
ar
X

iv
:2

40
3.

18
95

3v
1 

 [
cs

.L
G

] 
 4

 M
ar

 2
02

4

Hybridizing Traditional and Next-Generation Reservoir Computing

to Accurately and Efficiently Forecast Dynamical Systems

R. Chepuri∗

Department of Physics, University of Maryland, College Park, MD 20742

D. Amzalag∗

University of Chicago, Chicago, IL 60637

T. Antonsen
Department of Physics, University of Maryland, College Park, MD 20742

Department of Electrical and Computer Engineering,
University of Maryland, College Park, MD 20742 and

Institute for Research in Electronics and Applied Physics (IREAP), College Park, MD 20742

M. Girvan†

Department of Physics, University of Maryland, College Park, MD 20742
Institute for Physical Science and Technology (IPST), College Park, MD 20742

Institute for Research in Electronics and Applied Physics (IREAP), College Park, MD 20742 and
Santa Fe Institute, Santa Fe, NM 87501

(Dated: March 29, 2024)

Reservoir computers (RCs) are powerful machine learning architectures for time series prediction.
Recently, next generation reservoir computers (NGRCs) have been introduced, offering distinct
advantages over RCs, such as reduced computational expense and lower data requirements. However,
NGRCs have their own practical difficulties distinct from those of RCs, including sensitivity to
sampling time and type of nonlinearities in the data. Here, we introduce a hybrid RC-NGRC
approach for time series forecasting of complex and chaotic dynamical systems. We show that our
hybrid approach can produce accurate short term predictions and capture the long term statistics
of dynamical systems in situations where the RC and NGRC components alone are insufficient. The
advantage of the hybrid RC-NGRC approach is most pronounced when both components are limited
in their prediction capabilities, e.g. for a small RC and a large sampling time in the training data.
Under these conditions, we show for several chaotic systems that the hybrid RC-NGRC method
with a small reservoir (N ≈ 100) can achieve prediction performance rivaling that of a pure RC
with a much larger reservoir (N ≈ 1000), illustrating that the hybrid approach offers significant
gains in computational efficiency over traditional RCs while simultaneously addressing some of the
limitations of NGRCs.

Predicting the behavior of a dynamical sys-
tem over time poses a significant challenge, es-
pecially when dealing with chaotic or complex
systems. Reservoir computing, a type of ma-
chine learning framework, has emerged as a
promising solution for this task. It offers ad-
vantages over deep learning methods, particu-
larly in terms of computational efficiency. How-
ever, harder prediction tasks generally require
larger, more computationally expensive reservoir
computers (RCs) containing numerous artificial
neurons. To tackle this issue, researchers have
introduced next-generation reservoir computers
(NGRCs), which boast even greater computa-
tional efficiency. While NGRCs have shown re-
markable performance across various scenarios,
they sometimes struggle with tasks that tradi-
tional RCs handle easily. In this study, we pro-
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pose a novel hybrid approach that leverages the
strengths of both RCs and NGRCs. By combin-
ing a small, computationally efficient RC with an
NGRC, our hybrid model is able to achieve the
performance and flexibility of a large RC while
still preserving a substantial portion of the effi-
ciency advantages of an NGRC.

I. INTRODUCTION

Reservoir computing has emerged as a powerful ma-
chine learning architecture for forecasting dynamical sys-
tems [1–6]. In a reservoir computer (RC), a high-
dimensional nonlinear system called the reservoir is used
to learn the flow of a dynamical system, and subsequently
make a forecast. RCs have been shown not only to
achieve impressive short term forecast accuracy, notably
in the difficult case of chaotic systems, but also to re-
produce the statistical properties (i.e., capture the “cli-
mate”) of the true system in the long term [5]. Though
RCs are relatively effective, several drawbacks have been
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FIG. 1. a) Reservoir computer (RC) schematic. Time series observations u(t) are fed into a high-dimensional reservoir with
state r(t) via an input matrix B, then an output matrix W is trained to predict the next data point in the series (i.e., at
time t + τ ). Predictions at times t > ttrain are made by switching to autonomous mode in which outputs of the reservoir are
repeatedly fed back in as input (dashed line). b) Next-generation reservoir computers (NGRCs) replace the reservoir with a
nonlinear representation vector O(t) that is constructed using time-delayed observations. c) Our hybrid RC-NGRC prediction
approach uses a hybrid representation vector H(t) that is the concatenation of a reservoir state with a NGRC representation
vector in order to produce a prediction.

noted, such as the need to tune many hyperparameters
for optimal performance [6].

