
Structurally Prune Anything:
Any Architecture, Any Framework, Any Time

Xun Wang1∗ John Rachwan2∗ Stephan Günnemann23 Bertrand Charpentier2
1CISPA Helmholtz Center for Information Security 2Pruna AI

3Department of Computer Science & Munich Data Science Institute, Technical University of Munich
xun.wang@cispa.de

{john.rachwan,stephan.guennemann,bertrand.charpentier}@pruna.ai

Abstract

Neural network pruning serves as a critical technique for enhancing the efficiency
of deep learning models. Unlike unstructured pruning, which only sets specific
parameters to zero, structured pruning eliminates entire channels, thus yielding
direct computational and storage benefits. However, the diverse patterns for cou-
pling parameters, such as residual connections and group convolutions, the diverse
deep learning frameworks, and the various time stages at which pruning can be
performed make existing pruning methods less adaptable to different architectures,
frameworks, and pruning criteria. To address this, we introduce Structurally Prune
Anything (SPA), a versatile structured pruning framework that can prune neural net-
works with any architecture, from any framework, and at any stage of training. SPA
leverages a standardized computational graph and ONNX representation to prune
diverse neural network architectures without the need for manual intervention. SPA
employs a group-level importance estimation method, which groups dependent
computational operators, estimates their importance, and prunes unimportant cou-
pled channels. This enables the transfer of various existing pruning criteria into a
structured group style. As a result, SPA supports pruning at any time, either before
training, after training with fine-tuning, or after training without fine-tuning. In the
context of the latter, we introduce Optimal Brain SPA (OBSPA), an algorithm that
achieves state-of-the-art pruning results needing neither fine-tuning nor calibration
data. In extensive experiments, SPA shows competitive to state-of-the-art pruning
performance across various architectures, from popular frameworks, at different
pruning times.

1 Introduction

The increasing complexity and scale of deep learning models He et al. (2015); Simonyan & Zisserman
(2015); Dosovitskiy et al. (2020) have sparked significant research interest in compression methods.
Compression methods, like pruning, aim to reduce model size and computational cost in order to
increase inference speed, save energy, and enable deployment on computationally limited devices.
In particular, pruning methods mostly fall into two main categories: unstructured pruning which
involves setting specific parameters to zero while maintaining the overall network structure LeCun
et al. (1989); Hassibi & Stork (1992); Dong et al. (2017); Han et al. (2015); Lee et al. (2019); Frantar
et al. (2022); Xiao et al. (2019), and structured pruning which involves removing entire channels Li
et al. (2016); He et al. (2018b, 2017); Lin et al. (2020); Liu et al. (2017a); Rachwan et al. (2022).
While structured pruning advantageously results in direct computational and memory reduction, it is

∗equal contribution

Preprint. Under review.

ar
X

iv
:2

40
3.

18
95

5v
1

 [
cs

.L
G

]
 3

 M
ar

 2
02

4

Figure 1: SPA overview. The source model can be chosen freely from different frameworks with
different structures, either trained or not. A computational graph is built to store the dependency
information between operators and data. The pruning procedure consists of four steps: coupling
channels, grouping channels & importance estimation, and pruning. After pruning, the pruned model
can be converted to other frameworks for further usage.

considered a more complex undertaking. Specifically, structured pruning methods often come with
three main challenges.

Challenge 1: The first major challenge consists of the difficulty of applying different structured
pruning methods to various model architectures. Indeed, structured pruning entails managing the
interdependencies between coupled channels in different layers to modify the model structure without
breaking the model connectivity (e.g. see residual connection in Fig. 5). Hence, when dealing with
coupled channels, most of the existing approaches heavily rely on case-by-case analysis of different
model architectures.

Challenge 2: The second challenge consists of unifying structured pruning methods in a single
framework making pruning possible at any stage of training. Pruning can be done either before,
during, or after training. The majority of works adhere to the pruning with fine-tuning approach,
which we will refer to as the train-prune-finetune setting, and involves conducting finetuning after
pruning pre-trained models to restore any performance degradation incurred during the pruning
process. Another approach consists in pruning a model before training, which we will refer to as the
prune-train setting, thus allowing to directly train a sparse model. Nonetheless, a more challenging
yet advantageous scenario is the pruning without fine-tuning setting, which we will refer to as the
train-prune setting Lazarevich et al. (2021), wherein no additional training is permitted after pruning
a pre-trained model. Instead, the train-prune setting has only access to a limited set of calibration
data Frantar et al. (2022); Frantar & Alistarh (2023), or, even more challenging, has access to no
calibration data Srinivas & Babu (2015) for the pruning step.

Challenge 3: The third challenge is that existing pruning methods are not only often designed with
specific architectures or training paradigms in mind, but they are also further entrenched by the deep
learning frameworks they were developed. This framework specificity arises due to several factors:
differences in computational graph, definition of specific layers, and the existence of unique APIs
and optimization libraries. As such, a pruning method effective in one setting may require non-trivial
adaptations to be ported to another framework or architecture, complicating its general applicability.
Hence, the third challenge lies in crafting an approach robust enough to transcend the limitations
imposed by framework-specific constraints and progress toward a unified, generalizable approach to
model pruning.

Previous works have tried to address parts of these three challenges. For instance, DepGraph Fang
et al. (2023) and OTO-v2 Chen et al. (2023) enables the automatic pruning of different networks
by maintaining a dependency graph. However, they lack the ability to support models other than
PyTorch and only support pruning after training with or without fine-tuning scheme. Further, DFPC
Narshana et al. (2023) proposed a method to prune coupled channels data-free without fine-tuning,
but it lacks the ability to adapt to different architectures and frameworks.

2

To jointly tackle the aforementioned three challenges, we propose Structurally Prune Anything
(SPA), an architecture-and-framework-agnostic neural network pruning method, which supports
different criteria that encompass the previous three settings we defined. We show an overview of
our method in Fig. 1. Its contributions can be summarized as follows. (1) Prune Any Framework:
We directly operate on a flexible computational graph compatible across frameworks. To this end,
we use the ONNX format. With this procedure, we are the first pruning method that can handle the
most common deep learning frameworks. (2) Prune Any Architecture: We propose a four-step
procedure for the structured pruning of grouped channels. This procedure allows automatic pruning
of neural networks with any structures, and the easy transfer of many existing pruning criteria for a
grouped structured version, often achieving superior performance/efficiency trade-off. (3) Prune Any
Time: We propose a group-level importance estimation method, enabling pruning at any training
stage including prune-train, train-prune-finetune, and train-prune. In the latter setting, we propose a
novel method Optimal Brain SPA (OBSPA) which achieves state-of-the-art results with ResNet50 on
CIFAR10 and VGG19 on CIFAR100 without the need for calibration data.

2 Related Works

Pruning criteria: To determine which connection or neuron should be pruned, various pruning
criteria are employed to identify their importance. Most pruning research has followed the approach
pioneered by Han et al. (2015) of using weight magnitudes as importance scores. These include
Li et al. (2016); He et al. (2018a). However, the drawback of only using weight magnitudes is that
the network has to be pre-trained in order for it to achieve good performance. Therefore, some
approaches have focussed on augmenting them with first-order and second-order information, which
allows for the pruning to be applied even on a randomly initialized network Lee et al. (2019);
Verdenius et al. (2020); Wang et al. (2020); Rachwan et al. (2022). Most recently, due to the rise of
generative models and their growing costs, pruning research has shifted its focus towards removing
the need to fine-tune after pruning. These approaches generate importance scores by solving complex
optimization problems that attempt to preserve the per-layer outputs of the model Frantar et al. (2022);
Frantar & Alistarh (2023). We recommend interested readers to refer to the following surveys He &
Xiao (2023); Blalock et al. (2020) for a more comprehensive overview of the previously discussed
approaches as well as additional ones such as activation-based He et al. (2017); Jian-Hao Luo & Lin
(2017); Lin et al. (2020); Yu et al. (2017); Zhuang et al. (2018), and regularization based Liu et al.
(2017b); You et al. (2019); Huang & Wang (2017); Ding et al. (2021) variants.

