
nitions and results can be found in [10]. Fix a horseshoe A of some diffeomorphism
¢: S — Sand P = {R,}a.ca some Markov partition for A. Take a finite collection X
of finite admissible words of the form 0 = (a_n(),...,a-1,a0,0a1,...,ay@)), We said
that the maximal invariant set

M(X)= (Ve ™ R6;0)
meZ feX

is a hyperbolic set of finite type. Even more, it is said to be a subhorseshoe of A if
it is nonempty and |y (x) is transitive. Observe that a subhorseshoe need not be a
horseshoe; indeed, it could be a periodic orbit in which case it will be called trivial.

By definition, hyperbolic sets of finite type have local product structure. In fact,
any hyperbolic set of finite type is a locally maximal invariant set of a neighborhood
of a finite number of elements of some Markov partition of A.

Definition 2.2. Any 7 C M (X) for which there are two different subhorseshoes A(1)
and A(2) of A contained in M (X) with

T={r e M(X): w(z) CA(1) and a(z) C A(2)}
will be called a transient set or transient component of M (X).
Note that by the local product structure, given a transient set 7 as before,
(2.8) HD(7r) = HD(K*(A(2))) + HD(K"(A(1))).

Proposition 2.3. Any hyperbolic set of finite type M(X), associated with a finite
collection of finite admissible words X as before, can be written as

M(X) = JA

i€
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where T is a finite index set (that may be empty) and fori € T, A; is a subhorseshoe
or a transient set.

Now, fix r > 2 and for x € A, let e and e¥ unit vectors in the stable and unstable
directions of T,S. Given some subhorseshoe A C A we define

R, i :=1{f € C"(S,R): Vf(z) is not perpendicular neither to e; nor e; for all z € A}.
In other terms, R, 5 is the class of C"-functions f : S — R that are locally monotone

along stable and unstable directions for points in A. The next proposition follows
from the results proved in [I] (see remark 1.4 in that paper):

Proposition 2.4. Fiz r > 2. If the subhorseshoe A C A has Hausdorff dimension
smaller than 1, then R, i is C"-open and dense and for f € R,z the functions t —

Dy(Ay) and t — Dy(A,) are continuous, where Ay = {x € A : Vn € Z, f(o"(x)) < t}.

Fix f : S — R differentiable. A notion that plays an important role in our study
of the discontinuities of the map L, ¢ is the notion of connection of subhorseshoes

Definition 2.5. Given A(1) and A(2) subhorseshoes of A and ¢ € R, we said that
A(1) connects with A(2) or that A(1) and A(2) connect before ¢ if there exist a
subhorseshoe A C A and some ¢ < ¢t with A(1) UA(2) C A C A,

For our present purposes, the next criterion of connection will be also important

Proposition 2.6. Suppose A(1) and A(2) are subhorseshoes of A and for some x,y €
A we have x € W*(A(1)) N W*(A(2)) and y € W*(A(2)) N W*(A(1)). If for some
t € R, it is true that

A(1)UAR2)UO(z) UO(y) C Ay,
then for every e > 0, A(1) and A(2) connect before t + €.

Corollary 2.7. Let A(1), A(2) and A(3) subhorseshoes of A and t € R. If A(1)
connects with A(2) before t and A(2) connects with A(3) before t. Then also A(1)
connects with A(3) before t.

3. PROOF OF THEOREM [I.1]

The proof when the Hausdorff dimension of the horseshoe is less than 1 is by
contradictionﬁ we suppose the existence of an infinite sequence of discontinuities
of the map L, in some closed sub interval of I, that doesn’t contain the first
accumulation point of the Lagrange spectrum and associate to every term of such a
sequence a pair of subhorseshoes that don’t connect before the term but they connect
little time after it. Then, from this sequence of pair of subhorseshoes, we extract an
infinite sequence of subhorseshoes S, with the property that it contains arbitrarily
big finite subsequences of terms that don’t connect two by two before the maximum

3the precise statements will be present in the sequel.
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of the discontinuities that determine them. Choosing correct scales (at the level of
sequences) we show that for every term of S, we can associate a periodic orbit (with
period bounded by a fixed constant) in such a way that it is possible to connect two
subhorseshoes with the same associated periodic orbit before the maximum of the
discontinuities that determine them, letting us obtain the desired contradiction. The
proof when the Hausdorff dimension of the horseshoe is greater than or equal to 1 is
reduced to the previous case.

3.1. The residuals subsets. In this short subsection we introduce the residuals sets
with which we are going to work. First, using the spectral decomposition theorem, it
follows the next result from [7]:

Proposition 3.1. There erists a residual subset U* C U with the property that for
every subhorseshoe A C A and any f € C1(S,R) such that there exists some point in
N with its gradient not parallel neither the stable direction nor the unstable direction,
one has

HD(f(A)) =min{1, HD(A)}.
that we use to prove the next proposition

Proposition 3.2. [fU* is as in the proposition|3.1] and r > 2, then for any ¢ € U*,
there exists a C"-residual subset Py, x such that for every subhorseshoe A C A and
any [ € Py one has

min{L, HD(R)} = HD(l, (%) = HD(m;(R)).
Bven more, if HD(A) < 1 one has P, C R, i-

Proof. Following the ideas of the proof of the theorem 1 of [12] we see that given a
subhorseshoe A C A, the set

HT\ = {f S CT<S, ]R) : ‘MT\,f| =1landif z € MT\,f’ sz(ez’u) # 0}
is C"- open and dense, where My , = {z € A: f(z) = max f|;}.
If HD(A) < 1 set Hz = Hz N R, & (which is residual by proposition and

Hi = Hj in other case. Define then

,P%A = ﬂ HK'
ACA

subhorseshoe

In the mentioned paper is also proved that for any such subhorseshoe A C A and
f € P, if 2 is the unique element where f|; take its maximum value, then for any

¢ > 0 there exists some subhorseshoe A € A\ {z,,} with

HD(A) > HD(A)(1 — ¢)
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and such that for some point d € A¢ there exists a local C'-diffeomorphism A defined
in a neighborhood Uy of d such that

F@"(A(Ag))) C Los(A),
where jg is an integer and /~\j0 C A€ has nonempty interior in A€ and then is such that
HD(A;,) = HD(A%). Moreover, it is proved also that

and then, V(f o @ o A)(z) Jf e for every = € A,.
Extending properly f o ¢/ o A, and letting € tends to 0; it follows from this and
proposition [3.1] that

W || 621(;), for x € Ud N A€
x

min{1, HD(A)} < HD({, ;(7)).
An elementary compactness argument shows that {{, ;(z) : x € X} C {m, s(z) : x €
X} C f(X) whenever X C M is a compact g-invariant subset. It follows that

min{1, HD(A)} < HD((, ;(A)) < HD(my, ¢(A)) < HD(f(A)) < min{1, HD(A)},
as we wanted to see. O

Corollary 3.3. Given o € U* and f € P, A, one has
max L, f = HD(L, ) = min{1, HD(A)}.

3.2. A technical proposition. Throughout this subsection we will suppose HD(A)
< 1. Fix f € R, and take X C A, compact and ¢-invariant. Observe that the
same proof of proposition 2.9 of [I] let us conclude that for every 0 < n < 1 there
exists 0 > 0 and a complete subshift ¥(B,) C X5 C AZ associated to a finite set B,,,
of finite sequences such that

Y(Bu) C Bmaxfix—s  and Dy (A(X(By))) > (1 —n)Dyu(X),

where A(X(B,)) denotes the subhorseshoe of A associated to B,. We point here that
A(X(B,)) doesn’t need to be contained in X.