An alternative to an RC, dubbed a next-generation
reservoir computer (NGRC), has been introduced that
avoids the use of a reservoir entirely [7]. Equivalent to
a nonlinear vector autoregression machine [8], an NGRC
replaces the reservoir with a representation vector that
includes nonlinear functions of time-delayed observations
of the dynamical system. NGRCs have been shown to be
capable of forecasting several prototypical chaotic sys-
tems at greatly reduced computational cost compared
to RCs, and are in fact mathematically equivalent to a
variant of RCs with linear reservoir nodes and nonlin-
ear readout [9]. However, implementations of NGRCs in
practice show substantially different challenges from tra-
ditional RC implementations. For example, the presence
of specific nonlinearities related to the true system in the
NGRC representation vector has been shown to be essen-
tial for forecasting certain multistable dynamical systems
[10]. We also find that NGRCs struggle to forecast pro-
topytical chaotic systems when training data is sampled
with a large time step (Section IVB2).

In this paper, we introduce a hybrid RC-NGRC ap-
proach that leverages the strengths of both RCs and
NGRCs. This approach uses a hybrid representation vec-
tor that is the concatenation of the reservoir state with
an NGRC representation vector, echoing previous work
hybridizing an RC with a knowledge-based model [11] or
hybridizing an RC with another machine-learning-based

prediction scheme [12]. We find that for some forecast-
ing tasks that particular RC and NGRC implementations
struggle with, our hybrid RC-NGRC approach can sub-
stantially outperform them at both short term accuracy
and long term climate replication. In particular, we find
that the hybrid approach most strongly outperforms RC
and NGRC predictions when the reservoir size is small
and the training data is sampled with a large time step.
We show that, in cases where the NGRC is limited, a hy-
brid RC-NGRC approach using a small reservoir compo-
nent reaches the performance level of a large traditional
RC, while offering much greater computational efficiency.
In Section II, we review the use of RCs and NGRCs

for time series prediction. In Section III, we present
the details of our hybrid RC-NGRC approach. We show
results applying this approach to forecasting the proto-
typical Lorenz system and other chaotic dynamical sys-
tems in Section IV. We conclude in Section V that a
hybrid RC-NGRC approach is particularly useful in sit-
uations where computational resources are limited and
standalone NGRCs struggle.

II. BACKGROUND: TRADITIONAL AND
NEXT-GENERATION RESERVOIR COMPUTING

Suppose we have discrete time series data
{u(τ),u(2τ), . . .} sampled at regular time steps from
the trajectory u(t) ∈ R

d of a d-dimensional dynamical
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system. Using the first ntrain data points as training
data, the goal of RC and NGRC forecasting is to
produce a predicted trajectory v(t) for time t > ttrain
(where ttrain = ntrainτ) that is a good match to u(t). In
addition to seeking a high quality short term forecast
with v(t) ≈ u(t) for as long as possible after ttrain, we
also seek to replicate the system’s climate, meaning that
the long term statistical features of v match those of u.

A. Reservoir computers (RCs)

A typical RC (Figure 1a)) uses a random artificial neu-
ral network with recurrent links of fixed weights as a
reservoir. To define such a reservoir, we initialize a ran-
dom directed unweighted network ofN nodes with a Pois-
son degree distribution having average degree 〈k〉. We
multiply the nonzero elements of the resulting Boolean
adjacency matrix Ã ∈ R

N×N by link weights chosen from
the uniform distribution on [−w,w] to form the matrix
A, and then we rescale A to have spectral radius ρ / 1.
At all time steps of the training data, the state of the

reservoir r(t) ∈ R
N depends on the input it receives, u(t),

and its state at the previous time step, r(t− τ), through
the relationship

r(t) = (1− α)r(t− τ) + αf(Ar(t− τ) +Bu(t) + c), (1)

where f is the hyperbolic tangent function (applied
element-wise), and we choose the entries of the input ma-
trix B ∈ R

N×d from the uniform distribution on [−σ, σ];
α is a leakage parameter that controls the timescale of
the reservoir’s response to its input.
To train the RC, we first synchronize the reservoir by

initializing it in the zero state (r(0) = 0) and feeding
in the first nwarmup data points (up to time twarmup =
nwarmupτ) according to Equation 1. We then feed in the
remaining nfit = ntrain − nwarmup training data points
(spanning a time tfit = nfitτ), and train a readout matrix
W ∈ R

d×N to make a one-step-ahead prediction for this
data:

Wr(t) ≈ u(t+ τ), twarmup < t < ttrain. (2)

We fit W using ridge regression (linear regression with
Tikhonov regularization), which minimizes the quantity

∑

twarmup<t<ttrain

(

‖Wr(t)− u(t+ τ)‖
2
)

+ β Tr
(

WWT
)

.