Pruning coupled channels: Research on pruning coupled parameters has been a prominent area of
focus since the initial stages of structural pruning, with techniques like slimming Liu et al. (2017a)
and ThiNet Jian-Hao Luo & Lin (2017) aiming to identify and remove such dependencies. However,
manually analyzing parameter inter-dependencies can be an exceedingly arduous task, particularly
when applied to complex networks such as DenseNet Huang et al. (2016). Some works have emerged
to discover the complex relationships between layers by automatically uncovering the dependencies
between the layers. Group Fisher pruning Liu et al. (2021) introduces a versatile channel pruning
approach applicable to complex structures by building the network’s dependency graph. DFPC
Narshana et al. (2023) prunes the coupled channels in a one-shot and data-free manner, it introduces
the concept of Data Flow Couplings (DFCs). DFCs are tuples that describe a set of layers and the
transformations between them that couple the channels of the output of one layer to the channels of
the input of another layer. Most recently, OTO-v2 Chen et al. (2023) and DepGraph Fang et al. (2023)
also address the problem by building a dependency graph. On one hand, OTO-v2 traces the operator
connectivity in CNNs, residual, or transfomer architectures but requires a specific training rountine
with Zero-Invariant-Group partitions. On the other hand, DepGraph traces the model’s gradient
functions in the backward pass to generalize to mutliple architectures such as CNNs, RNNs, GNNs,
or transformers. Both OTO-v2 and DepGraph are restricted to Pytorch models and use dependency
graphs which capture limited information thus requiring a more manual understanding of some
networks like ViT.

Pruning time: Numerous pruning methods utilize distinct pruning configurations, which exhibit
variations in terms of the initial state of the model subjected to pruning (i.e., whether it is a fully
trained model or randomly initialized) and the necessity of fine-tuning the pruned model. In this
paper, we are mainly interested in the following frameworks: (1) train-prune-finetune Han et al.
(2015) where a pre-trained model is finetuned after the pruning step, (2) prune-train Lee et al. (2019);

3

(a) Computational Graph (b) Dependency Graph

Figure 2: Comparison of Computational Graph and Dependency Graph. Fig. 2a is a computational
graph. This graph is composed of three operators linked by the data nodes. Convolution and
BatchNorm have parameters; they form the parameter nodes in the computational graph. Fig. 2b is
the Dependency Graph of the same structure; only information on linked operators is stored.

Verdenius et al. (2020); Wang et al. (2020); Rachwan et al. (2022), where a randomly initialized
model is pruned and then trained to convergence and (3) train-prune, where a pre-trained model
is pruned without the need for further finetuning Lazarevich et al. (2021); Frantar et al. (2022);
Srinivas & Babu (2015); Narshana et al. (2023). Some other interesting proposed frameworks are
early pruning, where the model is slightly trained at the beginning, after which it is pruned and further
fine-tuned Rachwan et al. (2022); You et al. (2020), pruning during training, where the pruning and
training steps happen simultaneously Evci et al. (2020), as well as Chen et al. (2021, 2023), where
pruned structures are learned during training.

3 Structurally Prune Anything

3.1 Prune Any Framework

Our algorithmic analysis critically depends on the computational graph CG. For every neural network
under consideration, the initial step involves constructing its computational graph. The computational
graph is a directed graph that consists of three types of nodes: operator nodes vop, which represent
basic operators; normal data nodes vdata, which represent the input and output of operators, and
parameter data nodes vparam which represent the operators’ parameter. Unlike the dependency
graph, which only records the dependencies between operators, the computational graph provides
essential insights into the relationships among operators and data connections that are necessary
to detect dependencies between channels within any model architecture; it meticulously captures
crucial information, including the sequencing of operators, the nature of operator-data connections,
and the specific data shapes involved. See Fig. 2 for a comparison of the computational graph and
dependency graph.

In our work, we establish a computational graph using the ONNX framework for pruning. The
adoption of ONNX offers several notable advantages. First, ONNX provides a static trace of the
model, facilitating the straightforward construction of a computational graph based on its explicit
representation. Second, ONNX offers a standardized format for model representation. Regardless
of how various layers are defined in different frameworks, once converted to ONNX, they assume a
uniform sequence of fundamental ONNX operators. This standardization ensures that the analysis
of the computational graph remains independent of the underlying frameworks, thus making it
framework-agnostic. Third, ONNX enables seamless portability and cross-platform compatibility
for models. Models can be effortlessly converted between different frameworks and ONNX. In our
work, as depicted in Fig. 1, we initially convert models to the ONNX format. This step allows us
to construct and examine the computational graph, as well as directly modify the ONNX model.
Afterward, we have the option to convert the model back to its original framework.

3.2 Prune Any Architecture

Given the neural network fΘ(x) = y where x is the input, y is the predicted output, and Θ =
{θ(1), ..., θ(L)} are the parameters with L layers, the goal of SPA is to automatically detect structural
correlations within parameters θ(1), ..., θ(L), and prune their less important channels or dimensions.
To this end, SPA uses four steps:

Step 1: Coupling channels via mask propagation. Coupling channels are channels that are
interconnected due to the dimensional constraints of subsequent layers (e.g. see same colored

4

channels in Figs. 1 and 5). Given the computational graph, we employ a mask propagation technique
which intuitively aims at finding all the coupled channels for any target channel within any source
node. To this end, it initially creates a mask for the target channel in the source node, and iteratively
passes it through the operator nodes using predefined rules to identify correlated channels in other
parameter nodes. These predefined rules are specific to the standard ONNX operators (see details
in Appendix A.3). We explicitly describe the mask propagation algorithm in Alg. 1. First, it
takes as input a computational graph CG, a source data node vs and a mask mvs for the target
channel that initializes propagation. Then, it iteratively visits neighboring operator nodes defined by
neighbor(u,CG) (see l.5 in Alg. 1), and propagates masks with the propagation rules defined by
vop.propagate(mu, u) (see l.7 in Alg. 1).

Algorithm 1 Coupling channels via mask propagation
Input: computational graph CG, a source node s, a source mask mvs in which a target channel

is masked.
Output: a dict M containing masks in which coupled channels are masked.

1: M = {vs : mvs}; stack = (vs,mvs)
2: # Visit all correlated data nodes
3: while stack do
4: u,mu = stack.pop()
5: for op in neighbor(u,CG) do
6: # Propagate mu from u via vop
7: Mneighbors = vop.propagate(mu, u)
8: for v in Mneighbors not in M do
9: stack.push(v,Mneighbors[v])

10: M.push(v,Mneighbors[v]

11: return M

Step 2: Grouping coupled channels. After utilizing the mask propagation method to effectively
detect coupled channels in the previous step, we now propose to organize them into groups.

We use G = {g1, g2, ..} to denote all groups. A specific group gi contains a set of coupled channels
CC which have the same pattern (e.g. as represented by the group of four colored sets of coupled
channels in Fig. 5), hence gi = {CC1, CC2...}. Each coupled channel needs to be deleted as a whole.
The individual channels into a given layer in coupled channels are denoted as C. Each parameter θ,
within a coupled channel, can be assigned an importance score using some score function S(θ).

The grouping algorithm is shown in Alg. 2. We are given a computational graph, and the algorithm
returns all groups. The algorithm loops over all operators in the computational graph to detect coupled
channels. To avoid redundant computation, only the output channels of the parameter nodes of each
operator are analyzed since the input channels of the operator have been analyzed by its preceding
operator.

