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aDept. de Matemàtica, Universitat de Lleida, Catalonia

cristina.dalfo@udl.cat,
bSchool of Mathematics and Statistics, Open University, Milton Keynes, UK

grahame.erskine,james.t.tuite@open.ac.uk

cDept. of Mathematics and Computer Science, Indiana State University, USA

ge@cs.indstate.edu
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Abstract

Mixed graphs can be seen as digraphs with arcs and edges (or digons,
that is, two opposite arcs). In this paper, we consider the case where such
graphs are bipartite and in which the undirected and directed degrees are one.
The best graphs, in terms of the number of vertices, are presented for small
diameters. Moreover, two infinite families of such graphs with diameter k and
number of vertices of the order of 2k/2 are proposed, one of them being totally
regular (1, 1)-mixed graphs. In addition, we present two more infinite families
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called chordal ring and chordal double ring mixed graphs, which are bipartite
and related to tessellations of the plane. Finally, we give an upper bound that
improves the Moore bound for bipartite mixed graphs for r = z = 1.
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1 Introduction

A mixed graph can be seen as a type of digraph containing some edges (two opposite
arcs). Thus, a mixed graph G with vertex set V may contain (undirected) edges
as well as directed edges (also known as arcs). From this point of view, a graph
(respectively, directed graph or digraph) has all its edges undirected (respectively,
directed). In fact, we can identify a mixed graph G with its associated digraph
G∗ obtained by replacing all the edges with digons (two opposite arcs or a directed
2-cycle). The undirected degree of a vertex v, denoted by d(v), is the number of
edges incident to v. The out-degree (respectively, in-degree) of vertex v, denoted by
d+(v) (respectively, d−(v)), is the number of arcs emanating from (respectively, to)
v. If d+(v) = d−(v) = z and d(v) = r, for all v ∈ V , then G is said to be totally
regular of degree (r, z), with r + z = d (or simply (r, z)-regular).

The length of a shortest path from u to v is the distance from u to v, and
it is denoted by dist(u, v). Note that dist(u, v) may differ from dist(v, u) when
the shortest paths between u and v involve arcs. The out-eccentricity of a ver-
tex u, denoted by ecc+(u), is the maximum distance from u to any vertex in G.
Analogously, the in-eccentricity of u is ecc−(u) = max{dist(v, u) : v ∈ V }. The
maximum distance between any pair of vertices is the diameter k = k(G) of G,
that is, k(G) = max{ecc+(u) : u ∈ V }. The out-radius and in-radius of G are
r+(G) = min{ecc+(u) : u ∈ V } and r−(G) = min{ecc−(u) : u ∈ V }, respec-
tively. According to Knor [10], a central vertex is a vertex with minimum radius
r(G) = max{r+(G), r−(G)}. In the case of mixed graphs, we also use the concepts
of in-central and out-central vertices, defined as the vertices having minimum in-
radius and out-radius, respectively. The converse of a digraph G, denoted by G,
is the digraph obtained by reversing the orientation of all arcs in G. (Of course, if
G is a mixed graph, the edges of G remain unchanged.) Notice that k(G) = k(G),
r+(G) = r−(G), and r−(G) = r+(G).

For results concerning diameter and order (Moore bounds), see, for instance,
Nguyen and Miller [14], and Buset, El Amiri, Erskine, Miller, and Pérez-Rosés [3].
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In this paper, we consider bipartite mixed graphs with undirected and directed
degrees both equal to 1. The structure of the paper is as follows. In Section 2, we
present the best (in terms of the number of vertices) bipartite (1, 1, k)-mixed graphs
for small diameters. In Section 3, we propose two infinite families of such graphs
with diameter k and number of vertices of the order of 2k/2, one of them being
totally regular (1, 1)-mixed graphs. In Section 4, we give two more infinite families,
called chordal ring and chordal double ring mixed graphs, which are bipartite and
related to tessellations of the plane. Finally, Section 5 gives an upper bound that
improves the Moore bound for bipartite mixed graphs for r = z = 1.

1.1 The Moore bound for bipartite (1, 1, k)-mixed graphs

The degree/diameter (optimization) problem for mixed graphs is the following.

Problem 1.1. Given three natural numbers r, z, and k, find the largest possible
number of vertices N(r, z, k) in a mixed graph with maximum undirected degree r,
maximum directed out-degree z, and diameter k.

Here, we are interested in the case of bipartite mixed graphs. For this case,
Dalfó, Fiol, and López [6] proved that the Moore bound for bipartite (r, z, k)-mixed
graphs with diameter k is

MB(r, z, k) = 2

(
A
uk+1
1 − u1
u21 − 1

+B
uk+1
2 − u2
u22 − 1

)
, (1)

where, with d = r + z and v = (d− 1)2 + 4z,

u1 =
d− 1−

√
v

2
, u2 =

d− 1 +
√
v

2
, (2)

A =

√
v − (d+ 1)

2
√
v

, B =

√
v + (d+ 1)

2
√
v

. (3)

In the same paper [6], the following results were shown:

• Bipartite Moore (r, z, k)-mixed graphs do not exist for any r ≥ 1, z ≥ 1, and
k ≥ 4.