(3)
Here, β is the regularization hyperparameter that penal-
izes large entries of W to prevent overfitting.
We note that in practice, we use the input noise tech-

nique of adding weak Gaussian noise (standard deviation
γ ≪ 1) to u before feeding it in to the reservoir via Equa-
tion 1, but using noiseless data to fit W , as this has been
shown to promote climate stability of autonomous pre-
dictions [13] (see the Supplementary Materials).

After training the readout matrix W , we switch the
reservoir to autonomous mode (Figure 1a)) in which the
output of the reservoir Wr(t) is repeatedly fed back in
as input:

v(t) = Wr(t− τ) (4)

r(t) = (1− α)r(t − τ) + αf(Ar(t − τ) +Bv(t) + c)
(5)

for t = ttrain+τ, ttrain+2τ, . . .. The autonomous forecast
for the trajectory of the dynamical system is then v(t).
Reservoir computing offers a state-of-the-art method

for time series forecasting of dynamical systems, capable
of both short term forecast accuracy and long term cli-
mate replication. Compared to deep neural networks,
RCs have dramatically reduced training time because
only the output weights are fit [14]. However, training
and/or simulating a large reservoir can still be computa-
tionally expensive in some cases: computational costs of
fitting an output matrix scale approximately as O(N3)
in typical RC implementations, and well-performing RCs
may require large N on the order of 1000 or more. Fur-
thermore, there are many hyperparameters (listed in Ta-
ble I) that must be tuned, making RCs nontrival to im-
plement in many cases.

B. Next-Generation Reservoir Computers
(NGRCs)

In contrast to RCs, NGRCs utilize a representation
vector constructed directly from the training data u(t) in
order to make predictions (Figure 1b)). First, we must
specify the number k of current and time-delayed obser-
vations in the representation vector, and the number s
of time steps between successive time-delayed observa-
tions. In our studies we focus on k = 2 and s = 1. Then,
at each time step of the training data we construct the
representation vector O(t) as follows:

• We concatenate the current and time-delayed ob-
servations to form a linear representation vector:

Olin(t) = u(t)⊕ u(t− sτ)⊕ . . .⊕ u(t− (k − 1)sτ), (6)

where ⊕ represents vector concatenation. As in the
RC case, in practice we add weak Gaussian noise
with standard deviation γ ≪ 1 to u before forming
Olin (see the Supplementary Materials).

• We form a nonlinear representation vector
Ononlin(t) consisting of nonlinear functions of the
elements of Olin(t). Here, we choose to form
Ononlin(t) by listing all unique quadratic monomi-
als of the linear terms, e.g. u2(t)u1(t− sτ).

• We form the full representation vector by concate-
nating a constant element (taken to be 1), the linear
representation vector, and the nonlinear represen-
tation vector:

O(t) = 1⊕Olin(t)⊕Ononlin(t) (7)
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Note that O(t) is defined for s(k − 1)τ < t ≤ ttrain;
as such, s(k − 1)τ is the effective warm up time of the
NGRC. At each time step, there are 1+dk+dk(dk+1)/2
elements of the representation vectorO(t), where d is the
dimension of u (e.g. 28 elements for k = 2, d = 3).
Next, O(t) plays an analogous role to r(t) in an RC.

We fit a readout matrix W using ridge regression (see
Equation 3) to satisfy

WO(t) ≈ u(t+ τ), s(k − 1)τ < t < ttrain. (8)

Then, we use autonomous mode to make a prediction for
t = ttrain + τ, ttrain + 2τ, . . .:

• We make a one-step prediction: v(t) = WO(t− τ).

• We construct O(t) according to Equation 7. In
doing so, we draw time-delayed terms from ttrain
and before from u, and draw those from after ttrain
from v.

The NGRC forecast for the trajectory of the dynamical
system is then v(t).
NGRCs have strong predictive ability and have some

important advantages: compared to RCs, NGRCs are
more computationally efficient due to having many fewer
terms in their representation vector, require less hyper-
parameter tuning, and have a very small effective warm
up time of s(k−1)τ [7]. However, NGRCs have their own
drawbacks: performance can be very dependent on the
choice of nonlinear functions used to constructOnonlin, in
some cases showing poor performance if the specific non-
linearities of the true dynamical system are not reflected
in the representation vector [10]. We will also show later
in Section IVB2 that NGRCs struggle when the training
data are sampled sparsely from the true system, i.e. the
time step τ is large.