Step 3: Importance estimation. After obtaining the groups, the next step is to assign to each
set of coupled channels an importance score which is critical to effectively execute structured
pruning. Indeed, this notion has been previously embraced by methodologies such as Group Fisher
Liu et al. (2021) and DepGraph Fang et al. (2023), both of which validated its efficacy through
empirical experiments. Our approach capitalizes on its inherent autonomous capability to recognize
interconnected channels, thereby achieving a higher degree of generality and unity by providing
support for a wide range of diverse aggregation and normalization of the individual weight scores.
Hence, we propose the following scoring function for the coupled channels j in group i:

si,j = Norm
CCl∈gi

({AGG(S(θk),∀θk ∈ CCj)}) (1)

The operator AGG aggregates all importance scores S(θk) within the set of coupled channels CCj

into a singular score which is then normalized over the other coupled channels of the same group via
the operator Norm to keep the scores of coupled channels from different groups within the same
range for a fair assestment of relative importance. This scoring function is flexible and can encompass
different weight scores S (e.g. L1 norm, first-order or second-order, and OBS Hassibi & Stork (1992)
importance scores), different aggregation operators AGG (e.g. mean, max, and product), or different

5

Algorithm 2 Grouping coupled channels
Input computational graph CG, set OPS with non analyzed operators
Output Groups: G

1: G← ∅
2: while OPS not empty do
3: vop = OPS.pop()
4: g = ∅;u = parameter_node(vop)
5: # Add all coupled channel CC for group g
6: for C in u’s output channels do
7: mu = create_mask(u,C)
8: CC = coupled_ch(CG, u,mu) ▷ Alg. 1
9: g.add(CC)

10: G.insert(g)
11: # Mark visited all analyzed operators in group g
12: for vop in analyzed_ops(CG, g) do
13: OPS.remove(op)
14: return G

normalization scores Norm (e.g. summation, maximum, or median). The best choice of AGG and
Norm function is not fixed over different models; it can be regarded as hyper-parameters that need
to be tuned before pruning. We present the detailed algorithm in the Appendix as Alg. 3.

Step 4: Pruning. After obtaining the importance score for each set of coupled channels, we simply
sort them to identify the least important ones. Subsequently, we locate these channels in the ONNX
model, before finally removing them by adjusting the shape and data in the corresponding parameter
nodes.

Time complexity: Within a single group gi, we assume that there are |Ei| edges in this sub computa-
tional graph and mi set of coupled channels. The analysis of a single channel takes O(|Ei|) since
the application of the predefined rules takes O(1) and in the worst case we need to analyze every
link between data nodes and operators. If we loop over all channels within one group as suggested in
Alg. 2, it takes O(|Ei| ·mi). However, a single mask propagation analysis per group is sufficient
because all coupled channels within a group adhere to the same pattern. This reduces the complexity
of analyzing one group to O(|Ei|). For the whole neural network, the analysis in each group is
non-overlapping, so the overall complexity of grouping a neural network will still be O(|E|) where
|E| =

∑
|Ei| is the number of edges of the network. The pruning procedure is simply a loop over

all operators which takes O(|Vparam|) where |Vparam| is the total operator number. The overall
complexity of our pruning procedure is O(|E|+ |Vparam|).

3.3 Prune Any Time

In the previous sections, we developed the general SPA framework to automatically detect coupled
channels and assign them an importance score. Leveraging the grouping analysis capabilities of
SPA, we can incorporate many importance estimation criteria (denoted by S(.) in Eq. (1)) into our
framework. These pruning criteria are usually designed to be used at different training stages like in
the train-prune-finetune, the purne-train, and the train-prune settings. Beyond enabling the application
of pruning at different training stages, the SPA framework allows to transfer existing pruning criteria
into a group-level structured version.

Train-Prune-Finetune. We support criteria that follow the train-prune-finetune scheme. The
Magnitude-based criterion is the simplest method to determine a parameter’s importance after
training. By aggregating the L1-norm following Eq. (1), we have SPA-L1, a group-structured pruning
criterion after training. Although the ONNX model is perfect for performing forward passes and
building a standardized computational graph, it is not suitable for backward pass for the subsequent
fintuning. In order to support the train-prune-finetune scheme, more specifically the finetuning phase,
we need to convert the pruned ONNX model to any framework that supports gradient calculation, in
our case, we choose PyTorch.

6

Prune-Train. We also support the prune-train scheme by applying the same group extension to
before-training criteria; for example, we implement SPA-SNIP, SPA-Crop and SPA-GraSP which
serve as group-based extensions of the three pre-training pruning criteria, SNIP Lee et al. (2019),
CroP Rachwan et al. (2022) and GraSP Wang et al. (2020), respectively. Those three methods require
the calculation of first or second-order derivatives of the parameters which is not natively supported
by ONNX. To support gradient-based importance scores, SPA proposes to convert back the ONNX
model into a framework supporting gradient computation like Pytorch. Thus, while SPA conveniently
benefits from the computational graph from ONNX to achieve its framework and architecture agnostic
properties (see Secs. 3.1 and 3.2), it also benefits from the practical gradient computations capacities
from Pytorch. It is worth mentioning that the conversion between PyTorch and ONNX produces very
limited computation overhead, which takes only seconds (see Tab. 6).

Train-Prune. For the more challenging pruning without fine-tuning setting, we propose a new
algorithm, Optimal Brain SPA (OBSPA). We leverage the layer-wise sparsification operated by the
unstructured pruning methods OBC Frantar et al. (2022) and its scalable version Frantar & Alistarh
(2023), to create a novel structured pruning method which can be integrated into our SPA framework.
In the original OBC method, the goal is to find a mask M and an updated weight matrix Θ̂ that best
preserves the output of each layer given some calibration data X and the original weight matrix Θ,
i.e:

argminM ,Θ̂||ΘX − (M ⊙ Θ̂)X||22 (2)

Based on Frantar & Alistarh (2023), the mask M is determined according to the layer-OBS score (see
Eq. (12)), and the weight matrix is updated based on the inverse Hessian H−1 = (XXT + λI)−1.

Different from OBC, which uses masks with scattered zeros to facilitate unstructured pruning, OBSPA
applies group-level importance estimation to obtain masks that have zeros of entire channels. While
the weight updating procedure in OBSPA is similar to Frantar & Alistarh (2023), a crucial difference
is that we need to structurally score each coupled channel as a whole with Eq. (1) to properly delete
them without breaking the computational graph (see Fig. 7). Hence, in contrast with OBC, OBSPA
can deliver real-world efficiency gains on GPU hardware.

Finally, a notable advancement of OBSPA compared to OBC pertains to the selection of calibration
data employed for Hessian computation. Frantar & Alistarh (2023) use In Distribution (ID) data
directly sampled from the training set. However, since the calibration data is only used to preserve the
functionality of each layer, we made some relaxations on the previous setting to make it a data-free
approach. In a more lenient data-free context, we lack access to the original training data but can
employ data from Out-of-Distribution (OOD) sources. The most rigorous data-free scenario entails a
lack of access to both ID and OOD data. Calibration samples are drawn from a uniform distribution
in this "DataFree" setting. We evaluate both data-driven and data-free approaches in the experiment.
Additionally, we propose a batch norm calibration method to improve the performance under ID and
OOD settings (see Appendix B.3 for details).

4 Experiments

In this section, we show that SPA can prune any framework (see Sec. 4.1), any architecture (see
Sec. 4.2), any time (see Sec. 4.3).

Dataset. This work mainly focuses on image classification tasks. We conduct extensive experiments
with various datasets including CIFAR-10 (Krizhevsky et al., a), CIFAR-100 (Krizhevsky et al., b),
ImageNette Howard and ImageNet-1k Deng et al. (2009). We also conduct experiments on text tasks
and conduct experiments with SST-2 Socher et al. (2013) dataset, which is a sentiment classification
task in NLP.

Evaluation metrics. The metric employed to evaluate the extent of performance preservation after
pruning is classification accuracy. Similarly to Fang et al. (2023); Narshana et al. (2023), our
evaluation of efficiency encompasses two primary measures: reduction in floating point operations
(FLOPs), denoted as RF , and reduction in parameters, denoted as RP . It is important to emphasize
that the RF metric carries greater significance, as it accurately reflects the actual reduction in

7

computational workload. We employ the fraction of reduced FLOPs and the fraction of reduced
parameters, which range from 0 to 1, to facilitate the visualization of these metrics in the figures.

4.1 Prune Any Framework

To validate that SPA is framework-agnostic, we investigated the pruning of ResNet-18 models derived
from PyTorch, TensorFlow, MXNet, and Jax, using the ImageNette dataset as a benchmark for
performance evaluation. Models were first initialized and trained within their respective frameworks,
after which they were converted to the ONNX format, a reduction of approximately 2× in FLOPs
utilization is targeted after pruning. In addition to the pruning outcomes, we also test the computational
overhead incurred during the framework conversion process, all conversions can be completed within
seconds (see Tab. 6 in Appendix).

Observations: In Tab. 1, the outcomes of pruning ResNet-18 models from diverse source frameworks
are presented. We show that we successfully prune models from all four frameworks, this validates the
framework-agnostic prowess of SPA. The experiment underscores that a model can be successfully
converted to the ONNX format in seconds, and then pruned using SPA framework.