For fixing ideas and for future use we will remember some facts about that proof:
The construction of B, depends on three combinatorial lemmas (2.13-2.15). In our
case, to prove that lemmas, we take ry large so that

log N, (X, r)
r

(3.1) — Du(X)| < gDu(X)

for all r € N, r > ro where 7 = 1/100.
The alphabet B, is obtained from the set

B,={B=05...0u: B € CulX,70), V1<) <k and 7(X)NI"(B)#0}

where k = 8N, (X, r0)%[2/7].
Defining the notion of good position for positions j € {1, ..., k} (see definition
below for a generalization) is showed that most positions of most words of B,, are good
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and for that set of words, say £, we can find natural numbers 1 < s; <--- < S3N2 <k,
(N(] = NU(X, TO)) with

Sl — Sm > 2[2/7] for 1< m <3N
and words Esl,@lﬂ, o ,BsgNQ ; 353N2+1 € Cu(X,rp) such that the set P of words in £
0 0

with s,,, s, + 1 good positions and fs,, = Bsm, Bsmt1 = B\smﬂ for 1 < m < 3N has
cardinality [P| > N{'7*7*
Then is proved that there are 1 < py < qop < 3NZ such that Bspy = Bsayr Bspgr1 =

Bsgon and the cardinality of B, = my, 4,(P) is
|Bu| > Nél—l(]*r)(sqo—spo)’

where

Tpogo * P — Cu(X,m0)* 0 %0 is the projection 7y, 40(B1- .- Br) = (Bsyy s+ Bsgy )

obtained by cutting a word /3, ... 8 € P at the positions s,, and sy, and discarding
the words 3; with j < s,, and j > s,,.

Using the conclusion on the cardinality of B, is showed that D,(A(3(B,))) >
(1 =)D, (X) and using that s,,, sp, + 1, s¢, and s,, + 1 are good positions for words
in P that Z(Bu) - Emaxf\x—é‘

Even more, the proof of that proposition gives us the next formula: § = min{d*, 62,
60%,0*} where if 71 = B, ., = 1. am,, Bopgr2- - Bsg—1 = b1 bm and yp = B, =
dy ...dg, then

o= min o min (10 >|
’Ylbl..‘b;ﬁ’erBu 1S]§'ffl—1
0% = cq - : . s .
* “ ’Ylbl-g}f;r’;QeBu 1§?;1n£1171 ‘ ((7 ) )’
* = 71b1--1.£1r§71268u 1352};&_1 | (( 207 . ) )|
e 0t =c;- min min | I*(dp_m—ms1 - - - Ay 1)

Y1b1...bmv2€By  1<4<m1—1
and c3 is a positive constant that only depends on the function f and .

We will give a more precise estimate of the value of § = §(n, X) and show some
uniformity property of it; we also want to describe better the horseshoe A*(X) =
A(X(B,)) obtained before. To do this, let us consider for n € N the set C'(X,n) of
admissible finite words 6 of the form § = (a_,, ..., ao, ..., a,), such that the rectangle
R(a_p,...,a0,...,a,:0) = () ¢77(R,,) has nonempty intersection with X. Also,

j=-—n
given € > 0 define n(e) = min{n € N : V8 € C(A,n), diam(R(#;0)) < ¢/2} where
diam(R(#;0)) denotes the diameter of the set R(6;0).

Proposition 3.4. Given € > 0 and ¢y > 0 there exists a constant § = d(e,¢y) > 0
such that if X is a compact p-invariant subset of A that satisfies D,(X) > coy, then
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we can find some subhorseshoe A*(X) of A such that
D, (A*(X)) > (1 — €)Du(X) and A" (X) C Amax f|x—s-
Furthermore, for every x € A*(X) the set
X(x)={ne€Z:30 € C(X,n(e)) such that p"(x) € R(6;0)}
15 neither bounded below nor bounded above.

Proof. Take X C A, compact and p-invariant as in the statement of the proposition.
It is clear from the construction given of B, and from the fact that

Sqo — Spo = 2[2/71(q0 — po) = 2[2/7] = 2[200/7]
that for n = n(e) < e small enough and = € A*(X) = A(X(B,)), the set X (z) is
neither bounded below nor bounded above. Also, because A*(X) C Apax f1—s, the
proposition will be proved if we can choose § depending only on 7 and c¢.

Without lose of generality, consider 0 < 7 < min{cg, 5000/ (c2log|.A|), 3\, K},
where x > 0 is such that the maps x — e¢" — 8e?1%+202 . 3.2 and x — e — 8logx -
e?rt202 . (a4 ap) are positive if z > 1/k2%.

The crucial observation here is that in the proof sketched above (without the di-
mension estimate) we can replace the conditions on ry (and k) given by the equation
by the assumption that ro > f%} and k = 8N,(X,r¢)*[2/7] satisfy
the inequality

log N,,(X, r0) <0+ Z)log N.(X, k(rg — 1))
To 2 k(?“o — Cl)
where ¢; comes from the bounded distortion property as in equation 2.1}, because in
that case, multiplying this inequality by (1 — 7)rok we have

log N,(X, 1)1 < (1—)(1+ %)TOT_OCI log Nau(X, k(ro — c1))
< (1= 0+ ) log Nu(X, k(ro — 1))
< (1= _2T2)logNu(X,k(r0 — 1))
< (1= P+ ) log Nu(X, k(ro — 1))

V]

-

= log Ny (X, k(ro —c)) " 7
also, given any r > ry we have by definition of D, (X)
log|.A|* < log N, (X, )
r - r

(32) (1= 5)DulX) < DulX) = Zeo < Du(X)

which implies that

2 7_2 T 7_2

log 2 < log|A|*? < TZT’OCO < —(1 = 2)k(ro—c1)Du(X) < T

1 5 IOgNu(X,k(TQ—Cl))
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and then 2N, (X, 7r0)"~ "% < N, (X, k(ro — ¢1)) which is precisely the necessary con-
dition to obtain the equation 2.4 in the proof of lemma 2.13 of [I] and the claims in
other parts of the proof of the lemmas that use the assumptions that ry and k are
large are satisfied provided ry > [W%].

On the other hand, given any regular Cantor set (K1) with Markov partition
P ={6,..., I} if we define inductively Ry = P and for n > 2, R,, as the set of
connected components of ¥ ~1(J), J € R,,_1. And also, for each R € R,, we denote

by

A = nf[(¢")|r] and Ay g = sup|(¢")'|l,
the bounded distortion property shows the existence of some a = a(K) > 1, such
that A, p < a.A\, g, for all n > 1. Even more, it is well known that for any such
K, D(K) = HD(K) where D(K) denotes the limit capacity of K (cf. [16, chap 4]).
Indeed, it follows from the proof of this result that for the sequences {a, }nen and
{Bn}nEN given by

(3.3) 3 (AiRY":l: 3 ( 1 )‘%

A
RER, RER, .k

when ¢ is a full Markov map i.e., (K NI;) = K for 1 < j <k, one has

(3.4) o < HD(K) = D(K) < f,

and if n > loga/log A, where A = A\(K) = inf|¢’| > 1
loga - HD(K)

(35) b — nlog A —loga

Now, if z(n,A) € N is such that given rq > z(n, A), for any complete subshift as-
sociated to a finite alphabet B, = B,(ro) of finite words as before, the Cantor
set K*(X(B,)) consisting of points of K* whose trajectory under 1, follows an
itinerary obtained from the concatenation of words in the alphabet BUEL satisfies
that A = M(K"(X(B,))) is big (we can take a = a(K*(X(B,))) = a(K*(A))), then by
B.4 and B.5

Bi— a1 < SHD(K'(Z(B.)) < 1.