III. METHODS: HYBRID RC-NGRC
FORECASTING APPROACH

We now introduce the central innovation of our pa-
per: a hybrid RC-NGRC scheme for forecasting dynami-
cal systems. In the hybrid RC-NGRC scheme, we utilize
both a small reservoir and an NGRC representation vec-
tor to make a forecast (Figure 1c)). First, we initialize
a reservoir just as in Section IIA. In practice we usually
use a lightweight reservoir with a small number of nodes
N ≤ 100. Then, we use training data to construct both a
reservoir state r(t) and an NGRC representation vector
O(t) for all possible time steps, as specified in Equations
1 and 6, 7. We form a hybrid representation vector

H(t) = r(t) ⊕O(t) (9)

at each time step, where ⊕ represents concatenation of
vectors. Then we fit W using ridge regression (see Equa-
tion 3) to best satisfy

WH(t) ≈ u(t+ τ), twarmup < t < ttrain. (10)

TABLE I. Details of the training data and hyperparameters
of the RCs and NGRCs used to make forecasts. The hybrid
RC-NGRC uses the same hyperparameters. These values are
used throughout, except where otherwise noted.

Training

data

Time step τ = 0.06

# training data points ntrain = 10, 000

Noise standard deviation γ = 1× 10−3

Reservoir

Number of nodes N = 100

Average degree 〈k〉 = 10

Link weight scaling w = 1

Spectral radius ρ = 0.99

Leakage rate α = 1

Bias c = 0

Input matrix scaling σ = 1

Warm-up time steps nwarmup = 1000

Regularization parameter β = 1× 10−3

NGRC

Number of current and

time-delayed observations
k = 2

Spacing of time-

delayed observations
s = 1

Regularization parameter β = 1× 10−3

After training the readout matrix W , we produce an au-
tonomous prediction v by iterating the equations below:

v(t) = WH(t− τ) (11)

r(t) = (1− α)r(t − τ) + αf(Ar(t − τ) +Bv(t) + c)
(12)

O(t) = 1⊕Olin(t)⊕Ononlin(t) (13)

H(t) = r(t)⊕O(t). (14)

(see Section II B for more detail on constructing O).

In practice, to create hybrid RC-NGRC, RC, and
NGRC predictions of a given chaotic dynamical system
with an attractor, we use the following procedure. We
sample a random initial condition from the attractor, in-
tegrate the system forward using the fourth order Runge-
Kutta method with an integration time step τint ≪ τ ,
and subsample with time step τ to obtain the time se-
ries data u(t). We normalize u so that each component
of the training data (first ntrain data points) has mean 0
and standard deviation 1. We generate a random real-
ization of the reservoir as described in Section IIA, using
the hyperparameters given in Table I. Then, we construct
autonomous predictions of length tpredict using the RC,
NGRC, and hybrid RC-NGRC (Sections IIA, II B, and
III), using the input noise technique (see Supplementary
Materials). For multiple trials, we repeat the whole pro-
cedure above, so that different trials have both different
initial conditions of the trajectory and different random
reservoir realizations.
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FIG. 2. a) Representative examples of RC, NGRC, and hybrid RC-NGRC autonomous predictions of the Lorenz system
(x component shown), where RC and NGRC performance is limited by small reservoir size and large data time step. Valid
prediction time (VPT) indicated by the vertical dashed line. b) Distributions of VPTs for RC, NGRC, and RC-NGRC
predictions, where each trial is done on new initial conditions using a new reservoir realization. The hybrid RC-NGRC shows
substantially stronger short term predictive power than either the RC or NGRC alone. Horizontal lines: quartiles (100 trials).

IV. RESULTS

A. Forecasting the Lorenz system with a small
reservoir and large time step

We now evaluate the hybrid RC-NGRC approach on
the task of predicting the Lorenz system, a prototypical
chaotic dynamical system governed by the equations

ẋ = 10(y − x), ẏ = x(28− z)− y, ż = xy − 8z/3 (15)

[15]. We compare to the standalone RC and NGRC
components, with hyperparameters as listed in Table I.
Although both RC and NGRC approaches are capable
of forecasting the Lorenz system under ideal conditions,
here we impose additional constraints on the prediction
methods. We limit the size of the reservoir, imitating a
scenario in which large reservoirs are not desirable due to
computational constraints, and we use training data that
is sampled from the Lorenz system at a large time step,
imitating a scenario in which observing the state of the
dynamical system can only be done sparsely. These con-
straints make the task of forecasting the Lorenz system
formidable for both RCs and NGRCs.

1. Short term forecast quality

To evaluate the quality of a prediction in the short
term, we use valid prediction time (VPT) as a metric,

defined as the time at which the root mean square error
of the normalized prediction exceeds a threshold, here
chosen to be κ = 0.9:

tVPT = min







t :
‖v(t) − u(t)‖
√

〈‖u(t)‖
2
〉

> κ







− ttrain. (16)

In chaotic systems such as the Lorenz system, errors grow
approximately as exp(Λmaxt) where Λmax is the maximal
Lyapunov exponent. Thus, the Lyapunov time tlyap =
Λ−1
max is a natural timescale for evaluating the quality of

forecast of a chaotic dynamical system, and we report
tVPT in units of tlyap.