Table 1: Structure pruning with SPA from 4 important Deep Learning frameworks with ResNet-18
on ImageNette

Framework ori acc. pruned acc. RF RP

PyTorch 83.11% 82.96% 2.16× 2.05×
TensorFlow 82.62% 84.30% 1.94× 5.25×
MXNet 84.36% 82.77% 1.83× 8.03×
Jax 84.46% 83.33% 2.26× 3.64×

4.2 Prune Any Architecture

To showcase SPA’s pruning ability across various architectures, we conducted pruning experiments on
a range of 11 architectures including AlexNet, DenseNet-121, EfficientNet-b0, MobileNet-v2, Reg-
Net_x_16gf, ResNet-50, Resnext-50_32x4d, VGG-16, and Wide-ResNet-101_2, ViT-base-patch16
on image classification task and DistilBERT on sentiment classification task. These architectures
demonstrate a variety of building blocks including skip connections, MLP, convolutions, group con-
volutions, attention mechanisms, batch normalization, and more. The pruning process was executed
within the context of the train-prune-finetune setting with the L1-based criterion being used as the
designated importance score. In this experiment, we target a reduction of ∼ 2× in FLOPs for all
models.

Observations: The outcomes, as presented in Tab. 2, underscore the power of SPA in supporting
a wide range of neural network architectures containing all of the aforementioned building blocks.
Even with the simple L1-based criterion, the pruned models achieve very competitive performance
compared to their dense counterparts.

4.3 Prune Any Time

Prune with fine-tuning. By harnessing the channel grouping capability of SPA, we unlock the
potential for extending a multitude of established criteria to a structured group-level pruning paradigm.
We aim to underscore the efficacy of our grouped importance estimation method under the pruning
with fine-tuning setting on criteria applied both before and after training. We compare the performance
of the group L1-based criterion, a train-prune-finetune criterion, to the ungrouped L1 criterion. Then,
we delve into the prune-train criteria, where we compare the extended grouping of three prevalent
unstructured approaches – SNIP, CroP, and GraSP – alongside their structured counterparts, SNAP,
structured-CroP, and structured-GraSP. Finally, we also evaluate the OBSPA with additional fine-
tuning. The postfix "it" denote that pruning is applied in an iterative manner. The evaluation
is performed on ResNet-18/CIFAR-10, VGG-16/CIFAR-100, DenseNet-121/ImageNet, ResNet-
50/ImageNet and Vit_b_16/ImageNet.

Observations: Through Figs. 3 and 9, we first conclusively showcase SPA’s versatility in accommo-
dating diverse methodologies. For unstructured criteria like L1-based, SNIP, CroP, and GraSP, the

8

Table 2: Structured pruning with SPA on 11 architectures on CIFAR10 for image classification
models and SST-2 for DistilBERT.

Model ori acc. pruned acc. RF RP

AlexNet 89.99% 89.80% 1.98× 1.46×
DenseNet-121 93.30% 94.20% 2.14× 2.35×
EfficientNet-b0 94.15% 92.,06% 2.14× 1.86×
MobileNet-v2 92.33% 92.54% 2.33× 2.07×
RegNet_x_16gf 93.83% 93.75% 2.13× 1.83×
ResNet-50 93.26% 93.42% 2.13× 1.98×
ResNext-50_32x4d 93.95% 93.99% 2.07× 2.05×
VGG16 93.82% 94.06% 2.05× 2.45×
WideResNet-101 93.50% 93.41% 2.00× 1.88×
ViT-base 95.35% 96.10% 2.05× 1.50×
DistilBERT 91.06% 88.88% 2.04× 1.50×

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3: Trade off between accuracy and FLOPs/parameters with VGG-16 on CIFAR-100 (Figs. 3a
to 3h). SPA efficiently implements both the structured and grouped versions of train-prune-finetune
criteria like L1 and prune-train criteria like SNAP, CroP and GraSP

Table 3: Structured pruning of ResNet-50 on ImageNet with fine-tuning. ”N/R” indicate non-reported
results in original papers.

method top1 acc. top5 acc. RF RP

Base Model 76.15% 92.86% 1× 1×
DFPC Narshana et al. (2023) 75.83% N/R 1.98× 1.84×
OTO-v2 Chen et al. (2023) 75.2% 92.2% 2.68× 2.02×
DepGraph Fang et al. (2023) 75.83% N/R 2.07× N/R
SPA-L1 74.83% 92.57% 2.84× 2.60×
SPA-L1 76.39% 93.29% 2.18× 1.85×
OBSPA 76.59% 93.40% 2.22× 1.90×

Table 4: Structured pruning of ResNet-50 and VGG-19 on CIFAR-10 and CIFAR-100 without
finetuning

CIFAR-10 CIFAR-100
ResNet-50 VGG-19 ResNet-50 VGG-19

method acc. drop RF RP acc. drop RF RP acc.drop RF RP acc. drop RF RP

DFPC -4.74% 1.46 2.07 -3.38% 1.68 3.16 -8.53% 1.27 1.22 -1.92% 1.26 1.50
OBSPA (ID) -0.95% 1.48 1.51 -0.99% 1.71 1.44 -3.73% 1.46 1.32 -0.80% 1.54 1.28
OBSPA (OOD) -1.13% 1.48 1.52 -1.67% 1.73 1.35 -3.70% 1.47 1.34 -1.13% 1.54 1.28
OBSPA (DataFree) -1.34% 1.48 1.51 -1.64% 1.80 1.35 -5.24% 1.37 1.23 -1.59% 1.47 1.28

9

(a) (b)

Figure 4: Trade off between accuracy and FLOPs/parameters with DistilBERT on SST-2 sentiment
classificaiton task.

extension to group-structured pruning is easily achieved through the SPA group analysis. Moreover,
we interestingly observe that the performance of the SPA grouped pruning criteria either matches
or outperforms their original structured counterparts. We intuitively explain this observation by
the fact that, in contrast with the original structured version of the algorithms, the SPA grouped
versions accounts for all information in a set of coupled channels by aggregating the importance
scores over all its weights. We also observe that gradual iterative pruning consistently yields superior
outcomes compared to one-shot channel pruning across nearly all methods. Finally, SPA matches or
outperforms the performance of previous dependency graph approaches on ImageNet in Tabs. 3, 7
and 8.

Prune without fine-tuning. In this section, our focal point is to showcase the state-of-the-art
performance achieved by OBSPA in the challenging train-prune setting. Following the precedent
established by DFPC, we assess the classification performance of pre-trained ResNet-50, ResNet-101,
and VGG-19 models on both CIFAR-10 and CIFAR-100 datasets. We also test OBSPA’s performance
on NLP tasks, and compare OBSPA with L1-based one-shot pruning on pruning a DistilBERT that
conducts sentiment classification on SST-2 dataset. Additionally, experiments involving ResNet-
50 on the ImageNet dataset have been included in the Appendix (see Appendix C.3) to further
substantiate our findings. We conducted experiments in both data-driven and data-free settings. In
the experiments, CIFAR-10 serves as OOD dataset for CIFAR-100, and CIFAR-100 serves as OOD
dataset for CIFAR-10. We use ax Wang et al. (2019), another text dataset that contains Natural
Language Inference (NLI) problems as OOD dataset for SST-2.

Observations: We establish a comprehensive comparison between our algorithm and the data-free
pruning approach DFPC. Tab. 4 shows the result of pruning a ResNet-50 and a VGG-19. The
outcomes demonstrate the superiority of OBSPA over DFPC. Specifically, when achieving identical
levels of FLOPs reduction, our data-free technique exhibits a mere 1.34% accuracy drop on the
CIFAR-10 classification task with ResNet-50, a remarkable contrast to DFPC’s 4.74% drop. This
substantial-performance disparity is also noteworthy on the more complex CIFAR-100 dataset.
Notably, for the CIFAR-100 classification with ResNet-50, our data-free approach showcases a 10%
greater FLOPs reduction coupled with a 3.29% less reduction in accuracy deterioration compared
to DFPC. This promising trend is consistently replicated across the ResNet-101 and VGG-19, the
ResNet-101 experiment is listed in Appendix. Furthermore, we compare OBSPA with a basic L1-
based one-shot pruning criterion with DistilBERT on SST-2, as suggested in Fig. 4, OBSPA achieves
a much better performance/efficiency trade-off. Finally, OBSPA is also much faster than DFPC. We
compare the pruning time of our OBSPA algorithm to DFPC, see results in Appendix Tab. 13. We
achieved an impressive 6× speedup for pruning ResNet-50 on both CIFAR and ImageNet-1k dataset.