Using this, [3.3] and [3.4] we obtain

HD(K"((B,))) > a1 > (1 - %) Pz (1 - %) —log(rlﬁ?“lu(a”)
aEBy

which is the equation used in [I] (together with to obtain the dimension estimate.

dwhich is C*t-dynamically defined associated to certain iterates of ¥, on the intervals I “(B).
with 5 € B,.
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Following the observations described above, we define the sequence {p,} as follows:
po = max{ [AatslA%T () A)} and for n > 0 put

coT
Pn+1 = 8Nu<X7 pn>2 |72/T~| (pn - cl)‘

We claim that, for some integer 0 < sy < (1 + 2)log M

logNu(Xapso) < (1+ )lOgNu(Xapso+1) _ <1+ 1OgNu(X,k(p50 _Cl))’
pSO 2 p50+1 2 k(pSO - Cl)
with k& = 8N, (X, ps,)?[2/7].
Indeed, if it is not the case, then for 0 < n < (1 + 2)log w, we have

one has

T T

)

logNu(Xapn—l—l) < (1 + Z>71Nu(Xapn)
Prn+1 2 Pn
and then, for M = [(1 + 2)log ML:‘QH)] we would have
logNu(XapM) < (1 + Z)fM . logNu(Xap()) < n logNu<X7p0>
M - 2 Po 4(on + g+ 1) Po
because
T._ T._ (122 4(agtag+l) og Hagtag+1) n
1 M 14+ — (14-2)\log m < log o _ '
( +2) _(< +2) ) € 4(0&1“}‘0@‘}‘1)

And so, by
log Nu(X,pa) . m logNu(Xipo) . 1 cwpotas 7

Pm ~ Ao + ) Po ~ Ao + ) Po 2’
But this is a contradiction because by
U T T log Nu(X, par)
—<(l==2)co<(1—-2)D,(X) L ————=.
L < (1- Do < (1= D) < 2

Therefore, by taking ry = p,, and k = 8N, (X,r9)?[2/7], the argument for the
construction of B, works and then, because of the formula for §, we have

(36) 5 Z 636701)\?\114-7712-1-@ Z 636701 )\llﬂ'max{|a|ia€cu(xﬂ"0)} Z 036*01)\]1“'(0‘170%3‘2).

We will now give an explicit positive lower bound for ¢ in terms of 7. In order to do
that, we define recursively, for each integer n > 0 and x € R, the function 7 (n, x) by
T(2,0) =2, T(x,n+1) =’ @™ We have for n > 0

Prny1 = 8Nu(X7 pn)Q I_Q/T-| (pn - Cl) < gePipntaz., p?m < 66pn7
since p, > po > [2/7%]. Therefore 7o = ps, < T (po, 250) and
log \{ ' - k(aqrg +ag) = 8log A\t Nu(X,70)*[2/7](cnro + az)

70
< 8logry - €270t Lo (g + ) < €°
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so, by
7 —c1
(3.7) § > cge Crelogrklanrotas) o o pmergmef ’ Ca¢

T (po, 250+ 3)
As py = max{ [ CI;;)zloglAICQW z(n,A)} and s < (1 4 2)log —4(a1+n°‘2“) = (1+

200 4(a1+az+1)
T) log %, we have by

—c1

—c1

5> c3e o cse
T(po,2s0+3) T (max{[*XUAEDOEIART (A}, [201 Jog Hartaztl)])”
that finishes the proof of the proposition. O

Now, if we suppose that Ds(X) > ¢, given € > 0 we can construct, as before,
some complete subshift 3(B;) such that A(X(B;)) has similar properties as A*(X) =
A(X(B,)). Then, we immediately have

Corollary 3.5. Given € > 0 and ¢y > 0 there exists a constant § = (e, co) > 0 such
that if X is a compact p-invariant subset of A such that the limit capacities D, (X)
and Dy(X) satisfy both D,(X), Ds(X) > ¢o. Then there are subhorseshoes A*(X)
and A"(X) of A such that

D, (A*(X)) > (1 = €)Du(X), Dy(A*(X)) > (1 —€)Ds(X)
and
Au(X) U AS(X) C Amaxf|X76-

Furthermore, for every x € A*(X) U A®*(X) the set

X(x)={neZ:30 € C(X,n(e)) such that p"(x) € R(6;0)}
1s neither bounded below nor bounded above.
3.3. First accumulation point of the Lagrange spectrum. In this subsection,
we show the existence of the first accumulation point of the Lagrange spectrum and

show that it is exactly at that point where the map L, ; begins to be positive. In
what follows, we will use the following result from [9]:

Lemma 3.6. Given ¢ € U, any subhorseshoe A C A, f € CHS,R) and t € R, one

has ) )
Cop(A) 1) = J s (M)

s<t
In particular

Lys(t) = sup HD(l,,;(As)) = lim HD(by7(As))-

From this we get
(38)  Log(t) =sup HD(l,s(A) < HD((,, (M) < HD(F(A) < HD(A,).
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Proposition 3.7. Take ¢ €¢ U* and f € P, . Then

!/

L, ;= {x:xis an accumulation point of L, s} # 0
and ¢, f = min L;,f.
Proof. First, by proposition
HD(L, ) = HD(l,(A)) =min{l, HD(A)} > 0,
then, £, s cannot be finite and as £, C f(A), it must be true that E;,f # (.

Let ¢, ; = min L@f. Given € > 0, it is clearly that L, s(c}, ; —€) = 0 because
L, ;N (—00, ], ;—¢) is finite. On the other hand, take an injective sequence (yn)nen =
(Uy,;(zn))nen C Ly, s such that 11m Yn = ¢, ; and consider N € N big enough such
that for two elements z,y € A 1f thelr kneading sequences coincide in the central

block (centered at the zero position) of size 2N + 1 then |f(x) — f(y)| < €/6.
Take first ng € N large so that |(, f(z,) — ¢} ;| < €/6 for n > ng and there are
infinitely many j € N such that | f(¢/(2,)) —c}, ;| < ¢/6. Given such a pair (j,n), con-

sider the finite sequence with 2N +1 terms S(j,n) = (bgn)N, b;")NH, - ,bgn), - ,b;’jr)N)

where 11~ ((bgn )jez) = xp. There is a sequence S such that for infinitely many values
of n, S appears infinitely many times as S(j,n); i.e., there are j1(n) < jo(n) <
with lim (j;41(n) — ji(n)) = oo and S(j;(n),n) = S for all i > 1 and for all n in some
1—00
infinite set A C N.
Consider the sequences 3(i,n) for i > 1, n € A given by

Blin) = (b(n) +N+1’b§7) J+N+20 ’b§7+)1(n)+N)'
Taking ni,ne € A distinct and r = r(ny,ny) large enough such that for j > r,
F(@(x0y)) < Ly (@) + €/6 and f(? (@n,)) < Ly f(xn,) + €/6. There are iy > r
and i > r for which there is no a sequence 7 such that §(i1,n;) and S(iz, ng) are
concatenations of copies of v, otherwise y,, = y,, because for n € A

This implies that, by taking

C = {B(i1,n1)B(iz, na), Bliz, 1) B(ir, m1) },
we have 3(C) is a complete subshift and for x € A(X(C)) = A¢ (the subhorseshoe
associated to X(C)) we have my j(z) < ¢ ; + €/2. Indeed, for every k € Z the
kneading sequence of ©*(z) coincides in the central block of size 2N + 1 with the
kneading sequence of ¢!(xy) where @ is either n; or ny and [ > r. So

T @) < F(6(@0) + 5 < los(aa) + 5 < iy + 5.