Representative examples of predictions v(t) of the
Lorenz system by RC, NGRC, and hybrid RC-NGRC
prediction schemes are shown in Figure 2a) with VPTs
marked (only the x coordinates of the predictions are
shown). In this example, the VPT of the hybrid RC-
NGRC forecast is much longer than for the RC or NGRC
alone. Recording VPTs over many trials with differ-
ent Lorenz system initial conditions and different ran-
dom reservoirs yields a distribution of VPTs shown in
Figure 2b). We find that hybrid RC-NGRC has much
better short term predictive power than either the RC
or NGRC, as evidenced by the longer median valid pre-
diction times (VPTs) (hybrid: 4.16tlyap, RC: 0.90tlyap,
NGRC: 1.74tlyap). We observe similar results without
input noise (see Supplementary Materials).
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FIG. 3. a) Representative examples of long-term phase space trajectories of the RC, NGRC, and hybrid RC-NGRC autonomous
predictions (predictions extended from Figure 2a)). Though RC and NGRC reconstruct the Lorenz attractor in some trials,
only the hybrid RC-NGRC prediction reliably reconstructs the attractor of the true system across trials. b) Power spectra of
z component of autonomous predictions for the different methods. Only the hybrid RC-NGRC prediction reliably reproduces
the spectrum of the Lorenz system.

2. Long term climate replication

We also find that the hybrid RC-NGRC more accu-
rately reproduce the climate (long-term statistical prop-
erties) of the Lorenz system when compared to either the
RC or NGRC alone. Two-dimensional projections of the
phase space trajectories of the representative predictions
from Figure 2a) are plotted in Figure 3a). In this ex-
ample, the RC forecast completely fails to recreate the
butterfly-shaped attractor. The NGRC prediction ini-
tially tracks the true attractor, but then gets trapped
orbiting inward toward one of the unstable fixed points
of the true system. Although in some trials the RC and
NGRC predictions can recreate the true attractor, they
often fail in a similar manner as in 3a). The climate re-
production of especially the NGRC is even worse when
not using the input noise technique (see the Supplemen-
tary Materials). In contrast, the hybrid RC-NGRC ap-
proach robustly succeeds at accurately reconstructing the
butterfly-shaped strange attractor of the Lorenz system.

We also examine the power spectral densities of the dif-
ferent methods’ forecasts to determine whether they re-
cover the climate of the Lorenz system. Figure 3b) shows
the power spectra of the z components of the same rep-
resentative predictions, found using Welch’s method [16].
The power spectrum of the hybrid RC-NGRC prediction
matches that of the Lorenz system nearly perfectly, sug-
gesting the prediction captures the statistical properties
of the Lorenz system. In contrast, the spectra of the RC
and NGRC predictions fail to capture the features of the

true system’s spectrum.
Our results on the Lorenz system suggest that in cases

when both the RC and NGRC are limited, e.g. for a small
reservoir and large sampling time step in the training
data, the hybrid RC-NGRC method offers a significant
improvement over either the RC or NGRC alone.

B. Under what conditions is the hybrid RC-NGRC
approach most advantageous?

Here, we relax the constraints from the previous sec-
tion that the reservoir be small and the training data
be sampled with large time step. We find that although
the hybrid RC-NGRC still achieves good predictive per-
formance, it loses its relative advantage over RC and/or
NGRC approaches. This occurs as we enter a regime
where either the RC or NGRC perform very well, thus
eliminating the need for a hybrid approach. Our results
suggest that the greatest utility of the hybrid RC-NGRC
comes when the NGRC is limited (e.g. because the train-
ing data is sampled at a large time step) and compu-
tational efficiency is a priority (making small reservoirs
highly advantageous).

1. Small reservoir

The predictive power of an RC is predicated on having
a high-dimensional reservoir with enough fitting parame-
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FIG. 4. Mean valid prediction times for the Lorenz system
versus number of nodes in the reservoir. Although RC perfor-
mance is poor at small N , and NGRC performance is mod-
est due to using a large timestep (τ = 0.06), the hybrid
RC-NGRC performs well throughout, specifically providing
a substantial advantage over both RC and NGRC at small
N . Note that the hybrid RC-NGRC approach with reservoir
size N = 100 approximately matches that of a pure RC with
N = 500. Timestep τ = 0.06. Error bars and band: standard
error of the mean (64 trials).

ters to accurately capture the behavior of the dynamical
system. In practice, as the number of reservoir nodesN is
increased, the forecasting skill of the RC increases, until
some saturation point, as reflected in Figure 4. However,
Figure 4 also shows that the hybrid RC-NGRC forecasts
achieve a similar mean valid prediction time using a much
smaller reservoir (compare hybrids with 100 nodes to RCs
with 500 nodes). This is true even though the NGRC
itself is poorly performing (due to large time step). Hy-
bridizing an RC with even a poorly performing NGRC
enables strong predictive ability even with a very small
reservoir.