5 Conclusion

In this work, we introduce SPA, a novel pruning framework that not only automates the pruning of
neural networks across diverse architectures but also accommodates models originating from various
frameworks. By capitalizing on its inherent capability to aggregate interdependent channels, SPA
can convert many pruning criteria into structured pruning algorithms at the group level making it
applicable at any time in the training process. Finally, we propose OBSPA, a structured pruning
without fine-tuning algorithm which achieves state-of-the-art performance.

10

Broader Impact

This paper presents work that aims to advance the field of efficient Machine Learning (ML). Beyond
increasing the speed of ML models, a primary goal of efficiency gains is to reduce the energy and
emissions impact of ML applications which is an urgent environmental challenge Dhar (2020).
Despite the cost reduction that ML compression methods can offer, we encourage practitioners to be
aware of the risk of rebound effect and make non-energy policy a standard practice Dhar (2020).

References
Blalock, D. W., Ortiz, J. J. G., Frankle, J., and Guttag, J. V. What is the state of neural network

pruning? ArXiv, abs/2003.03033, 2020.

Chen, T., Ji, B., Tianyu, D., Fang, B., Wang, G., Zhu, Z., Liang, L., Shi, Y., Yi, S., and Tu, X. Only
train once: A one-shot neural network training and pruning framework. In Thirty-Fifth Conference
on Neural Information Processing Systems, 2021.

Chen, T., Liang, L., Tianyu, D., Zhu, Z., and Zharkov, I. Otov2: Automatic, generic, user-friendly. In
International Conference on Learning Representations, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255.
Ieee, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), June 2019.

Dhar, P. The carbon impact of artificial intelligence. Nature Machine Intelligence, 2:423 – 425, 2020.
URL https://api.semanticscholar.org/CorpusID:225488526.

Ding, X., Hao, T., Tan, J., Liu, J., Han, J., Guo, Y., and Ding, G. Resrep: Lossless cnn pruning via
decoupling remembering and forgetting. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 4510–4520, 2021.

Dong, X., Chen, S., and Pan, S. J. Learning to prune deep neural networks via layer-wise optimal
brain surgeon. In NIPS, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth 16x16
words: Transformers for image recognition at scale. ArXiv, abs/2010.11929, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Evci, U., Elsen, E., Castro, P., and Gale, T. Rigging the lottery: Making all tickets winners, 2020.
URL https://openreview.net/forum?id=ryg7vA4tPB.

Fang, G., Ma, X., Song, M., Mi, M. B., and Wang, X. Depgraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16091–16101, 2023.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language models can be accurately pruned in one-shot.
ArXiv, abs/2301.00774, 2023.

Frantar, E., Singh, S. P., and Alistarh, D. Optimal Brain Compression: a framework for accurate
post-training quantization and pruning. Advances in Neural Information Processing Systems, 36,
2022.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both weights and connections for efficient neural
network. In NIPS, 2015.

11

https://api.semanticscholar.org/CorpusID:225488526
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=ryg7vA4tPB

Hassibi, B. and Stork, D. G. Second order derivatives for network pruning: Optimal brain surgeon.
In NIPS, 1992.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

He, Y. and Xiao, L. Structured pruning for deep convolutional neural networks: A survey. ArXiv,
abs/2303.00566, 2023.

He, Y., Zhang, X., and Sun, J. Channel pruning for accelerating very deep neural networks. 2017
IEEE International Conference on Computer Vision (ICCV), pp. 1398–1406, 2017.

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. Soft filter pruning for accelerating deep convolutional
neural networks. In International Joint Conference on Artificial Intelligence, 2018a.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter pruning via geometric median for deep
convolutional neural networks acceleration. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4335–4344, 2018b.

Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song, D. Natural adversarial examples. CVPR,
2021.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and
Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
ArXiv, abs/1704.04861, 2017.

Howard, J. Imagewang. URL https://github.com/fastai/imagenette/.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely connected convolutional networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, 2016.

Huang, Z. and Wang, N. Data-driven sparse structure selection for deep neural networks. ArXiv,
abs/1707.01213, 2017. URL https://api.semanticscholar.org/CorpusID:575794.

Jian-Hao Luo, J. W. and Lin, W. Thinet: A filter level pruning method for deep neural network
compression. In ICCV, pp. 5058–5066, 2017.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian institute for advanced research). a. URL
http://www.cs.toronto.edu/~kriz/cifar.html.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-100 (canadian institute for advanced research). b.
URL http://www.cs.toronto.edu/~kriz/cifar.html.

Lazarevich, I., Kozlov, A., and Malinin, N. Post-training deep neural network pruning via layer-wise
calibration. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW),
pp. 798–805, 2021.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman, H., and Madry, A. FFCV: Accelerating
training by removing data bottlenecks. In Computer Vision and Pattern Recognition (CVPR), 2023.
https://github.com/libffcv/ffcv/. commit xxxxxxx.

LeCun, Y., Denker, J. S., and Solla, S. A. Optimal brain damage. In NIPS, 1989.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot network pruning based on connection
sensitivity. In ICLR, 2019.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. Pruning filters for efficient convnets.
ArXiv, abs/1608.08710, 2016.

Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., and Shao, L. Hrank: Filter pruning using
high-rank feature map. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1526–1535, 2020.

Liu, L., Zhang, S., Kuang, Z., Zhou, A., Xue, J., Wang, X., Chen, Y., Yang, W., Liao, Q., and Zhang,
W. Group fisher pruning for practical network compression. In International Conference on
Machine Learning, 2021.

12

https://github.com/fastai/imagenette/
https://api.semanticscholar.org/CorpusID:575794
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/libffcv/ffcv/

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. Learning efficient convolutional networks
through network slimming. 2017 IEEE International Conference on Computer Vision (ICCV), pp.
2755–2763, 2017a.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. Learning efficient convolutional networks
through network slimming. In ICCV, 2017b.

Lubana, E. S. and Dick, R. P. A gradient flow framework for analyzing network pruning. In
International Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=rumv7QmLUue.

Narshana, T., Murti, C., and Bhattacharyya, C. DFPC: Data flow driven pruning of coupled channels
without data. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=mhnHqRqcjYU.

Rachwan, J., Zügner, D., Charpentier, B., Geisler, S., Ayle, M., and Günnemann, S. Winning the
lottery ahead of time: Efficient early network pruning. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research.
PMLR, 2022.

Radosavovic, I., Kosaraju, R. P., Girshick, R. B., He, K., and Dollár, P. Designing network design
spaces. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
10425–10433, 2020.

Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C., Ng, A., and Potts, C. Parsing With
Compositional Vector Grammars. In EMNLP. 2013.

Srinivas, S. and Babu, R. V. Data-free parameter pruning for deep neural networks. In British
Machine Vision Conference, 2015.

Tan, M. and Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/tan19a.html.

Verdenius, S., Stol, M., and Forré, P. Pruning via Iterative Ranking of Sensitivity Statistics. arXiv
e-prints, art. arXiv:2006.00896, June 2020.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. Glue: A multi-task benchmark
and analysis platform for natural language understanding. In 7th International Conference on
Learning Representations, ICLR 2019, 2019.

Wang, C., Zhang, G., and Grosse, R. Picking winning tickets before training by preserv-
ing gradient flow. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SkgsACVKPH.

Xiao, X., Wang, Z., and Rajasekaran, S. Autoprune: Automatic network pruning by regularizing
auxiliary parameters. In Neural Information Processing Systems, 2019.

Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. Aggregated residual transformations for deep
neural networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5987–5995, 2016.

You, H., Li, C., Xu, P., Fu, Y., Wang, Y., Chen, X., Baraniuk, R. G., Wang, Z., and Lin, Y. Drawing
early-bird tickets: Toward more efficient training of deep networks. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=BJxsrgStvr.