Therefore, using one more time proposition and lemma we conclude
0 <min{l, HD(A¢)} = HD({, s(Ac)) < HD(B%f(AC;yﬁG/Q)) < L, s(c, s +€).
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Then, by definition ¢}, ; = ¢, ¢, which ends the proof of the proposition. 0J

Corollary 3.8. If HD(A) < 1 one has
¢y = max{t € R: HD(A;) = 0}.

Proof. It follows from the previous proposition and that 0 < Ly r(cpr +€) <
HD(A, ;+c)- Now, if HD(A., ;) > 0 then by , Dy(A, ;) >0 (also Dy(A., ) > 0),
and by proposition H we can find some horseshoe A C A, ;—s for some § > 0 and
arguing as before, we get the contradiction L, ¢(c, r — 9/2) > 0. O

Remark 3.9. This corollary remains true if HD(A) > 1 because proposition 1 of [9]
let us also show the existence of A and § > 0 as before.

Corollary 3.10. If HD(A) < 1 then Ly ¢ is continuous in cy .
Proof. Suppose lirri HD(A;) = h > 0, then by , for ¢t > ¢,y one has D,(A;) >

t— Cof

h/(14C). On the other hand, propositionlet us find some § = §(3, HLC‘) > ( such
that for any t > ¢, y we can find some horseshoe A*(A;) C A;_; (the other conclusions
of the proposition are not necessary here). By applying this to ¢t = ¢, s +6/2, we get

the contradiction 0 < HD(A"(Ac, ;45/2)) < HD(A., ;—5/2). Then
0= L@,f(c%f) S lim Lv,f(t) S lim HD(At) = 0,
t ct t— ct
@, f e f
as we wanted to see. O

Remark 3.11. This corollary also holds when HD(A) > 1 because as we will see
later, before ¢, f, it is true some expression of the type L, ; = max L;, where the

functions L; are defined like L, ; but are associated to horseshoes with Hausdorff
dimension less than 1.

3.4. Geometric consequences of having a discontinuity. In this subsection, we
show how to associate to each discontinuity the pair of subhorseshoes described in
the introduction of the section.

Take ¢ € U* with HD(A) < 1, f € P, and suppose ¢y € R is a discontinuity of
the map t — L, ¢(t) = HD(L, ;N (—00,t)). So, there exists an a > 0 such that

(3.9) L, (q) +a < Ly,y(s) for g <ty < s.

By corollary [3.10] and 3.8 we have 0 < Ly, ;(tg) < HD(Ay,), then Dy, (A;,) > 0 and one
more time, by proposition , we can find some horseshoe AY C Ay,. For 0 < e < a/2
and ¢y = HD(A%)/(C 4+ 1) > 0 take 6§ = 8(¢/2k, ¢y) < € as in the corollary [3.5] where
k > 1 is a Lipschitz’s constant for f, and let us consider for t € R and n € N the set
C(A4,n). By compactness, one has

C(Ayy,n) = [ C(As,n).

t>to
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In particular, for each n, there exists t(n) > to such that for to < t < t(n)
C(Ay,n) = C(Nygy, 1).
Take then, n = n(d/ 2k) and consider the maximal invariant set
P=MCMym) =N U RO =™ U R®:0)
mez 0EC (Asy,n) meZ 0eC(Asm)

for tg <t <t(n).
Observe that for € P and m € Z if y € A4, belongs to the same rectangle R(6;0)
as @™ (z) for some 0 € C'(A4,,n) then

m 4] o
F™(@)) < f¢"™(@)) = [(y) + 1o < k- d(¢™(2),y) +to S k- -+t < 5+
and so P C Ayyt5/2.
Remember that for any subhorseshoe A C A, being locally maximal, we have

(3.10) Uww)=w@l)={yes: lim d(o"(y), &) = 0}
yGA
Now, by proposition the set P admits a decomposition P = |J A; where 7 is
i€T

a finite index set and for any i € Z, A; is a subhorseshoe or a transient set. In
partlcular given 7; € Z we can find iy € Z such that AZ2 is a subhorseshoe with

w(x) C Ay, for every z € A;,; and from this and [3.10 - it follows that £, (z) = £y £(y)
for some y € A;,. We conclude then

P) = U&p,f([\i) - U g%f(]\z‘) U U fso,f(]\

1€ i€T: A; is i€l A,
horseshoe is orbit

and by proposition
HD(l,;(P)) = HD( |J l,y(A))= max HD({,;(A;))= max HD(A,).

) ~ i€Z: A, is i€L: A, is
i€Z: A; is horseshoe horseshoe
horseshoe

Let A;, with HD((, ;(P)) = HD(A;,). As A° C P, by and [2.7| one has
co < HD(A;,)/(C +1) < Dy(A;) and also ¢g < HD(A;,)/(C +1) < Dy(Ay,)

then, corollary applied to /L-O let us show the existence of two horseshoes A*(ty)
and A%(ty) of A such that

Du(A%(ty)) > Du(Ayy) —€/2k,  Dy(A*(to)) > Dy(A;,) — €/2k,
A(to) UA*(to) C Aors/2)—s = Mg—s/2,

and for every x € A%(ty) U A*(t) the set (A, )e/ox() is neither bounded below nor
bounded above.
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Now, suppose there exists a subhorseshoe AcC A, for some ¢ < to with A%(t) U
A*(tyg) C A, then as Ay C P for tg <t < t(h), we have by and lemma

L, (to) +a/2 < Lyjs(te) +a—e/k < HD(l,;(P)) —¢/k = HD(A;,) — ¢/k
< Du(A"(to)) + Ds(A*(to)) < HD(A) = HD(l, 4(A)) < HD(£, 4(A,))
< sup HD(&O r(As)) = Lap,f(to)

s<to
which is a contradiction. Then, by definition, A*(ty) and A%(t) don’t connect before
to.

On the other hand, fix z € A%(ty), y € A¥“(ty) with kneading sequences (x,)nez,
respectively (Y, )nez. As the sets (Aj)cx(w) and (A)c/2x(y) are nonempty we can
find two words 6 and 6 in C(A,,,n(e/2k)) that appear respectively in the sequences
() nez and (yn)nez as sub-words and also appear in the kneading sequence of two
points 1,1 € Ay, ie., 71 € R(6;0), and §; € R(6;0), (zn,,...2Zn,— j9j-1) = 0 and
(Y_n,— o1 Y- Ny) = 9 for some Ny, Ny > 0.