2. Large time step/sparsely sampled training data

While the NGRC approach has been shown to work
in a range of cases, its most accurate predictions are
achieved when the specific nonlinearities of the under-
lying system appear in the NGRC represenation vector
[10]. In this case, during training the NGRC can learn
weights that make the autonomous mode imitate a nu-
merical integrator of the true system. However, just as
numerical integration methods can fail if the integration
time step is too large, the NGRC can also fail if the time
step is too large. At large time steps, single time step
increments of the training data are not as well approx-
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FIG. 5. Mean valid prediction times for the Lorenz system
versus time step size τ in the training data. As time step
is adjusted, the number of training data points ntrain is kept
constant. The hybrid RC-NGRC shows the greatest advan-
tage in predictive power over the RC or NGRC alone when
using a large time step. Reservoir size N = 100. Error bars:
standard error of the mean (64 trials).

imated by the difference equation versions of the true
differential equations governing the system. In Figure 5,
we plot the valid prediction times for the NGRC as as a
function of time step length τ . Note that as τ is varied,
the number of training data time steps ntrain is kept con-
stant, so for larger τ , ttrain = ntrainτ is greater. We see
that the valid prediction time of NGRC predictions de-
crease as τ is increased. We see a modest increase in the
VPT for the RC as τ is increased, because the number
of training data time steps is kept constant, the informa-
tion content in the training signal initially increases as τ
increases from a small value.
Compared with the NGRC, the drop off of the hy-

brid RC-NGRC’s valid prediction time as time step is
increased is much less dramatic. Although the RC alone
shows weak predictive power of about one or less Lya-
punov times at all time steps, at large time steps the hy-
brid’s valid prediction time is much greater than either
the RC or NGRC alone. When using data with a large
time step, hybridizing even a poorly performing RC with
an NGRC can drastically improve the prediction perfor-
mance.

C. How performance depends on the size of the
training dataset

NGRCs are touted as requiring shorter training
datasets than RCs, owing to their very short effective
warm up time of s(k − 1)τ (just a single time step for
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FIG. 6. Mean valid prediction times for the Lorenz system
versus number of training data points, in scenarios where a)
RC and NGRC struggle, and b) RC and NGRC perform well
with enough training data. Error bars (where visible): stan-
dard error of the mean (64 trials).

k = 2, s = 1) [7]. In contrast, RCs must have enough
warm up time twarmup at the beginning of training to syn-
chronize the reservoir to the input data. How does a hy-
brid RC-NGRC, which also requires a warm up time for
its reservoir, compare when training on a limited number
of time steps?

To investigate this question, we vary the total number
of time steps ntrain of Lorenz system training data sup-
plied to the RC, NGRC, and hybrid RC-NGRC, and plot
the mean VPTs of each model. We perform this analy-
sis a) under the constraints of small reservoir and large
time step from Section IVA (τ = 0.06, N = 100), and b)
in an easier scenario with large reservoir and small time
step (τ = 0.01, N = 1000). In all trials, to choose a
warm up time for the RC, we first initialize two copies
of the reservoir that are identical except for their initial
reservoir states r(1)(0) 6= r(2)(0), and feed the same in-
put data into both reservoirs. We take the inverse slope
of a linear fit of ln

(

|r(1)(t)− r(2)(t)|
)

vs. t as the empiri-
cal characteristic time tsync for reservoir synchronization,
then use a warm up time twarmup = 10tsync (capped to
a maximum of ttrain/4). After twarmup the synchroniza-
tion error in the reservoir state will be on the order of
e−10 ≈ 5 × 10−5. In practice, we find twarmup ≈ 20τ
for these hyperparameters. (Note that if we used smaller
leakage rates α, we would expect the warm up time to
be longer.) For the hybrid RC-NGRC, we use the same
twarmup as for RC. For the NGRC, the effective warm up
length is always only s(k − 1)τ .

In the scenario of Section IVA where both RC and

NGRC struggle due to small reservoir and large time step
(Figure 6a)), we find that the hybrid RC-NGRC main-
tains it relative advantage over NGRCs and RCs over a
wide range of training data amounts. Despite the NGRC
having a much shorter warm up time of 1 time step
versus the hybrid’s ∼ 20, using the hybrid RC-NGRC
yields improved performance even when using training
data amounts down to ∼ 100 steps.
However, when a well-performing NGRC is available,

the hybrid RC-NGRC loses out to NGRC in the low
training data regime. In Figure 6b), we plot VPT versus
training data amount in the scenario where both RC and
NGRC perform well due to large reservoir and small time
step. The hybrid displays only marginal performance
benefit over the standalone RC or NGRC when using
large amounts of training data, consistent with the results
of Section IVB. However, at lower training data amounts
the data efficiency of the NGRC is evident, performing
much better than the RC and hybrid for ntrain ∼ 102 to
∼ 103.
In summary, the hybrid RC-NGRC approach can of-

fer substantial improvements in predictive performance
when training on a limited amount of data, but is not
beneficial if a well-performing NGRC is available.