• Bipartite Moore mixed graphs with diameter k = 3 and r = 1 exist for any
value of z ≥ 1. In particular, some largest (1, 1, 3)- and (1, 1, 4)-mixed graphs
were presented (see Section 2).
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Figure 1: The only two bipartite Moore (1, 1, 3)-mixed graphs with 8 vertices.

Figure 2: Two largest bipartite (1, 1, 4)-mixed graphs (with 12 vertices, 2 less than
the corresponding bipartite Moore bound).

• There exist families of bipartite mixed graphs with diameter k = 4, 5, 7 and
r = 1 that asymptotically attain the Moore bound, for large values of z being
a power of a prime minus one.

Notice that, when r = z = 1, (2) and (3) become

u1 =
1−

√
5

2
, u2 =

1 +
√
5

2
, A =

√
5− 3

2
√
5
, B =

√
5 + 3

2
√
5
, (4)

and the numbers MB(k) =MB(1, 1, k) satisfy the Fibonacci-type recurrence

MB(k) =MB(k − 1) +MB(k − 2) + 2

starting from MB(1) = 2 and MB(2) = 4. In Table 1, there are the values of MB(k)
for k = 3, . . . , 16.
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Upper bounds Best graphs found
k Moore MB(k) Thm 5.1 BDM(2,m) Computer search

3 8 8 8*
4 14 12 12*
5 24 18 18*
6 40 36 20 30
7 66 60 48
8 108 96 40 54
9 176 158 176
10 286 256 80 144
11 464 416 228
12 742 674 160 312
13 1208 1092 480
14 1952 1766 320 800
15 3162 2860 1024
16 5116 4628 640 1600

Table 1: Bounds for bipartite mixed graphs with (r, z, k) = (1, 1, k).

From (1) and (4), note that the maximum possible number of vertices of a
bipartite (1, 1, k)-mixed graph is of the order MB(k) ∼ φk, where φ is the golden

ratio 1+
√
5

2
≈ 1.61803.

2 Bipartite (1, 1, k)-mixed graphs with small diam-

eter

In this section, we present some bipartite (1, 1, k)-mixed graphs that are best possible
regarding the number of vertices. First, the mixed graphs of diameters k = 3 and
k = 4, shown in Figures 1 and 2, respectively, were found by Dalfó, Fiol, and López
in [6]. The ones with diameter k = 3 are Moore graphs, whereas the ones with
k = 4 have order two less than the bipartite Moore bound and were proved to be
the best possible. Notice that one of the mixed graphs with k = 4 (Figure 2) has
2 directed 6-cycles, whereas the other has 3 directed 4-cycles. Erskine found three
other examples with the same underlying graph: one with two 6-cycles, one with 1
directed 12-cycle, and one with 1 directed 4-cycle plus 1 directed 8-cycle.

An exhaustive computational search by Exoo proved that the graphs with diam-
eter k = 5 and order N = 18 (Figure 4) are also the best possible.

5



(1,1)1(1,2)1

(0,1)1

(0,1)0(1,4)0

(1,4)1

(0,4)0

(0,4)1

(0,0)1

(0,0)0

(1,0)1

(1,0)0 (0,2)1

(0,2)0

(1,3)1

(1,3)0

(0,3)0

(1,1)0

(1,2)0

+2+1
+2

Figure 3: The bipartite mixed graph BDM(2, 5) and its base graph. The thick lines
in BDM(2, 5) represent copy 0 of the lift.

In Figure 5, we show the best mixed graph with 30 vertices and diameter k = 6
that we found. In the figure, the 3 directed 10-cycles are shown in different colors.
The question of whether or not this is the best possible solution is still open.

Table 1 lists the largest known mixed graphs with r = z = 1 for diameters from
3 to 16. The upper bounds are the Moore bound MB(k) from equations (1) and (4)
and the tighter bound from Theorem 5.1 derived in Section 5 below. The values
shown are the orders of the graphs BDM(2,m) described in Section 3, and the
largest graphs found by computer search.

The computer search was exhaustive for diameters 3, 4 and 5: these values are
marked with an asterisk to show that the graphs are largest possible. For diameters
7 to 16, the graphs found are a combination of Cayley graphs on groups of the stated
order, and voltage lifts of a 2-vertex base graph using groups of half the stated order.
Full details of the groups and generators are available from the authors on request.
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Figure 4: Five maximal bipartite (1, 1, 5)-mixed graph with 18 vertices (the corre-
sponding bipartite Moore bound is 24).
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Figure 5: A bipartite (1, 1, 6)-mixed graph with 30 vertices (the corresponding bi-
partite Moore bound is 40) and its underlying cubic graph. Blue and yellow colors
indicate vertex orbits.

Figure 6: Two not in-regular bipartite (1, 1, 6)-mixed graphs with 30 vertices.
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3 Some infinite families of bipartite (1, 1, k)-mixed

graphs

For some integer n ≥ 2, let m = 2n−1 + 2n−3. The mixed graph BDM(2,m) has
independent vertex sets

V0 = {(0, i)0, (1, i)0 : i ∈ Zm} and V1 = {(0, i)1, (1, i)1 : i ∈ Zm}.