As A is a horseshoe, we can find a point z; € A with kneading sequence of the
form

M(z1) = (.o 222, 22130, 210), - - -, 200) 400 0 20| £+ [6] 410 - - )

for some r; > 0. Then consider the point z € A with kneading sequence

H(Z) = ( ces L2, 1Ly, TNy -1, 97 Z16] - -5 ROl é? Y-Not+15Y=No+2, Y—No+35 - - - )

note that, by construction z € W*(A%(t)) N WS(A“(tO)) N P where

P = M(C(A"(to)UA® (to)UAsy, n(e/2k)) = [ ¢ U R(6;0)).
meZ eeC(Au(tO)uAs(tO)uA~ n(e/2k))

Analogously we can find Z € W*(A"(ty)) N W*(A*(t)) N P. Moreover, as A%(ty) U
As(to) U Al0 C Ato+5/2, reasoning as we did for P, we have P C Ay )2k tto+d)2 =
A¢ja4t9+5/2- That is,

As(to) U Au(to) U O(Z) U O(g) C Ae/2+t0+6/2

and using proposition [2.6| we get that A®(t) and A“(tg) connect before ¢ + €.
We summarize our conclusions in the following proposition

Proposition 3.12. Take p € U* with HD(A) < 1, f € P, and some discontinuity
to of the map
t— L%f(t) = HD(Ew’f N (—OO,t)).
Then, given € > 0 there are two subhorseshoes A*(ty) and A*(ty) and some 0 <n < €
such that
° As(to) U Au(t()) C Ato—m
o A°(tg) and A“(ty) don’t connect before t,
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o A°(tg) and A¥(ty) connect before to + €.

Remark 3.13. As in remark this result also holds when HD(A) > 1 and
to < ¢, ¢. Note that, in our context, by corollary L s is discontinuous in ¢, s if
and only if L, (¢, ) < 1.

FIGURE 1. The subhorseshoes A®(ty) and A“(ty) in proposition [3.12]

3.5. Sequences of subhorseshoes. In this subsection, we suppose existence of an
infinite sequence of discontinuities of the map L, ¢ in some closed sub interval of
I, ¢ that doesn’t contain the first accumulation point of the Lagrange spectrum and
then construct arbitrary large finite sequences of subhorseshoes with some specific
properties. Observe that here is the first time when we use the hypothesis of the
diffeomorphism being close to a conservative one.

Remember that any subhorseshoe Ay of Ay has a continuation A C A for any
¢ € U. In theorem A of [15], the authors showed that the maps Dy, , : Y — R and
Dpys : U — Rgiven by Dy, (@) = Dy(A) and Dy, s(¢) = D, (A) are continuous and,
in fact, the same proof also shows that the continuity of the maps Dy ,(¢) = Dy, (A)

and Dg, () = Dy(A) is uniform on the subhorseshoes. Moreover, as for ¢ one can

take C=1 in (see remark 2.2 in [1]) then D,(Ag) = D,(Ag) for any subhorseshoe

Ay of Ag and, as a consequence, we can choose the neighborhood U of py small enough
such that for some constants 71,79 with r;/ry > 999/1000 and for any subhorseshoe
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A of A one has
(3.11) rle([\) < Du(f\) < TQDS([\).

Fix ¢ € U* with HD(A) < 1, f € P, a, some closed sub interval I C I, that
doesn’t contain ¢, y and suppose we have an infinite sequence of discontinuities of L.,
with s € I for every s in the sequence. Then, as L, (minI) < L, f(s) < HD(A;),

by [2.6) and 2.7]
(3.12) ¢ < Dy(Ag) and ¢ < Dy (Ay),

where ¢ = Ly, j(min I)/(C + 1).

Now, as the maps t — D, (A;) and t — D,(A;) are continuous (by proposition
and D, (A;) = Ds(A;) = 0 for ¢t < min(f) and D, (A;) = Du(A), Ds(Ar) = Dg(A) for
t > max(f). Then, they are uniformly continuous and so we can find some § > 0
such that

|t — t| < 6 implies |D,(A;) — Dy (A7)| < 0.001c and |D4(A;) — Ds(Af)| < 0.001c.

Also, for the sequence of discontinuities we have some accumulation point and unless
pass to a sub-sequence, change the index set and discard some terms, we can suppose
that {¢,} is of one of the next two types:

e The sequence is strictly increasing {t, },>1 with lim ¢, :=t; and to — t; < 9,
- n—0o0

e The sequence is strictly increasing {¢, }n<o with nl_i)r_noo t, ;= t* and to —t* < 6.
In particular, for each n
(3.13)  0.999D,(As,) = Dyu(Ay,) —0.001D,(Ay,) < Dy(Ay,) — 0.001c < Dy (Ay,)
and
(3.14)  0.999D,(Ay) = Dy(Ay,) — 0.001D(Ay) < Dy(As,) — 0.001c < Dy(A,, ).

Now, in order to get the sequences of subhorseshoes, we will associate to every n a
pair of subhorseshoes of A. In fact, the two subhorseshoes A*(t,,) and A%(t,) are given
by proposition considering some 0 < ¢, < min{0.001, (t,4+1 — ¢,)/2} and they
satisfy

o A*(t,) UA™(t,) C Ay, —,, for some 0 < 1, < €,

e A*(t,) doesn’t connect with A%(¢,) before t,,

e A°(t,) connects with A“(t,) before ¢4

We are ready to prove the next proposition

Proposition 3.14. We can take 0 € {s,u} such that given N € N arbitrary, there
exists a sequence ny < ny < ... < ny of elements of T (where I is the index set of the
sequence {t,}) such that fori,j € {1,...,N} with i # j, A°(t,,) and A°(t,,) doesn’t
connect before max{t,,,t,, }.
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Proof. We said that a sequence n; < ny < ... < n, of elements of Z is a r-chain if
A*(t,,) connects with A®(t,,,,) before t,,  for i = 1,...r — 1. Then we have two
cases:

Ti4+1

e There exists some R € N such that there is no r-chain for r > R.
e There are r-chains with r arbitrarily big.

We do the proof when the index set of the sequence is Z = {n € Z : n > 1}, and
the other case follows similarly.

In the first case take a maximal r;-chain beginning with 1; that is, a r;-chain
1 =mn1 <ng < ..<n, such that for any n >n,, 1 =n; <ng < ... <n,, <nisnot
a (r1 +1)-chain and then A®(t,, ) doesn’t connect with A*(¢,) before t,,. Next take a

maximal rp-chain beginning with n,, +1: n,, +1 = nYl) < n(;l) < -+ < niV then, as

before, for nis") < n, A*(t () doesn’t connect with A*(t,) before ¢,,. Now consider a
T2

maximal r3-chain beginning with n{?" +1: n{" +1 = nﬁ”“’ < ngl’m) << i)

then for n\7*"™ < n, A*(t (1) doesn’t connect with A*(%,,) before ¢,,.
T3

Continuing in this way we can construct inductively an increasing sequence

{Ptrse = {n,(nzl’”"”’”“’l) P2

such that for ki, ko > 2 with k; # ko, As<tﬁkl) and As(tﬁk2) doesn’t connect before
maX{tﬁkl s tﬁkg }

On the other hand, in the second case, take r € N arbitrarily big and n; < ny <
... < n, some r-chain, then we affirm that for 7,5 € {1,...,r} with ¢ # j, A%(¢,,) and
A*(t,,) doesn’t connect before max{t,,,t,, }. In other case if for some g, jo € {1,...,7}
with ig < jo, A"(tn,,) and A*(t,, ) connect before t,,, then as by corollary 2.7, A®(ty,, )
connect with A®(t,, ) before ¢,, and as also A*(t,, ) connects with A“(¢,, ) before
by +1 (and then before tnio)' Applying two times more that corollary we have that
A®(tn,,) connect with A*(t,, ) before ¢, that is a contradiction. From this follows
the result. OJ

Without loss of generality, we will suppose that in the previous proposition § = u
(for 6 = s the argument is similar) and call A%(¢,,) = A™. Observe that S = {A"},c7
is the sequence commented in the introduction of the section.