D. Hybrid RC-NGRC test results on other chaotic
systems

We now test the ability of the hybrid RC-NGRC ap-
proach to forecast a few other prototypical chaotic sys-
tems [18], focusing as before on scenarios where both RC
and NGRC performance are limited due to small reser-
voir size and large data sampling time step. We find that
across several systems, hybridizing the weakly perform-
ing RCs and NGRCs yields substantial benefit.
Despite the Rössler system [19] having a relatively sim-

ple flow with only one quadratic nonlinear term in its gov-
erning differential equations, we find that NGRCs strug-
gle somewhat with prediction in the case of a large time
step τ = 0.1 as shown in Figure 7a). A small RC with
a N = 200 node reservoir performs even worse, provid-
ing almost no predictive power on its own. However,
hybridizing even this very poorly performing RC with
the NGRC yields substantial improvements in short term
accuracy over both the RC and NGRC alone. In fact,
the hybrid RC-NGRC performance is exceeds the perfor-
mance of a much larger RC with N = 1000 nodes.
The double-scroll electronic circuit introduced in ref-

erence [17] has governing differential equations that
contain hyperbolic sine terms not represented in the
NGRC representation vector. Reference [7] showed that
NGRCs with cubic terms in the representation vector are
nonetheless well-suited to forecast this system. However,
without the insight to change the terms of the represen-
tation vector, NGRCs with quadratic terms in the repre-
sentation vector have a difficult time predicting this sys-
tem. This difficulty is heightened by a large time step of
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FIG. 7. Distributions of valid prediction times of RC, NGRC, and RC-NGRC predictions on the a) Rössler, b) Double Scroll
[17], and c) Mackey-Glass systems. For the Mackey-Glass system, use we time-delayed observations spaced s = 6 time steps
apart to create the NGRC and hybrid representation vectors, approximately matching the time-delay term of the true system.
Dotted blue line and band: median and interquartile range of VPTs from a large RC with N = 1000 nodes. Horizontal lines
in violins: quartiles (100 trials).

τ = 0.03, as shown in Figure 7b). However, hybridizing
to a small RC with N = 100 nodes yields performance
far surpassing the performance of the RC or NGRC it-
self, and even surpassing the performance of a RC with
the same hyperparameters but with N = 1000 nodes.

The Mackey-Glass system [20] presents another dis-
tinct challenge, as the governing differential equations
include a time-delay term: the flow of the system at time
t depends not just on u(t) but also u(t− T ), where here
T = 2. Large RCs are capable of forecasting the Mackey-
Glass system, though Figure 7c) shows that a small RC of
N = 200 nodes performs only modestly. An NGRC using
only an observation delayed by a single time step (s = 1)
produces very poor forecasts of the Mackey-Glass system,
as it lacks information about the time-delay term of the
true system. Extending the look back time to s = 6 to
approximate time time-delay term of the true system, as
we have done in 7c), yields moderate results. However,
the hybrid RC-NGRC outperforms both, and approxi-
mately matches the short term predictive ability of a RC
of N = 1000 nodes.

We emphasize that blind application of the hybrid RC-
NGRC approach to new dynamical systems may not in
general give better performance than RC or NGRC alone.
The hybrid approach may be particularly beneficial when
the NGRC is limited, e.g. by a large sampling time step,
and when one desires the computational efficiency of a
small RC which by itself does not offer strong perfor-
mance. However, the meaning of small reservoir and
large time step may differ for different systems. Addition-

ally, to avoid numerical divergence and achieve climate
replication of a new system, the input noise strength, reg-
ularization, and other hyperparameters may need to be
tuned to the specific dynamical system in question.