The edges are
(0, i)0 ∼ (0, i)1 and (1, i)0 ∼ (1, i)1,

whereas the arcs are

(0, i)0 → (1, 2i)1 and (0, i)1 → (1, 2i+ 1)0,

(1, i)0 → (0,−2i− 1)1 and (1, i)1 → (0,−2i− 2)0,

all with arithmetic modulom. Thus, BDM(2,m) is a bipartite (1, 1, k)-mixed graph
on N = 4m = 2n+1 + 2n−1 vertices. For instance, in Figures 3 and 8, we show the
mixed graph BDM(2, 5) and BDM(2, 10), respectively. Notice that BDM(2, 5) is
totally (1, 1)-regular, but this is not the case for BDM(2, 10), which has vertices with
in-degree 0 and 2. In fact, this happens for any mixed graph BDM(2, 2n−1 + 2n−3)
with n ≥ 4 (and thus m ≥ 10). Indeed, for m even, notice that, from vertices (0, i)0
and (0, i + m/2), there is an arc to vertex (1, 2i)1. To overcome this drawback,
in Subsection 3.1, we slightly modify the adjacency rules to obtain total (1, 1)-
regularity.

In the following results, we study some of the properties of BDM(2,m).

Lemma 3.1. Let 0 = 1 and 1 = 0.

(i) The mapping
Φ1 : (α, i)β → (α,−i− 1)β,

where α, β ∈ Z2, is an involutive automorphism of BDM(2,m) that inter-
changes its independent sets.

(ii) The mapping
Φ2 : (α, i)β → (α, i+ α2n−2 + α2n−3)β,

is an automorphism of BDM(2,m) of order 5.
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Proof. (i) Let Γ and Γ+ denote adjacency through an edge and an arc, respectively.
Since Φ1 is trivially a bijection, we only need to verify that Φ1Γ(v) = ΓΦ1(v) and
Φ1Γ

+(v) = Γ+Φ1(v) for every vertex of BDM(2,m):

Φ1Γ((α, i)β)) = Φ1((α, i)β) = (α,−i− 1)β,

ΓΦ1((α, i)β)) = Γ((α,−i− 1)β) = (α,−i− 1)β.

Now, assuming β = 0 (the case β = 1 is analogous), with α = 0,

Φ1Γ
+((0, i)0)) = Φ1((1, 2i)1) = (1,−2i− 1)0,

Γ+Φ1((0, i)0)) = Γ+((0,−i− 1)1) = (1,−2i− 1)0,

and, with α = 1,

Φ1Γ
+((1, i)0)) = Φ1((0,−2i− 1)1) = (0, 2i)0,

Γ+Φ1((1, i)0)) = Γ+((1,−i− 1)1) = (0, 2i)0.

(ii) We only check the directed adjacencies assuming that β = 1, with α = 0,

Φ2Γ
+((0, i)1)) = Φ2((1, 2i+ 1)0) = (1, 2i+ 1 + 2n+2)0,

Γ+Φ2((0, i)1)) = Γ+
2 ((0, i+ 2n−3)1) = (1, 2i+ 2n−2 + 1)0,

and, with α = 1,

Φ2Γ
+((1, i)1)) = Φ2((0,−2i− 2)1)0) = (0,−2i− 2 + 2n−3)0,

Γ+Φ2((1, i)1)) = Γ+((1, i+ 2n−2)1) = (0,−2i− 2n−1 − 2)0 = (0,−2i− 2 + 2n−3)0,

where the last equality holds since 2n−3 = −2n−1 (modm).

Moreover, since, with α = 0, Φr
2((0, i)β) = (0, i+ r2n−3)β, we have that Φr

2 = id
if and only if r2n−3 = 0 (modm), and r = 22 + 1 = 5 is the smallest r satisfying
this. The case for α = 1 is similar.

In Figure 3 (left), we show the mixed graph BDM(2, 5) drawn according to the
symmetries induced by the automorphisms Φ1 and Φ2. Notice that BDM(2, 5) is
totally regular. Moreover, the action of Φ2 allows us to construct it as a lift of the
base graph with voltages on Z5 shown in Figure 3 (right). Then, its polynomial
matrix is (see Dalfó, Fiol, Miller, Ryan, and Širáň [7])

B =


0 1 0 z2

1 0 1 0
0 z2 0 1
z 0 1 0

 ,

which, with z = eri
2π
5 , has the eigenvalues shown in Table 2 and Figure 7.
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ζ = ei
2π
5 , z = ζr λr,1 λr,2 λr,3 λr,4

sp(B(ζ0)) 0 0 -2 2

sp(B(ζ1)) = sp(B(ζ4)) -0.8266-0.7015i -0.8266+0.7015i 0.8266-0.7015i 0.8266+0.7015i

sp(B(ζ2)) = sp(B(ζ4)) -1.2671-0.5445i -1.2671+0.5445i 1.2671-0.5445i 1.2671+0.5445i

Table 2: All the eigenvalues of the matrices B(ζr), which yield the eigenvalues of
the bipartite (1, 1, 6)-mixed graph BDM(2, 5).

Figure 7: The eigenvalues of the bipartite (1, 1, 6)-mixed graph BDM(2, 5) in the
complex plane (all of them, excepting ±2, with multiplicity 2.)

Proposition 3.2. The diameter of the bipartite (1, 1, k)-mixed graph BDM(2,m),
with m = 2n−1 + 2n−3, is k = 2n.