3.6. Subhorseshoes and connection by periodic orbits. In this subsection, we
associate to every term of the sequence S a periodic orbit with the property that
if A™ and A™ are associated with the same periodic orbit then they connect before
max{t,, tm}.

In order to do that, given some n, remember the construction of A" given by
proposition [3.12] A close inspection of the proof of that proposition shows that for
some maximal invariant set, said M", that contains A, we took the subhorseshoe
with maximal Hausdorff dimension Afj C M"™ and then applied proposition in
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order to obtain the subhorseshoe A™ with
(3.15) Dy (A™) > (1 —€,/2k)D,(AG) > (1 — €,) Dy (A7) > 0.999D,,(Ag).

Next, if D,(M™) = D, (A}) where Ay C M™ is a subhorseshoe of A, then as Aj has
maximal dimension, it follows that either D, (A}) < D,(Af) or Ds(A}) < Ds(Af). In
the first case

Du(Ar,) < Dy(M™) = D, (A3) < Dy(A) < :—jDumg)
and in the second, let us conclude that
Du(Ar,) < Du(M") = Du(AF) < r2D(AF) < raD(AF) < 2 Du(AF)
that is,
(3.16) Du(Ay,) < :—jDumg).

Now, take g big enough such that 2293 < N, (Ay,, 7o) and

log Nu(Ayy, 7o)
To — C1

(3.17) < 1.001Dy(Ay, ).

We set By = Cy(Asy,70), No = Nu(Ay,,70) and for n € Z, M € N define the set

By(A"):={B8=01...0u:V1<j<M, Bj €By and II*(A")NI"(B) # 0}.

Before continuing, we introduce some notation. Consider 5 = i, Bk,...0k, =
ay...ap € AP, By, € By, 1 < i < {. We say that n € {1,...,p} is the n-th posi-
tion of f. If B, € A™: we write |By,| = ny, for its length and P(By,) = {1,2,...,n4, }
for its set of positions as a word in the alphabet A and given s € P(f,) we call
P(5,ki;s) =ng, + ... + ng,_, + s the position in /3 of the position s of fy,.

Recall that the sizes of the intervals I"(«) behave essentially submultiplicatively
due the bounded distortion property of 1, (equation so that, one has

[1%(B)] < exp(=M(ro — 1))

for any 8 € By/(A™), and thus, {I*(5) : B € By (A™)} is a covering of II*(A™) by
intervals of sizes < exp(—M (1o — ¢1)). In particular for M (A™) = M,, big enough

log| B, (A")]
log|Bar, (A")| _ —logexp(—My(ro — 1))
log Né\/[" M, - log Ny
M, (ro — 1)
log|Bar, (A™)]

S = log exp(—M,(ro — ¢1))
= 1.001 Dy (Ay,)

(by equation [3.17))
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0.999D,,(A™)
= 1.001D,(Ay)
0.999 - 0.999D, (AR)
= 1.001D, (A, )
71 0.999 - 0.999D,,(Ay,)

(M, is big)

(by equation [3.15])

= b tion [3.16

T 1.001Du(At0) (quua ion )
0.999 - 0.999 - 0.999

- :‘_: 1.001 (by equation [3.13)

> 0.999*/1.001

> 991/1000.

Then we have proved the next result

Lemma 3.15. Given n € N and M, large

991
[Bag, (A™)] = Ngoo ™.

Remember that f € R, where R, was defined in Section [2| above. Then, we
can suppose, unless refining the initial Markov partition { R, }4c4, that the restriction
of f to each of the intervals {i5} x I¥, a € A, is strictly monotone and, furthermore,
for some constant ¢4 > 0, the following estimates hold

(3.18) |f(Q(1); aj ... anan+1Q(3)) — f(Q(l); aj ... ana;HQ(‘l))\ >y |[I%(ay ... ay)

1F(0P it - . ;010%) — F(0Pal, 1am ... ;0:0P)| > ey |T5(ar . .. an)|
whenever a,41 # a;,, Gmi1 7# a;,,; and 0. 0 e A7 9®) 9W e AV are admissi-
ble.

Moreover, we observe that, since f € C?, there exists c; > 0 such that we also have
the following estimates:

1F(0P apmiram .. ;010%) — F0Pal,, am .. ;0:10P)| < c5 - |T5(ar . .. am)|

(3.19) [f(0Y; a1 ... anan10®) — F(OW;ay ... anal  0D)] < c5- [I"(ay ... ay)]

whenever a,41 # a;,_ |, Gm+1 7# a;,,; and 0. 02 e A7 9®) 9W e AV are admissi-
ble.
Next, we give a definition

Definition 3.16. Given n € Z, M € N and § = ;... 8y € By(A™) with 5; € By
for all 1 <i < M, we say that j € {1,..., M} is a M-right-good position of [ if there
are two elements of By (A")

BY =B BB LAY, p=1.2
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with ﬁi(p) € By for all j << M, p=1,2 and such that sup]"(ﬁj(-l)) < inf I*(p;) <
sup [*(f5;) < inf]“(ﬁj@), i.e., the interval I*(3;) is located between I“(ﬁj(.l)) and
().

Similarly, we say that j € {1,..., M} is a M-left-good position of § if there are two
elements of By, (A™)

@(p) — ﬂ§p)...5§p)ﬂj+l--'6M7 p=34

with 8" € By for all 1 < i < j, p = 3,4 such that sup [*((6")7) < inf I°*(87) <
sup I°(f]) < inf IS((B§4))T), i.e., the interval I°(8]) is located between IS((ﬁj(-s))T)
and 1°((8{")7).

Finally, we say that 7 € {1,..., M} is a M-good position of (§ if it is both a M-
right-good and a M-left-good position of (.

The bounded distortion property (equation let us fix J € N big enough such
that for 815y...0; and ;418742 admissible with 8y, B2, ..., 87, Brs1, Brr2 € By =
Cu (Atoa TO)

[14(B15a - B5)| < T ((BreaBri2)t)]

and

|IS<<5162 - BJ)T)| < |IU(BJ+15J+2)|-

Set k := 8JNZ (observe that k does not depend on n). The next lemma says that
most positions of some word of Bsy, (A™) are 5N, k-good.

Lemma 3.17. For N,, big enough, there exists (3, € Bsn, (A") such that the number
of 5N, k-good positions of 5, is greater or equal than 49N,k /10.

Proof. Let us first estimate the cardinality of the subset of Bsn, x(A™) consisting of
words [ such that at least N,k/20 positions are not 5N, k-right-good: Once we
fix a set of m > N,k/20, 5N, k-right-bad (i.e., not 5N, k-right-good) positions, if
J is a SN, k-right-bad position and f£,...,8;_1 € By were already chosen, then by
definition, it follows that there are at most two options for 8; € By which correspond to
the leftmost and rightmost subintervals of I*(f; ... ;_1) of the form I*(5; ... Bsn,k)
intersecting 7% (A™).

In particular, once a set of m > N,k/20, 5N, k-right-bad positions is fixed, the
quantity of words in Bsy,x(A,) with this set of m, 5N, k-right-bad positions is less
than or equal to

om . NoNak—m < 9Nak/20 | N(E))QNnk/QO'

Therefore, the quantity of words in By, ,(A™) with at least N, k/20, 5N, k-right-bad
positions is less than or equal to

95Nnk  9Nnk/20  \f99Nnk/20  _ 5101Nuk/20 | £\r99Nnk/20
0 = 0 :
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Analogously, the quantity of words in Bsy, x(A™) with at least N,k /20, 5N, k-left-
bad positions is bounded by 2101Nnk/20 . N§9N"k/2°.