You, Z., Yan, K., Ye, J., Ma, M., and Wang, P. Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

13

https://openreview.net/forum?id=rumv7QmLUue
https://openreview.net/forum?id=rumv7QmLUue
https://openreview.net/forum?id=mhnHqRqcjYU
https://proceedings.mlr.press/v97/tan19a.html
https://openreview.net/forum?id=SkgsACVKPH
https://openreview.net/forum?id=BJxsrgStvr

Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V. I., Han, X., Gao, M., Lin, C.-Y., and Davis, L. S.
Nisp: Pruning networks using neuron importance score propagation. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9194–9203, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks. In BMVC, 2016.

Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., and Zhu, J.-H. Discrimination-
aware channel pruning for deep neural networks. In Neural Information Processing Systems, 2018.
URL https://api.semanticscholar.org/CorpusID:53102564.

14

https://api.semanticscholar.org/CorpusID:53102564

A Method Details

In this section, we provide a more detailed explanation of our method as well as implementation
details.

A.1 SPA group visualization

We provide in Fig. 5 an example of a group of a residual structure with four sets of coupled channels.
Within this group, each color represents a coupled channel that must be pruned altogether.

A.2 Building Computational Graph

Starting with an ONNX model, we apply onnx-graphsurgeon, a tool developed in the NVIDIA’s
TensorRT tookit2. This library enables the effortless generation and modification of ONNX models,
allowing us to transform the model into a graphsurgeon graph, which we referred to as "gs_graph."
This gs_graph serves as a straightforward intermediate representation characterized by intercon-
nected Nodes, each functioning as an operator. Every Node maintains its own set of inputs and
outputs. To enhance subsequent analysis, we construct our Computational Graph using gs_graph
which is used in Sec. 3 as a foundation for SPA. Instead of relying solely on operator Nodes, we
introduce separate nodes for operators, parameters, and intermediate data. This approach allows us to
define propagation methods on the nodes we generate.

A.3 Coupling channels via mask propagation

Our approach hinges on the development of mask propagation rules tailored to individual core ONNX
operators, the rules provide information on how channels are correlated within a single ONNX
operator. Once these propagation rules are established for all operators within a network structure, we
gain the capability to comprehensively analyze this network. By formulating rules for the majority of
foundational operators, our methodology can effectively analyze a broad spectrum of neural network
architectures. Furthermore, in the event that new operators are introduced, we can seamlessly extend
our analysis by defining specific rules for these novel operators. This adaptability ensures our method
remains versatile and up-to-date in addressing evolving neural network structures.

Our implementation supports more than 150 different operators, which are building blocks of deep
learning architectures. As an example, we take the important example of the propagation through
one and two General Matrix Multiplication (GeMM) operators defined by ONNX. First, we show a
simplified definition of GeMM.

Function:

• compute Y = X ∗W +B

Inputs:

• X: input tensor with shape (M,K)
• W : input tensor with shape (K,N)
• B: optional input tensor, if not specified, the computation is done as if B is a scalar 0. The

shape of B should be unidirectional broadcastable to (M,N).

Outputs:

• Y : output tensor with shape (M,N)

Propagation through one GeMM operator: We establish the propagation rule for the GeMM
operator when every possible dimension (i.e. first dimension denoted by 0 or second dimension
denoted by 1) of every possible involved variable (i.e. X , W , B, Y) is masked. Given the input mask
of a single data node among all data nodes linked to the operator, the analysis procedure yields masks
for the remaining data nodes. Detailed guidelines governing the analysis of GeMM are documented
in Tab. 5. To illustrate, considering the first column Tab. 5, it implies that the removal of the first

2https://github.com/NVIDIA/TensorRT

15

Figure 5: Showcase of a group of a residual structure. Four convolutions with a residual skip form
this residual structure. All colored blocks form a group. Within this group, each color represents a
coupled channel that must be pruned altogether.

dimension in input X necessitates the simultaneous removal of the first dimension in both B and
output Y .

Table 5: Analysis rule of GeMM operator. Given an input mask covering dimension 0 or 1 of any
variable X , W , B, Y , the analysis rule defines the dimensions which should be covered in the output
masks for the other variables.

Input mask X:0 X:1 W:0 W:1 B:0 B:1 Y:0 Y:1
Output mask B:0,Y:0 W:0 X:1 B:1, Y:1 X:0,Y:0 W:1, Y:1 X:0,W:0 W:1,B:1

Propagation through two GeMM operators: With the analysis rule of GeMM, we then provide
an illustrative depiction of our analysis applied to two connected GeMM operators in Fig. 6. The
computational graph depicts the linkage of two interconnected GeMM operators, each containing a
pair of input nodes (one serving as the operator input, and the other as the weight matrix) as well
as an output data node. To simplify the illustration, we consider the GeMM operator without a bias
term. For input and output data nodes, each column corresponds to a distinct sample, while the row
count corresponds to the number of features. For the weight nodes the column number indicates the
input feature number, and the row number indicates the output feature number. As an example, X1

serves as the input for GeMM1, encompassing 3 samples, each possessing 4 features. The output of
GeMM1 comprises 4 features, hence the weights of GeMM1 form a 4× 4 matrix, and the resulting
output, X2, assumes a shape of 4× 3.

The mask propagration analysis starts by applying a mask to one target channel of the source node. In
Fig. 6, we aim to eliminate the first output channel of W1. The algorithm first finds the corresponding
operators of this data node. In this case, GeMM1 is the only operator that needs to be analyzed since
W1 belongs to it and there are no other operators that generate W1. By applying predefined rules
defined in Tab. 5, we are given a new mask of X2, indicating the necessity of deleting the first feature
of X2, as well as the fact that X1 is not affected. Then we apply the same methods on the new mask
of X2, it will first find both GeMM1 and GeMM2 as affected operators, but we will skip GeMM1

since it is already analyzed. Through this analysis step, we are returned the new mask of W2, which
indicates that we also need to delete the first input channels of W2. We are also informed that X3, the
output of GeMM2 will not be affected. The analysis will end here because the mask of W2 will incur
no analysis on new operators. In this way, we get the coupled channels of the initial target channel in
the form of masks.

A.4 Importance Estimation

Alg. 3 is used to assign each coupled channel an importance score. The assessment of importance
scores for individual parameters is first undertaken through designated criteria. Subsequently, the
aggregation of these scores within each prunable dimension yields a consolidated measure. In pursuit
of a global pruning strategy, scores are normalized within each group, thereby ensuring uniformity
across all groups.

16

Figure 6: Example of operator-level analysis of a two connected GeMM. The analysis starts by
masking the first output channels of W1, through a series of mask propagation, the first feature
dimension of x2 and the first input channel of W2 are also masked. The propagation order is
illustrated through arrows.

Algorithm 3 Group-level importance estimation
Input Groups: G, importance estimation criterion
Output score for each coupled channel

1: assign each parameter a score with the salience estimation criterion
2: scores = ∅ ▷ initialize score
3: for g in G do
4: scoresg = ∅ ▷ initialize score of the group
5: for CC in g do
6: scoreCC = AGG(S(θk)) for all θk in CC
7: scoresg.insert(scoreCC)
8: scores.insert(Norm(scoresg))
9: return scores

A.5 Pruning Criteria

Pruning requires selectively removing redundant parameters (or connections) in the neural network.
In order to do so, one has to come up with a good criterion to identify such redundant connections. In
this section, we introduce some popular criteria that are applied to our method.

We first introduce important notations. Assume we have a neural network F : y = fΘ(x) with
parameter Θ, that maps the input data x ∈ Rm to the output y ∈ Rn, Θ denotes the parameters of the
neural networks, a specific parameter is denoted as θ. The neural networks have multiple layers, we
use L to denote the total layer number and l to denote a specific layer. The parameters are optimized
based on the loss function L. We use g and H to denote the first-order derivative and second-order
derivative (Hessian) of the loss with respect to the parameters, For a specific parameter, g(θ) = ∂L

∂θ ,
H(θ) = ∂2L

∂θ2 , the importance score is S(θ).

Magnitude-based criterion directly uses the magnitude of each parameter as its importance score,
parameters below a certain threshold are regarded as redundant. It can be simply defined as Eq. (3).