V. CONCLUSION

We have introduced a hybrid RC-NGRC method for
time series forecasting of chaotic dynamical systems. The
hybrid method can make predictions that are both accu-
rate in the short term and capture the system climate
in the long term, even when the RC and NGRC com-
ponents alone cannot. In our studies, we see that the
hybrid RC-NGRC method holds the greatest advantage
over its components when using a small reservoir and
sparsely sampled training data. For other cases in which
the NGRC is limited due to reasons beside large time
step (e.g., when the NGRC representation vector does
not capture the important nonlinearities), we expect our
hybrid method to offer similar benefits at a lower com-
putational cost than a large RC. In summary, we believe
that the hybrid RC-NGRC scheme is an important step
toward significantly reducing the computational load of
reservoir computing, as achieved by an NGRC, while still
maintaining the robustness of a traditional RC.
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VI. SUPPLEMENTARY MATERIAL

Supplementary material about the technique of adding
input noise can be found in a separate file.
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I. EFFECTS OF THE INPUT NOISE TECHNIQUE

In the main text, we add small-amplitude noise to the training data when feeding it into

the RC, NGRC, and hybrid RC-NGRC (we still use noiseless data as training targets when

fitting the output matrix). This input noise technique has been shown to promote climate

stability of forecasts by mapping small perturbations off the attractor during autonomous

prediction back onto the attractor [1]. Here, we report that the central results of the paper

still hold when using noiseless input data, though the input noise technique does confer some

useful benefits for climate replication.

We find that reproducing all short term performance results in the main manuscript with

no input noise (noise standard deviation γ = 0) yields qualitatively similar results. For

example, the plot of VPT for predicting the Lorenz system vs. training data time step in

Figure S1a) shows the same qualitative behavior as Figure 5 of the main text (reshown in

Figure S1b) for ease of comparison). The key result that the hybrid RC-NGRC has better

short term predictive performance than RC or NGRC alone, specifically at large time steps,

is unchanged.

FIG. S1. Mean valid prediction times for the Lorenz system versus time step size τ in the training

data, with a) no input noise used and b) input noise standard deviation γ = 1 × 10−3 used.

Regardless of noise, the hybrid RC-NGRC shows the greatest advantage in predictive power over

the RC or NGRC alone when using a large time step. Reservoir size N = 100. Error bars: standard

error of the mean (64 trials). Figure b) is repeated from Figure 5 of the main text.
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However, without the input noise technique, the climate replication abilities of the au-

tonomous predictions are much worse, especially those of the NGRC. Figure S2a) shows

a representative example of an NGRC autonomous prediction with no noise (time step

τ = 0.06). The NGRC prediction quickly limits to a fixed point, failing completely to cap-

ture the climate; similar failures are observed in most trials across many initial conditions.

The failure to capture climate is much more severe than when using the input noise tech-

nique as shown in Figure S2b), where the NGRC predictions track the true attractor for a

longer time. If it occurs quickly enough, the sudden convergence of NGRC predictions to a

fixed point can harm short term predictive power, for example contributing to a decreased

mean VPT at small time steps in Figure S1. Besidses the NGRC predictions, the hybrid

RC-NGRC predictions also sometimes fail to capture the Lorenz attractor, in some trials

limiting to a fixed point or limit cycle, in contrast with the main text where the hybrid

RC-NGRC with input noise always captured the Lorenz system climate.

FIG. S2. Representative examples of autonomous NGRC predictions of the Lorenz system with

large time step τ = 0.06 with a) no input noise used and b) input noise standard deviation

γ = 1× 10−3 used (shown: x component).

Ref. [1] demonstrated that the input noise technique can stabilize autonomous predictions

by preventing them from diverging numerically. Our findings suggest that in NGRCs, input

noise is also helpful to prevent predictions from converging to a fixed point, especially when

using relatively large time steps (τ = 0.06).

Outside of the benefits for climate replication, the input noise technique is also slightly

beneficial for short term predictive performance of RC and NGRC. Figure S3 shows that both

RC and NGRC have optimal nonzero noise strengths for short term predictive performance.

However, the hybrid RC-NGRC does not have as clear a trend, so long as the noise strength

is not too large as to destroy predictive performance.
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FIG. S3. Mean valid prediction times for the Lorenz system versus input noise standard deviation

γ. RC and NGRC have an optimal noise level for short term prediction, but the trend is not as

clear for the hybrid RC-NGRC. Error bars: standard error of the mean (64 trials).

We caution that we have not investigated the joint effect of modifying both the input

noise strength and the Tikhnonov regularization parameter. The input noise technique is in

effect an alternative regularization scheme for fitting the output matrix [1], and as such the

interplay of Tikhonov regression and the input noise technique may have nontrivial effects

on the climate stabilization of autonomous forecasts. Results using different values of the

Tikhonov regression parameter β and the noise variance γ may yield different results than

shown here.

Note that the input noise technique is distinct from simply adding observational noise to

the training data, as the train targets are still taken to be non-noisy values. The input noise

technique is also distinct from using dynamical noise in the underlying system.

[1] A. Wikner, J. Harvey, M. Girvan, B. R. Hunt, A. Pomerance, T. Antonsen, and E.

Ott, Neural Networks 170, 94 (2024).
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