It follows that the set of words 5 € Bsy, (A,,) with at least N, k/10, 5N, k-bad (i.e.,

not 5N, k-good) positions has cardinality less or equal than 2.2101Nak/20 . N2 9ONnk/20

Since |Bsw, x(A™)] > NPV (hy lemma and 21H101Nak/20 NggN"k/QO <

N§91Nn’“/ 200 (from our choices of ry, Ny large), we have that there exists some (3, €

Bsn, k(A™) with less than N,k/10, 5N, k-bad positions. That is, with at least 5N,k —
N,k/10 = 49N,k /10 good positions. O

Given n € 7 take N, big enough as in the lemma and such that for two
elements z,y € A if their kneading sequences coincide in the central block (centered
at the zero position) of size 2NV, + 1 then |f(x) — f(y)| < nn/2.

The next proposition shows that the notion of good positions allows us to have
some control over the values that f takes in some rectangles.

Proposition 3.18. If 3, = 8785 ... B5y, ), with B € By for i =1,...,5N,k is as in

the previous lemma and for some 1 < i < j < 5N,k, the positions 1 —1,1,75,7+ 1 are

5N, k-good positions of B, and j —i > J. Then for each i < s < j and n € P(BY) if
rBE . BB and x € R(n; P(n,s;n)) VA we have f(z) <t

Proof The arguments are similar to those of proposition 2 9 of [1]. Consider 0% e AN
and 0V € A" such that oWpr . pr - B 6] ]"H ) € ¥p. With this notation,
our task is equivalent to show that

(3.20) P OB B By - BB B} 0)) <t

for all 0 < ¢ < my +m +mp — 1 where ' = a1...am,, Bjy1-.. 8}y =b1...by and
ﬁ;l - dl o de

First we deal with positions of the word 87,0/, ... 5} B}, that is, we consider
my <€ <m;+m—1. Write £ = m; — 1 + r so that
(3.21)

o (_ i1 07 Bity - - B 6} jn+1 ):Q(l i1 B0b1 b1 b b B ;1+1
and also suppose that |IS((5;”b1 b)) < 1D, mﬁ]”)\ (the conclusion when
[ 1%(br ... b B))] < [I5((B}by . . . br—q)")]| follows similarly).

By definition of 5N, k-good position, we have

sup I°((8))") < inf I°((67)") < sup I°((87)") < inf I°((6])")
and
sup ["(3;) < inf I"(B}) < sup I'(B}') < inf I"(5}),

for some words 3}, 8/, 8}, 8] € By verifying

(BB - BBy B ) N (A™) # 0, I(B/Bl - Bi1 B8] Biy) N (A™) # 0,
(B, Bt AR ?7153/)“7#(/\”) #0, I"(B.6; zn+1" 1ﬁ,/)ﬂ7T (A™) # 0.
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Choose 37 € {f}, 87} such that

f(_ i1 Bib1 b1 b b B gn+1 )< f(Q(l C1Brb1 by b B 9(4))
for any 0@ e AY. By |3 it follows that
FOD B B0y b1 by b BBEA0P) + s T (b . b))
< f<0“>/3? lﬁ"m b—1ibr - b B8Y).

On the other hand, by m, we also know that, for any §©) € A%~
FOP B2 70 b by b 3501) = F(OV B 570 b3 by b 3701
<Cs’[8((5n 5"51 br— 1)T)|

From these estimates, we obtain that

f(Q(l)ﬁn Bby b1 by 5" ;1+19(2)) + C4|[u(br S bm/B;L)| <

FOP BB br - bras by b B50W) + e [IP((B) )] - [1((B7ba - b))
for any Q € A% and Q(4) e AN,
Since we are supposing that [I°((5]'by ... br—1)")| < [I*(br ... bm/3})|, we conclude
f(_ 1ﬁnb1 T 17 .. m/Bn ;14,1 ) <

OO BBy bbb e<4> (e — exe [I((B)T)) - 11y .. b0
Next, we note that if ry € N is sufficiently large, cse.[I5((8",)7)] < ¢4/2 . In
particular, we have that

(322) f( (1)6 16nb1 r 17 . ﬁn JnJrl )<
FOPBL B b1 by by 5701 ) (64/2)-|I“( r e b 37

for any 8 € A% and Q(4) c AV,
Now, we recall that as 37 € {3}, 37 }, one has I"(8" 57 57 - .. B}, 85 )Nm"(A™) # 0.
By definition, this implies that there are 8 € AZ" and ¥ € AN with
0% BB Bl - By B0 € B

and, in particular, by ({3.21])

F@™ 08 BT Bby . b Bi00)) = FOP) B2 1 BRby - by_1s by b B70)) <
Combining this with - we see that

FODBE LB bbby BB 0P)) <ty — (ca/2) - [T (by . b BT
and then

(3.23) Fo OB 1 BBl - Bj1 57 57410)) <t
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Finally, the case when we deal with positions of the words ;" or 57 is similar with
the previous one. We write

UZ(Q(l)ﬁz‘n—ﬁ By Bir - - 1Bn gn+1 ) =
Q(l)/le;lazl P a[; CL[+1 “ .. aml/BZJrl .. 1/871 ;L+1
for0 </ < m;—1, and
e( (Dﬁn 13 5i Bila - - 15” Jn+1 ) =

0B\ BT By 6;11d1 oy s Dy - - iy 57410
formi+m <Ll <m;+m+my—1.
Since j —i > J and B |, B, ..., B8] 1, B} € By = Cu(A4y,70), it follows from our
choice of J that
[T (apsr oy By - B B < IP((B1qan - ar)T)]
for 0 </ <mp—1, and
|[S((ﬁzn z’n+1 s ;l—ldl s dffmlfm)Tﬂ < |[u(d€fmrm+1 R dmz ?+1)|

for my +m < ¢ < my; +m+ my — 1. Arguing as before, one deduces that
(3.24)

FO (0N B BBl - BiaB7 B 8P) < tu — (ca/2) - [P ((Blyar - ag) )] <t
for 0 </ <m;—1, and
(3.25)
f(0-€<— i— 17 6n zn—i-l t lﬂn ;L+10(2))) < tn_(c4/2)'|ju(d€—m1—m+1 s dm2 ]T'L+1>| < tn

for m1+m§€§m1+m+m2—1.
In summary, from [3.23] [3.24] and [3.25] we deduce that holds, as we wanted to
see. 0

Consider f, = 783 ... B¢y, and divide its position set I = {1,2,...,5N,k} in
positions packages of size N,k. In the central package I* = {2N,k + 1,2N,k +
., 3N,k}, the number of 5N, k-bad positions is less than 5N,k — 49N, k/10 =
N,k/10 and then subdividing that package now in N, package of positions of size k
we can find some package of size k with less than k/10, 5N, k-bad positions, said

I ={2N,k + sk + 1,2N,k + sk +2,...,2N,k + (s + 1)k} for some 0 < s < N,,.
Then we can find [2k/5] positions

such that 4,1 >4, + 2 for all 1 <7 < [2k/5] and the positions 41,41 4+ 1, ..., r2x/5),
tror/5) + 1 are 5N, k-good.
Since we took k = 8JNg, it makes sense to set

jr=idpy for1<r <3N}
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block determined by £**
L & & lm *—0 & @

central block determined by 1*

m n n
"%J'-—.:n)ﬁ)'v,(m 1 "%J'h,(..)