S(θ) = |θ| (3)

SNIP Lee et al. (2019) is a sensitivity-based unstructured pruning criterion to be applied before
training. To calculate the sensitivity of each parameter, an auxiliary gate variable c over the model’s
parameter is defined. They then initialize all c = 1 and do not update them anymore. the criterion is
defined as the derivative of the loss w.r.t. the gates according to Eq. (4).

S(θ) =
∂L(θ ⊙ c)

∂c
= g(θ)⊙ θ (4)

SNAP Verdenius et al. (2020) proposed method to extend SNIP to structured pruning criterion
by applying the auxiliary gates c = 1 over each node’s activation, which is denoted as h, the ith
activation in layer l is denoted as h(l)

i the importance score will be calculated with respect to the
activation instead of a single parameter as defined in Eq. (5).

17

S(h
(l)
i) =

∂L(h(l)
i ⊙ c

(l)
i)

∂c
(l)
i

(5)

GraSP Wang et al. (2020) is based on the second-order derivative (Hessian) of the loss with w.r.t.
the parameters. The goal of GraSP is to preserve or even increase the gradient flow. The Eq. (6) is
used to measure the change of the gradient flow after pruning the parameter. If the score is positive,
removing the corresponding parameter will reduce the gradient flow, and if the score is negative,
removing the parameter will increase the gradient flow.

S(Θ) = −ΘTH(Θ)g(Θ) (6)

CroP Lubana & Dick (2021); Rachwan et al. (2022) also apples the second-order derivative to
calculate the importance. The score of CroP is calculated as Eq. (7). The idea of this criterion is to
preserve the gradient flow or training dynamics during training.

S(Θ) = |ΘTH(Θ)g(Θ)| (7)

Structured-GraSP (Eq. (8)) and Structured-CroP (Eq. (9)) apply a similar idea as SNAP to add
auxiliary gate variables over activation to extend the unstructured criterion to a structured one.

S(h(l)) = −H(c(l))g(c(l)) (8)

S(h(l)) = |H(c(l))g(c(l))| (9)

OBD LeCun et al. (1989) and OBS Hassibi & Stork (1992) use the Hessian of the loss w.r.t.
the parameters to calculate the importance score, the higher the value of Hessian, the higher the
importance of the parameters. For the jth parameter θj , see Eq. (10) for OBD score and Eq. (11) for
OBS score. However, this approach requires the calculation of Hessian of all parameters of the neural
networks, making it intractable to compute for large networks.

(OBD) S(θj) =
θ2jHj,j

2
(10)

(OBS) S(θj) =
θ2j

2H−1
j,j

(11)

OBC Frantar et al. (2022) applies the method of OBS layer-wise to make the calculation tractable.
Instead of minimizing the influence on the final loss in OBS, OBC minimizes the reconstruction
error per layer, see Eq. (2) for problem definition, the goal is to find the optimal weight mask as well
as an optimal update of the weight matrix to minimize the reconstruction error. OBC introduces a
greedy solver that removes weights one-at-a-time, then fully reconstruct the remaining weights after
each iteration via an efficient closed-form equations. The importance of the jth parameter of the lth
layer is determined by their influence on the reconstruction error of the layer output as defined in
Eq. (12). The hessian matrix of each layer is used here to calculate the importance and to update the
parameters after pruning, they can be derived by taking the outer product of the calibration data per
layer as H(l) = X(l)X(l)T .

S(θ
(l)
j) =

(θ
(l)
j)2

[(H(l))−1]j,j
(12)

18

A.6 OBSPA and SparseGPT

SparseGPT Frantar & Alistarh (2023) is a large-scale extension of OBC that proposes a method
to incrementally prune weights in each column of the weight matrix. Different from OBS that uses
the whole Hessian of the layer to adjust the values of all available parameters to compensate for the
removal, Frantar & Alistarh (2023) only updates the weight among the remaining unpruned weights
with a smaller Hessian matrix. The update procedure of SparseGPT is illustrated in Fig. 7a.

OBSPA is extended to a structured pruning algorithm from SparseGPT by applying group-level
importance estimation and directly masking entire columns and rows before structurally deleting
them. In OBSPA, we determine the coupled channels to be pruned by applying the layer-OBS Frantar
et al. (2022) criterion and then create masks for those channels. We then apply the masks on the
weight matrix column by column and update the remaining columns. For a specific column i that
needs to be pruned, we first calculate the error and then update the remaining parameters with the
following equations.

err =
Θ:,i

H−1
i,i

(13)

Θ:,i: = Θ:,i: − err ·H−1
i,i: (14)

(a) SparseGPT

(b) OBSPA

Figure 7: Visualization of reconstruction algorithm of Frantar & Alistarh (2023) and OBSPA. 1⃝
mask are derived according to layer-OBS score. for SparseGPT, zeros are scattered in the mask while
for OBSPA, zeros span the whole channel. 2⃝ weights in the first column of the weight matrix are
pruned. 3⃝ Using Hessian inverses (Huj

)−1 to update the reminder of the weight (only in dark blue).
Then repeat 2⃝& 3⃝ for the next column until all columns are processed

A.7 Implementation details

We provide Fig. 8 for a compact overview of the implementation of our method. As detailed in
previous sections, we first obtain a gs_graph and build our Computational Graph based on it. Then
we apply mask propagation and importance estimation on the computational graph to derive the index
of target channels for pruning. We can then very conveniently prune those channels on gs_graph and

19

Figure 8: Detailed implementation of SPA

convert gs_graph to ONNX model using tools provided by onnx-graphsurgeon. In this way, we can
already support the Train-Prune framework. To further support Train-Prune-Fintune and Prune-Train
settings, we add additional blocks to convert ONNX model to PyTorch model. This conversion grants
our method the ability to apply sensitivity-based criteria and to train/fine-tune the pruned model.

B Experiments Details

B.1 Dataset Details

CIFAR-10 Krizhevsky et al. (a) and CIFAR-100 Krizhevsky et al. (b) datasets both serve as platforms
for image classification tasks, diverging based on their class count and intricacy. CIFAR-10 comprises
a collection of 60,000 32x32 color images, categorized into ten distinct classes, each containing 6,000
images. These classes encompass common objects like airplanes, automobiles, birds, cats, dogs,
and more. In contrast, CIFAR-100, also consisting of 60,000 images, exhibits a finer granularity
with 100 distinct classes, representing more nuanced categories. Notably, CIFAR-10 and CIFAR-
100 are mutually exclusive, allowing for a reciprocal utilization wherein CIFAR-100 serves as an
out-of-distribution dataset for CIFAR-10, and vice versa.

ImageNet-1k Deng et al. (2009), is a widely recognized and extensively used dataset in the field
of computer vision and machine learning. This dataset consists of millions of labeled images, each
categorized into one of the 1,000 predefined classes or object categories. The diversity and size of
ImageNet make it a valuable resource for training and evaluating deep learning models. We also
evaluate OBSPA’s performance on ImageNet-1k.

ImageNet-O Hendrycks et al. (2021) dataset is the natural adversarial example dataset for out-of-
distribution detectors of ImageNet-1k. It consists of 2000 images from 200 classes that are not found
in the ImageNet-1k dataset. We resize the images to 224x224. This dataset serves as an OOD dataset
of ImageNet-1k in our experiment.

Imagenette Howard, derived from ImageNet, showcases 13394 images from a subset of 10 easily
classifiable classes (e.g., tench, English springer, cassette player, chain saw, church, French horn,
garbage truck, gas pump, golf ball, parachute). We also preprocess the images to 224x224. Despite
its modest size, Imagenette proves to be a suitable testbed to assess the functionality of SPA across
models with divergent architectures.

SST-2 Socher et al. (2013), the Stanford Sentiment Treebank 2 (SST-2) is a popular dataset for
sentiment analysis in natural language processing. It consists of 215,154 unique phrases from movie
reviews, where each review is labeled with its sentiment as either "positive" or "negative". The dataset
is well-structured, and it has been widely used for training and evaluating sentiment analysis models.

20

In our work, we use pruning a DistilBERT model on this dataset to show SPA’s ability to prune
self-attention-based NLP models.

B.2 Metric Details

Reduction in Floating Points Operations and Reduction in Parameters are widely used in many papers
Narshana et al. (2023); Fang et al. (2023) to demonstrate the effectiveness of pruning methods, we
provide definition of these two evaluation metrics

1. Reduction in Floating Point Operations, represented as RF, quantifies the acceleration in
FLOP execution speed achieved through pruning.