Proof. First, notice that when we contract all the edges of BDM(2,m), we get a
bipartite digraph with a vertex set V = Z2 × Zm = {(α, i) : α ∈ Z2, i ∈ Zm}, and
adjacencies

(0, i) → (1, 2i), (1, 2i+ 1),

(1, i) → (0,−2i− 1), (0,−2i− 2).

This is precisely the bipartite digraph BD(2,m) proposed by Fiol and Yebra in [8].
For m = 2n−1 + 2n−3, it was proved that BD(2,m) has diameter k = n, see [8, Th.
4]. Thus, every path of length ℓ in BD(2,m) induces a path of length ℓ′ ≤ 2ℓ + 1
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(0,9)1

(0,7)0

(1,5)1

(1,6)1

(1,6)0

(0,5)0(1,1)1

(1,2)1

(1,7)1

(1,8)0

(0,1)1
(0,1)0

(1,4)0(1,9)0

(1,8)1

(1,4)1

(0,4)0

(0,4)1

(0,0)1

(0,0)0

(1,0)1
(1,0)0 (1,9)1

(0,8)0
(0,2)1

(0,2)0

(1,3)1

(1,3)0

(0,3)0

(0,3)1

(0,5)1

(0,6)0

(0,6)1

(1,7)0

(0,8)1

(0,9)0

(1,1)0

(1,2)0

(0,7)1

(1,5)0

Figure 8: The automorphism Φ2 acting on the bipartite (1, 1, 8)-mixed graph
BDM(2, 10).

in BDM(2,m) (because every vertex of the path in BD(2,m) can turn into an
edge in the corresponding path of BDM(2,m)). Then, starting from a given vertex
of BDM(2,m), the worst situation would be to reach a vertex through the path

with adjacency pattern EAEAE
(2n+1)
· · · · · · AE (where E represents an edge, and A

an arc). From Lemma 3.1, we only need to check two initial vertices of the same
partite set, say (0, i)1 and (1, i)1. In the first column of Tables 3 and 4, we show the
vertices v(n) and u(n) reached from such paths of length 2n+ 1. To give a general
formula, notice that the coefficient of ‘i’ is clearly a power of 2. Moreover, when
we look at the adding terms of the vertices v(n) when 2n + 1 = 5, 9, 13, 17, 21, . . .
(or the vertices u(n) when 2n + 1 = 3, 7, 11, 15, 19, . . .) and omitting the signs,
we have the sequence 1, 3, 13, 51, 205, 819, . . . which corresponds to A015521 in [16]

12



2n+ 1 v(n) v′(n)
3 (1, 2i)0 (0,−4i− 4)0
5 (0,−4i− 1)0 (1,−8i− 7)0
7 (1,−8i− 2)0 (0, 16i+ 13)0
9 (0, 16i+ 3)0 (1, 32i+ 26)0
11 (1, 32i+ 6)0 (0,−64i− 53)0
13 (0,−64i− 13)0 (1,−128i,−106)0
15 (1,−128i− 26)0 (0, 256i+ 211)0
17 (0, 256i+ 51)0 (1, 512i+ 422)0
19 (1, 512i+ 102)0 · · ·
...

...
...

n even (0, ϕ(n))0 (1, 2ϕ(n))0
n odd (1, 2ϕ(n− 1))0 (0, ϕ(n+ 1))0

Table 3: The vertices v(n) reached from (0, i)1 through a path of the form

EAEAE
(2n+1)
· · · · · · AE. The vertices v′(n) reached from (0, i)1 through a path of

the form AEAEAEAE
(2n+1)
· · · · · · AE.

with general term a(s) = 1
5
[4s − (−1)s] for s = 1, 2, 3, . . . Moreover, the adding

terms of the vertices v(n) when 2n + 1 = 3, 7, 11, 15, 19, . . . (or the vertices u(n)
when 2n + 1 = 1, 5, 9, 13, 17, . . .), omitting again the signs, are 0, 2, 6, 26, 102, . . .,
that is, 2a(s) for s = 0, 1, 2, . . .. All this leads to the formulas shown in the tables,
where the function ϕ(n) is given in (5). In order to show that the diameter of
BDM(2,m) is k = 2n, in the second column of Tables 3 and 4, there are the vertices

v′(n) and u′(n) reached from the path of the form AEAEAAEAE
(2n+1)
· · · · · · AE and

AAEAEA
(2n+1)
· · · · · · AE, respectively, for n ≥ 2. In this case, the general expression is

also in the tables, with the function ψ(n) given in (6). From these data, we observe
that the above vertices v(n) and u′(n) can be reached, in fact, with a path of length
at most 2n+1. More precisely, when we compute the term modulo m = 2n−1+2n−3,
we get

v(n) = v′(n− 1) and u(n) = u′(n− 3).

Consequently, the diameter of BDM(2,m) must be k ≤ 2n. Finally, the equality
follows from the fact that, as commented, the digraph BD(2,m), with m = 2n−1 +
2n−3 has diameter k = n.