B

n
Frggmyt1

-
Xn)

block determined by £**

FIGURE 2. Construction of O(n).

because 3JNZ < (16/5)JNZ = 2k/5. In this way, we obtain positions such that
Jog1 —jr >2J  for 1 <r <3N

and ji,j1+ 1,..., jsn2, Janz + 1 are SN, k-good positions.
Since for 1 <7 < 3N§ the number of possibilities for (57, 87 ;) is at most N, we
conclude that for some different 1 < ry(n), ro(n) < 3NZ one has

( ]T'Lrl(ny jnTl(n)Jrl) ( ]7}72(”)7 ;LTQ(H)Jrl)
then, we can define the following map:
k—1
0:7 - (JB]
j=2
no— ﬁymmﬁlﬁﬁl(n)” T Zg(n)
Next, we see that if for some m,n € Z we have O(m) = O(n) then it is possible
to go from A™ to A" without leaving Apaxqs, 1.} and staying arbitrarily close of the

orbit of the periodic point p = II7'(O(m)) for times arbitrarily big.

Proposition 3.19. Take m,n € Z such that O(m) = O(n). Then given N € N
and € > 0 there ezist some v = x(N,e) € W*(A™) N W?*(A") and m = m(N,e) € N
such that form < i <m+ N, d(O(p),¢'(x)) < e. Even more, we have mgy s(x) <
max{t,, tm}.

Remark 3.20. By symmetry, we also have the existence of some y € W*(A™) N
W#(A™) and @ € N with similar properties as x and .

Proof. As B, € Bsn,x(A™) and B, € Bsn,x(A") we can find 0,01 € AZ and
02 0% € AN such that

0L ; Bmb2 € TI(A™) and  61; 3,67 € TI(A").
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By lemma [3.17, arguing as before; we can find positions 1 < jym) < Nk and
1 < Jron) < Npk such that j. o), Jro@m)+1 are 5N, k-good positions for £, and jy(n),
Jro(n)+1 are 5N, k-good positions for 3,; and also positions 4Np,k+1 < jrym) < SNpk
and 4N,k +1 < jrym) < SNuk such that jr,om), Jrym) + 1 are 5Ny, k-good positions
for B, and j,,(n), Jrsn) + 1 are 5N, k-good positions for f3,.

Define then for R € N

R 2
ITp = 0 /611%&2 s j,, (m)O(n> Z (n)+1 ]T2(n)+2 BgLNnkgn

Clearly, the proposition will be proved if we show that for some ¢ < max{t,,t,},
TR € Et:
Let [ € Z. In any of the next three cases:

o If II7Y (o' (zg)) € R(n; P(n, s;n)) for n = J”(n) .77"1(n)+1 J’.‘W@ JT:Q(n)H(:
ﬁ]rl(m)]iﬁjr%(m)“rl e j7‘2(m) j’rz(m)+1_)’ some ]7‘1( ) <s S j?‘Q('I’L) and ne P(BS )
some jro(m) <s< jn(m) and n € P(ﬁm)

—1¢ 1 . . — 2 2 n

. I.f I (o (IR?) € R(n; Jf(n, s;m)) for n = Jr2<n) ot D Bi ) SOMeE

Jra(n) <s S Jr3(n) and n € P(ﬁg)
proposition let us conclude that f(IT7* (o' (zRr))) < max{t,, t,,}.
Let ry = [B7"By" ... B} S )| then, for [ < r; —1

FI (0! (wr))) < FOT7H (0" (s Bubn))) + 0 /2 <t = 0 /2
because A™ C Ay, —p,, and as jr (m) — Jro(m) > 2Nmk — Npk = N,k we have that
ol(zg) coincides with o'(6}; 3,,62,) in the central block of size 2N, + 1 centered at
the zero position.
Analogously, for ro = |56 ... ;:l(m)O(n)R [ +1B]T2<n)+2 /8;7;3(71)
|66y .. i (n)| and [ > 7y

FOT (0! (2r) < ST (0" (03 Babr))) + 110/2 <t — 0 /2

because A" C Ay, ;. and as oy (n) — Jrom) > 4Nyk — 3N,k = N,k we have that o'(xp)
coincides with o'=7(0L; 5,62) in the central block of size 2N, + 1 centered at the zero
position.

As the previous cases describe all the possibilities for [ € Z and for [ < r; — 1 and
[ > ry we have uniform limitation for the values of f(II7*(c'(zR))) < max{t,,tn}
then we have proved the result. 0

Using proposition we can prove that if for some m,n € N, O(m) = O(n) then
we can connect A™ with A" without leaving Asazft, ..} @s is expressed in definition

Corollary 3.21. Let m,n € Z such that O(m) = O(n). Then A™ connects with A"
before max{t,, t,}-

"j:rz_
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Proof. Proposition let us find some z,y € A with x € W*(A™) N W3 (A"),
y € W' (A™) N W#*(A™) and some t < max{t,,t,} such that

A"UATUO(x)UO(y) C Ay
Then proposition [2.6|let us conclude that A™ and A™ connects before max{t,,tn,}. O

3.7. End of the proof of theorem when the dimension is less than 1. We
are ready to obtain the desired contradiction. As the map O takes only a finite number
of different values, said M. Then by corollary it would be impossible to have a
sequence ny < ng < ... < npyr41 of elements of Z such that for 4,5 € {1,...., M + 1}
with 4 # j, A" and A" doesn’t connect before max{t,,,t,;} in contradiction with

proposition [3.14]

3.8. Proof of theorem when the dimension is greater than or equal to
1. Consider ¢ € U* such that HD(A) > 1, f € P, ; and some closed sub interval
I C I,y that doesn’t contain neither c, s nor ¢, . Observe that, in this case, by
corollary [3.3] max L, ; = 1 and then for ¢ < ¢,y one has Ly ;(t) < 1.

Take a hyperbolic set of finite type P such that

Amax[ C P C Aé(p’f+maxl .
2

As before, the set P admits a decomposition P = | A; where 7 is a finite index set
€L

and for any i € Z, A; is a subhorseshoe or a transient set. Note that if ig,i; € Z are
different and A and A are subhorseshoes, then A and A don’t connect before
max I.

Consider s < max I, then we have

Uy r(A Uf%" FANA) = U lop(NiNAg) = U Cor((Ai)s).
i€ i€T: A; is i€T: A; is
subhorseshoe subhorseshoe

by taking union over s < t where ¢t < max [, we conclude from this and lemma
that

i€L: /~\Z is
subhorseshoe

and then, for t < max [
Ly s(t) = max HD(ly f(A;) N (—00,t)) = max Ly(t),

1€ A\; is i€L: A; is
horseshoe horseshoe

where L;(t) = HD({, ;(A;) N (=00, 1)) is associated to the horseshoe A; with

2690,]’ -+ max[) <1

DIR) = HD(Ey (8)) £ HD(Uy (N ) < Loy (2545
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Observe that, as in the proposition [2.4] the first part of the theorem also holds
for subhorseshoes of A with Hausdorff dimension less than 1. Therefore, if we set

C;, =

min{z : z is an accumulation point of £, ;(A;)}, by proposition 3.7 there is some

o € Z such that c, 5 = ¢;, and also by corollary for any 7 such that c, s < ¢; the
function L; doesn’t contribute with any discontinuity close ¢; to the discontinuity set
of L (note that it is possible to have ¢; > max I for some 7). Then, we conclude that
L, s has finitely many discontinuities in the interval I as we wanted to see.

[1]

[15]

[16]
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