ϕ(n) = (−1)
n
2

[
2ni+

1

5

(
2n − (−1)

n
2

)]
(modm), (5)

ψ(n) = (−1)
n+1
2

[
2ni+

1

5

(
2n+1 − (−1)

n+1
2

)]
(modm). (6)
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2n+ 1 u(n) u′(n)
1 ∼ (1, i)0 → (0,−2i− 2)0
3 (0,−2i− 1)0 (1,−4i− 4)0
5 (1,−4i− 2)0 (0,−8i+ 7)0
7 (0, 8i+ 3)0 (1, 16i+ 14)0
9 (1, 16i+ 6)0 (0,−32i− 29)0
11 (0,−32i− 13)0 (1,−64i− 58)0
13 (1,−64i− 26)0 (0, 128i+ 115)0
15 (0, 128i+ 51)0 · · ·
17 (1, 256i+ 102)0 · · ·
19 (0,−512i− 205)0 · · ·
...

...
...

n odd (0, ψ(n))0 (0, ψ(n+ 3))0
n even (1, 2ψ(n− 1))0 (1, 2ψ(n+ 2))0

Table 4: The vertices u(n) reached from (1, i)1 through a path of the form

EAEAE
(2n+1)
· · · · · · AE. The vertices u′(n) reached from (1, i)1 through a path of

the form A (for n = 0), and AAEAEA
(2n+1)
· · · · · · AE (n ≥ 1).

This completes the proof.

To illustrate the situation of this proof, let us consider the case of the mixed
graph BDM(2, 5) of Figure 3, the path of length 2n+ 1 = 7 starting from (0, i)1 is
as follows:

(0, i)1 ∼ (0, i)0 → (1, 2i)1 ∼ (1, 2i)0 → (0,−4i− 1)1

∼ (0,−4i− 1)0 → (1,−8i− 2)1 ∼ (1,−8i− 2)0,

whereas the vertex (1,−8i−2)0 can be reached through the following path of length
5:

(0, i)1 → (1, 2i+ 1)0 ∼ (1, 2i+ 1)1 → (0,−4i− 4)0

∼ (0,−4i− 4)1 → (1,−8i− 7)0 = (1,−8i− 2)0.

Similarly, the path of length 2n+ 1 = 7 from (1, i)1 is

(1, i)1 ∼ (1, i)0 → (0,−2i− 1)1 ∼ (0,−2i− 1)0 → (1,−4i− 2)1

∼ (1,−4i− 2)0 → (0, 8i+ 3)1 ∼ (0, 8i+ 3)0,

whereas the vertex (0, 8i+ 3)0 is, in fact, at distance 1 from (1, i)1:

(1, i)1 → (0,−2i− 2)0 = (0, 8i+ 3)0.

14



As a consequence of Proposition 3.2, and in comparison with the order of the
corresponding Moore bound MD(k) ∼ 1.61803k, we get the following result.

Corollary 3.3. The bipartite (1, 1, k)-mixed graph BDM(2,m) has number of ver-
tices of the order of 2k/2 ≈ 1.4142k.

3.1 Totally regular bipartite (1, 1, k)-mixed graphs

As commented above, the mixed graph BDM(2,m) is not totally regular when
m ≥ 10. This subsection slightly modifies the adjacency conditions to ensure total
(1, 1)-regularity. The bipartite mixed graph BDM∗(2,m) has the same vertex set
and undirected adjacencies as BDM(2,m), whereas the arcs are now (all arithmetic
modulo m = 2n−1 + 2n−3, with n > 3).

• If i ∈ [0,m/2− 1] (also as in BDM(2,m)):

(0, i)0 → (1, 2i)1, (1, i)0 → (0, 2i+ 1)1,

(1, i)0 → (0,−2i− 1)1, (1, i)1 → (0,−2i− 2)1;

• If i ∈ [m/2,m− 1]:

(0, i)0 → (1, 2i+ 1)1, (1, i)0 → (0, 2i)1

(1, i)0 → (0,−2i− 2)1, (1, i)1 → (0,−2i− 1)1.

Lemma 3.4. The bipartite graph BDM∗(2,m) is a totally regular (1, 1, k)-mixed
graph on N = 4m = 2n+1 + 2n−1 vertices.

Proof. We only need to prove that every vertex (α, i)β has in-degree one.

• If α = β = 0: When i is odd, vertex (0, i)0 is adjacent from (1, −i−1
2

)1; and
when i is even, vertex (0, i)0 is adjacent from (1, −i−2−m

2
)1.

• If α = 0, β = 1: When i is odd, vertex (0, i)1 is adjacent from (1, −i−1−m
2

)0;
and when i is even, vertex (0, i)1 is adjacent from (1, −i−2

2
)1.

• If α = 1, β = 0: When i is odd, vertex (1, i)0 is adjacent from (0, i−1
2
)1; and

when i is even, vertex (1, i)0 is adjacent from (0, i+m
2
)1.

• If α = β = 1: When i is odd, vertex (1, i)1 is adjacent from (0, i−1+m
2

)0; and
when i is even, vertex (1, i)1 is adjacent from (0, i

2
)0.
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As in the case of BDM(2,m), when we contract all the edges of BDM∗(2,m),
we obtain the bipartite digraph BD(2,m), form = 2n−1+2n−3, with diameter k = n
(see again [8]). Thus, reasoning as in the proof of Proposition 3.2, the diameter of
BDM∗(2,m) is k ≤ 2n + 1. Although, in this case, we are not able to prove that
k = 2n + 1, Corollary 3.3 also applies, and the number of vertices of BDM∗(2,m)

is also of the order of
√
2
k
.

4 Chordal ring mixed graphs

In this section, we present a family of bipartite (1, 1, k)-mixed graphs that are related
to tessellations of the plane (see Yebra, Fiol, Morillo, and Alegre [18]). Let n ≥ 2
and c < n be, respectively, even and odd numbers. The chordal ring mixed graph
CRM(n, c) is a mixed graph with vertex set V = Zn (all arithmetic will be modulo
n), with arcs i→ i+1 (forming a directed cycle) and edges i ∼ i+c if i is odd (these
are the ‘chords’). Given the diameter k, we want to find the value of c such that
the graph CRM(n, c) has the maximum number of vertices. Arden and Lee studied
this problem [1], and Yebra, Fiol, Morillo, and Alegre [18] in the case of undirected
graphs, which were called ‘chordal ring networks’. In fact, such graphs were already
studied in another context by Coxeter [4].

In our case of (1, 1, k)-mixed graphs, the following result gives a Moore-like bound
for their number of vertices.

Lemma 4.1. The maximum number of vertices of a CRM(n, c) of a bipartite
chordal ring mixed graph with diameter k is{

1
2
(k + 1)2 if k is odd,

1
2
k(k + 2) if k is even.

(7)

Proof. From the adjacency conditions, we observe that there are at most d + 1
vertices at distance d ≥ 0 from vertex 0 (that is, {0}, {−c, 1}, {−c + 1, 2, 1 + c},
{−2c + 2,−c + 2, 3, 2 + c}, . . . ). Then, if the mixed graph is bipartite with odd
diameter, the maximum number of vertices is bounded above by twice the number
of even vertices of a CRM(n, c), which is equal to 2(1 + 3 + · · · + k) = 1

2
(k + 1)2.

Similarly, if the diameter is even, we have 2(2 + 4 + · · ·+ k = 1
2
k(k + 2).

Next, we show that the upper bound in (7) can be attained if k is odd, but not
when k is even.
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Theorem 4.2. (a) If k is odd, k = 2ℓ− 1 with ℓ ≥ 2, there exists a chordal ring
mixed graph CRM(n, c) with diameter k, order n = 2ℓ2 = 1

2
(k + 1)2, and

chordal length c = 2ℓ− 1 = k.

(b) If k is even, with k ≡ 0 (mod 4), k = 2ℓ = 4t with t ≥ 1, there exists a chordal
ring mixed graph CRM(n, c) with diameter k, order n = 8t2 + 2 = 1

2
k2 + 2,

and chordal length c = (2t− 1)2 + 2t = (k
2
− 1)2 + k

2
.

(c1) If k is even, k ≡ 6 (mod 8), k = 2ℓ = 8t− 2 with t ≥ 1, there exists a chordal
ring mixed graph CRM(n, c) with diameter k, order n = 2(4t−3)(4t−4)+4 =
k(k

2
− 1) + 4, and chordal length c = 8t2 − 8t+ 3 = 1

8
(k + 2)2 − k + 1.

(c2) If k is even, k ≡ 2 (mod 8), k = 2ℓ = 8t− 6 with t ≥ 1, there exists a chordal
ring mixed graph CRM(n, c) with diameter k, order n = 2(4t−3)(4t−4)+4 =
k(k

2
− 1) + 4, and chordal length c = 24t2 − 44t+ 23 = 3

8
(k + 6)2 − 11

2
k − 10.

Proof. Consider the plane divided into unit squares and divide each square by its
anti-diagonal line, forming two right triangles. Associate to each odd vertex i and
even vertex i + c (forming an edge) an upper and its adjacent lower triangle. The
vertices i ± 1 adjacent to and from i are represented with the adjacent triangles,
as shown in Figure 10. Following this procedure, the vertices can be arranged in
a planar pattern, as shown in the same figure. Notice that, when every triangle
of the regular tessellation of the plane receives a number modulo n according to
the adjacency rules, the distribution of these numbers in the plane repeats itself
periodically. This fact is illustrated again in Figure 10 for the graph CRM(32, 7).
Moreover, n triangles form every tile, and they periodically tessellate the plane.
Stated in this context, our concern is to find and ‘construct’ a given tile (that is,
find an integer c that generates it) that tessellates the plane and has a maximum
area (or number of unit triangles) for a given diameter k.
A more precise approach considers that the automorphism group of CRM(n, c) has
two orbits constituted by the even and odd vertices. Consequently, we must compute
the number of vertices from, say, 0 and −c. This is shown in Figure 9 and Table 5,
where we indicate the vertices whose maximum distance to 0 or −c is 1, 2, . . . , 8. If
we sum up odd diameters, we obtain the bounds in (7) again.

(a) To show that for odd diameter k the bound on the order is attained, the
appropriate tile is a square of length ℓ, as it is shown for k = 7 in Figures 9 (left
shaded area) and Figure 10, with n = 2ℓ2 triangles (vertices) and diameter k = 2ℓ−1,
together with its tessellation.

It remains to show that a suitable choice of c can generate such a tile. For this,
note that these values produce the given periodic pattern, which is characterized by
the position of the ‘zeros’. To obtain this distribution, we have to express the null
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Figure 9: Vertices at a given distance 1, 2, . . . , 8 from 0 or −c, and optimal tiles.

max− dist vertices
1 −c+ 1 1
2 −c+ 2 2
3 −2c+ 2 −c+ 3 3 2 + c
4 −2c+ 3 −c+ 4 4 3 + c
5 −3c+ 3 −2c+ 4 −c+ 5 5 4 + c 3 + 2c
6 −3c+ 4 −2c+ 5 −c+ 6 6 5 + c 4 + 2c
7 −4c+ 4 −3c+ 5 −2c+ 6 −c+ 7 7 6 + c 5 + 2c 4 + 3c
8 −4c+ 5 −3c+ 6 −2c+ 7 −c+ 8 8 7 + c 6 + 2c 5 + 3c

Table 5: The vertices i of CRM(n, c) such that max{dist(0, i), dist(−c, i)} is
max− dist = 1, 2, . . . , 8.

effect of translations along two linearly independent vectors (each of them associated
with a path as shown in Figure 10) that generate the pattern. Choosing them as in
the figure, c must satisfy

ℓ+ ℓc ≡ 0 (mod 2ℓ2) (horizontal path),

2ℓ− 1− c ≡ 0 (mod 2ℓ2) (diagonal path),

with trivial solution c = 2ℓ− 1, as claimed.

(b) When the diameter is even, of the form k = 2ℓ = 4t, see, for instance, Figure
9 (left) for k = 8, the optimal tiles clearly do not tessellate because of the bordering
triangles. The best we can do is to remove all such triangles except two. This
results in the tile of Figure 9 (on the right), with order n = 2ℓ2+2, or its equivalent
(because of periodicity) L-shaped tile of Figure 11.
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Figure 10: The plane tessellation corresponding to the chordal ring mixed graph
CRM(32, 7), with diameter k = 7.
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Figure 11: The plane tessellation corresponding to the chordal ring mixed graph
CRM(34, 13), with diameter k = 8.
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Then, the equations to obtain the right value of c are

(ℓ− 1) + (ℓ+ 1)c ≡ 0 (modn),

(ℓ+ 1)− (ℓ− 1)c ≡ 0 (modn),

or, in matrix form, (
ℓ− 1 ℓ+ 1
ℓ+ 1 −ℓ+ 1

)(
1
c

)
= n

(
α
β

)
.

Solving the system (notice that the determinant of the 2× 2 matrix is 0 (modn)),
we have

1 = (ℓ− 1)α + (ℓ+ 1)β = (2t− 1)α + (2t+ 1)c,

c = (ℓ+ 1)α− (ℓ− 1)β = (2t+ 1)α− (2t− 1)β.

Since c must be an (odd) integer, a solution is obtained by taking α = t and
β = −t+ 1, so that the first equation holds and c = (2t− 1)2 + 2t, as claimed.

(c) When the diameter is even, of the form k = 2ℓ = 8t − 2 (case (c1)) or
k = 2ℓ = 8t − 6 (case (c2)), we could use, in principle, the same tile as in (b).
However, the corresponding tessellation yields no solution with ‘step’ 1, and, hence,
we do not obtain a proper chordal ring mixed graph (see the remark after this proof).
Then, the best solution is the right shaded tile shown in Figure 9 for k = 6 (or the
corresponding tile for k = 10 in Figure 12) with order n = 2ℓ(ℓ− 1) + 4.

Then, in both cases, the equations to obtain the right value of c are(
ℓ− 2 ℓ+ 2
ℓ −ℓ+ 2

)(
1
c

)
= n

(
α
β

)
⇒

{
1 = (ℓ− 2)α + (ℓ+ 2)β,
c = ℓα + (−ℓ+ 2)β.

In case (c1), we get α = t and β = −t + 1; whereas in the case (c2), we have
α = 3t − 1 and β = −3t + 4. Then, depending on the values ℓ = 1

2
(8t − 2) or

ℓ = 1
2
(8t− 6), we obtain the solutions c = 8t2 − 87 + 3 and c = 24t2 − 44 + 23.

Remark 4.3. As commented above, when k is even but not a multiple of 4, the
tessellation with the optimal tile of Figure 11 does not give a directed ring with n
vertices. Instead, we obtain two directed rings on m = n/2 vertices each, which we
call a chordal double ring mixed graph CDRM(n, c). Then, we work on the group
Z2 × Zm, and vertex (α, i) is adjacent to (α + 1, i) (though an edge) and vertex
(α, i+1) (through an arc). Thus, when k is an even number of the form k = 4t+2,
the tile of Figure 11 with ℓ = 2t and order n = 2ℓ2 + 2 corresponds to a CRM(n, c)
with c = (k

2
− 1)2 + k

2
(as in Theorem 4.2(b)). For instance, in the case k = 6,

Figure 13 shows the chordal ring mixed graph CDRM(20, 3) and its corresponding
tessellation.
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Figure 12: The plane tessellation corresponding to the chordal ring mixed graph
CRM(44, 31), with diameter k = 10.
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Figure 13: The chordal double ring mixed graph CDRM(20, 7), with diameter
k = 6, and its plane tessellation.
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In Table 6, we show the values of the obtained chordal ring mixed graphs, given
by Theorem 4.2, together with the upper bounds on the order of CRM(n, c) and
those from Theorem 5.1. For example, notice that the last maximal (1, 1, 5)-mixed
graph of Figure 4 corresponds to the chordal ring mixed graph CRM(18, 5).

k n c Th. 4.2 max order Th. 5.1
CRM(n, c)

3 8 3 (a) 8 8
4 10 3 (b) 12 12
5 18 5 (a) 18 22
6 16 3 (c1) 24 36
7 32 7 (a) 32 60
8 34 13 (b) 40 96
9 50 9 (a) 50 158
10 44 31 (c2) 60 256
11 72 11 (a) 72 416
12 74 31 (b) 84 674
13 98 13 (a) 98 1092
14 88 19 (c1) 112 1766
15 128 15 (a) 128 2860
16 139 57 (b) 144 4628
17 162 17 (a) 162 7490
18 148 107 (c2) 180 12120
19 200 19 (a) 200 19612
20 202 91 (b) 220 31732
21 242 21 (a) 242 51346
22 224 51 (c1) 264 83080

Table 6: Bounds for the chordal rings mixed graph CRM(n, c).

5 Upper bounds

This section gives an upper bound that improves the Moore bound for bipartite
mixed graphs. We concentrate on our case of r = z = 1. The first step is to draw
the Moore tree of depth k for r = z = 1, starting at level 0. When a vertex at level
i has both an undirected edge and a directed arc to child vertices at level i+ 1, we
draw the undirected neighbour to the left of the directed out-neighbour. See the
Moore tree for diameter k = 5 in Figure 14.
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Figure 14: The Moore tree for r = z = 1 and k = 5.

We call a position in the Moore tree an arrow vertex if it lies in level i in the
undirected branch of the tree for some 2 ≤ i ≤ k − 1 and arises as the endpoint
of a directed arc from level i − 1. Observe that if u is an arrow vertex, then both
elements of N−(u) occur in the undirected branch. As the directed out-neighbour of
the root of the tree must reach u by a mixed path of length at most k, at least one of
these vertices of N−(u) must also occur in the directed branch of the tree, therefore
contributing towards the defect of the graph. A complication is the fact that the
in-neighbourhoods of arrow vertices can overlap. Hence, we require the smallest
transversal of the in-neighbourhoods of the vertices in the undirected branch. We,
therefore, partition the set of the union of these in-neighbourhoods in a convenient
way. If v is a vertex at level i for 1 ≤ i ≤ k − 2, then we denote by v→ the
undirected neighbour of the directed out-neighbour of v, which appears at level i+2
of the undirected branch.

By iterating this ‘→’ procedure, we obtain a chain of vertices that terminates at
level k−1 or k. This chain is maximal if and only if it initiates at an arrow vertex or
the undirected neighbour of the tree’s root. These maximal chains are disjoint, and
if there are t vertices contained in the chain, then the smallest number of vertices
from the chain that must also appear in the directed branch is given by

⌈
t
3

⌉
(this is

the domination number of the path Pt).

Now, we show how this argument can be applied to improve the bound for
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bipartite mixed graphs. We first focus on the case of even diameter k = 2κ. Consider
maximal chains that occupy odd levels of the tree (for example, the chain beginning
at the undirected neighbour of the root of the tree has vertices at levels 1, 3, 5, . . . , k−
1); we call this an odd level chain. Recall that the Moore bound for bipartite mixed
graphs is twice the number of vertices on odd levels of the tree. By the preceding
argument, the directed branch must contain the vertices from a transversal of the
undirected branch, but by bipartiteness, each of the vertices of a transversal of an
odd level chain must also lie on odd levels.

Tuite and Erskine [17] showed that there are ηt =
1

2t−1
√
5
((1+

√
5)t−1−(1−

√
5)t−1)

chains that start at level t if 2 ≤ t ≤ k− 2, and η1 = 1. Counting over the odd level
chains (and replacing the summation index t by 2t− 1), we conclude that at least

κ−1∑
t=1

η2t−1

⌈
κ− t+ 1

3

⌉

=
⌈κ
3

⌉
+

κ−1∑
t=2

1

22t−2
√
5

(
(1 +

√
5)2t−2 − (1−

√
5)2t−2

)⌈
κ− t+ 1

3

⌉
vertices are repeated on the odd levels. As this applies to both partite sets, the
defect is at least twice this figure.

By considering even level chains, we obtain the analogous conclusion for odd-
diameter graphs.

Theorem 5.1. The order of a totally regular bipartite graph with undirected degree
r = 1, directed degree z = 1, and diameter k = 2κ is at most

MB(1, 1, 2κ)− 2
⌈κ
3

⌉
− 2

κ−1∑
t=2

1

22t−2
√
5

(
(1 +

√
5)2t−2 − (1−

√
5)2t−2

)⌈
κ− t+ 1

3

⌉
,

for κ ≥ 3. For κ = 2, the order is at most MB(1, 1, 2κ)− 2
⌈
κ
3

⌉
. If k = 2κ+ 1, then

MB(1, 1, 2κ+ 1)− 2
κ−1∑
t=1

1

22t−1
√
5

(
(1 +

√
5)2t−1 − (1−

√
5)2t−1

)⌈
κ− t+ 1

3

⌉
,

for κ ≥ 2.

For diameter k = 4, this gives an upper bound of 12, and for k = 6, an upper
bound of 36. Moreover, for diameter k = 5, our result gives the upper bound 22.
Except for this case, for which we know that the tight bound is, in fact, 18, this
theorem gives all the other upper bounds in Table 6.
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