RF =
FLOPbefore

FLOPafter
(15)

2. Reduction in Parameters, denoted as RP, evaluates the parameter reduction achieved through
the pruning process.

RP =
#paramsbefore
#paramsafter

(16)

B.3 Setting Details

For the experiment that follows the Train-Prune-Finetune and Prune-Train schemes on CIFAR and
ImageNette datasets, we use a 12GB NVIDIA GeForce GTX 1080 Ti GPU, for the experiments that
follow the Train-Prune setting and the experiment on ImageNet, we use a 40G NVIDIA A100 GPU.

Prune any framework: We test the framework-agnostic ability of SPA on the ImageNet dataset. We
first define random initialized ResNet-18 from PyTorch, TensorFlow, JAX, and MXNet respectively,
they are then trained for 100 epochs on their original frameworks before being converted to ONNX.
While PyTorch, TensorFlow, and MXNet offer direct conversion functionalities, Jax models neces-
sitate an additional intermediary step, involving a conversion to TensorFlow before arriving at the
ONNX representation. Then we prune and finetune the model based on SPA-L1. In addition to the
pruning outcomes, we also test the computational overhead incurred during the framework conversion
process. We quantify this overhead by reporting the average model conversion time, derived from 10
separate conversion instances as shown in Tab. 6.

Prune any architecture: The functional test of architecture-agnostic property of SPA is done on both
CFIAR10 and SST-2. Here we conducted pruning experiments on DenseNet-121 Huang et al. (2016),
EfficientNet-b0 Tan & Le (2019) MobileNet-v2 Howard et al. (2017), RegNet_x_16gf Radosavovic
et al. (2020), ResNet-18 He et al. (2015), Resnext-50_32x4d Xie et al. (2016), VGG-16 Simonyan &
Zisserman (2015), Wide-ResNet-101_2 Zagoruyko & Komodakis (2016) sourced from TorchVision,
VIT Dosovitskiy et al. (2021) and DistilBERT Devlin et al. (2019) sorced from HuggingFace. The
setting of those experiments are same as framework-agnotic experiments.

Prune with fine-tuning: This set of experiments is first done on ResNet-18 and VGG-16 to perform
image classification on CIFAR-10 and CIFAR-100. We compare the L1-based method SPA-L1 to
its ungrouped counterpart for the Train-Prune-Finetune setting and compare SPA-SNIP, SPA-CroP
and SPA-GraSP to their structured algorithms, SNAP, Structured-CroP and Structured-GraSP for
Prune-Train setting. To ensure equitable comparisons, we maintain uniformity in total epochs across
all configurations. When pruning is executed after training, the model undergoes 100 epochs of
training followed by 100 epochs of pruning and fine-tuning. Conversely, for pruning before training,
a total of 200 epochs is allocated for the combined pruning and fine-tuning procedure. Besides,
building upon the findings in Verdenius et al. (2020), which advocate for the efficacy of iterative
pruning, we conduct iterative experiments for each criterion. In this iterative version, we employ 5
steps, with 5 training epochs between each step. The optimization procedure involves the use of the
SGD optimizer and CosineAnnealingLR as the learning rate scheduler.

For the experiments on ImageNet-1k, we first pruned pre-trained ResNet-50, DenseNet-121, and
Vit_b_16 using SPA-L1 and OBSPA, we then fine-tune the models following Fang et al. (2023)’s
setting, with 90 epochs of fine-tuning on both pruned ResNet-50 and DenseNet-121. However
different from Fang et al. (2023) that fine-tunes ViT for 300 epochs, we only fine-tune ViT for 30
epochs. We also follow Leclerc et al. (2023) to perform fast training.

21

Prune without fine-tuning: We follow the setting from DFPC to evaluate the performance of
ResNet-50, ResNet-101, and VGG-19 models on both CIFAR-10 and CIFAR-100 datasets under
the pruning without fine-tuning scheme. Models are pre-trained before pruning and no further
fine-tuning is allowed after pruning. We also conduct experiments on the ImageNet-1k dataset. We
use calibration data to calculate the Hessian per layer for importance estimation and parameter update.
for the CIFAR dataset in which samples are in low resolution, 2048 data samples are used, for the
ImageNet dataset, 896 data points are used. For image classification tasks, SPA-OBC encompasses
two distinct settings: data-driven setting and data-free setting. Data points are directly sampled from
the training set in the data-driven setting, but in the data-free setting, calibration data are either drawn
from the OOD dataset or generated following a uniform distribution between 0 and 1. CIFAR-10
and CIFAR-100 are mutually exclusive, they can serve as OOD datasets for each other, we also use
ImageNet-O as the OOD dataset of ImageNet-1k. However, In NLP tasks, where different sentences
can be easily accessed, choosing random sentences is not rational. Consequently, we exclusively
utilize out-of-distribution (OOD) datasets. Specifically, we employ the ax dataset as an example of an
OOD dataset of SST-2.

We also need to mention an additional noteworthy observation pertaining to the performance en-
hancement achieved through the resetting of batch normalization statistics following pruning, a
phenomenon previously elucidated in OBC Frantar et al. (2022). In our study, we adopt a straightfor-
ward approach of forwarding the calibration data twice to facilitate the updating of running mean and
running variance in the batch normalization layers. However, it is important to highlight that this
performance gain is exclusively relevant to the ID and OOD settings. The presence of informative
calibration data in these scenarios enables effective updates of batch normalization statistics. In
contrast, when employing randomly generated calibration data, the batch normalization statistics
can become distorted, leading to potential performance degradation. Therefore, in this experimental
context, we implement batch normalization statistic re-calibration exclusively for the ID and OOD
scenarios, while refraining from its utilization in the data-free setting.

C Additional Experiment

C.1 Model Framework Conversion Time

We test the conversion time from different frameworks to ONNX. The results, as detailed in Tab. 6,
reveal that even for the Jax models requiring dual conversions, the process completes within seconds.
This indicates that the computational overhead incurred during the model conversion process is trivial
compared to the time in pruning and training.

Table 6: Model Conversion time from different frameworks (Pytorch, TensorFlow, MXNet, Jax) to
ONNX.

conversion time (s)
Model PyTorch TensorFlow MXNet Jax

ResNet-18 0.51s 2.47s 2.28s 5.47s
ResNet-50 2.01s 7.35s 7.36s 12.52s

C.2 SPA with fine-tuning

In this section, we report the additional exeriment results of performing pruning with SPA. Fig. 9
compares the SPA grouped versions of L1, SNIP, CroP, and GraSP to their original structured
counterparts of L1, SNAP, Structured-CroP, Structured- GrasP on ResNet18 on CIFAR18. We
observed that SPA versions of these pruning cirteria always matches our outperforms their strucutred
versions. Further, Tab. 7 and Tab. 8 shows additional results on DenseNet/ImageNet, Vit/ImageNet.
Note the in the Vit Experiment, we only fine-tuned 30 epochs after pruning while DepGraph fine-tuned
300 epochs. We observe that SPA matches or outperform other previous methods.

22

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 9: Trade off between accuracy and FLOPs/parameters with ResNet-18 on CIFAR-10 (see
Figs. 9a to 9h). SPA efficiently implements both the structured and grouped versions of train-prune-
finetune criteria like L1 and prune-train criteria like SNAP, CroP and GraSP

Table 7: Structured pruning of DenseNet-121 on ImageNet with fine-tuning. "N/R" indicate non-
reported results in original papers.

method top1 acc. top5 acc. RF RP

Base Model 74.43% 91.97% 1× 1×
DepGraph Fang et al. (2023) 73.98% N/R 2.09× N/R
SPA-L1 74.39% 92.19% 2.09× 1.80×
OBSPA 74.62% 92.19% 1.78× 1.84×

Table 8: Structured pruning of ViT_b_16 on ImageNet with fine-tuning. ”N/R” indicate non-reported
results in original papers.

method top1 acc. top5 acc. RF RP

Base Model 81.43% 96.02% 1× 1×
DepGraph +EMA Fang et al. (2023) 79.58% N/R 1.69× N/R
DepGraph Fang et al. (2023) 79.17% N/R 1.69× N/R
SPA-L1 78.81% 94.20% 2.03× 2.05×
OBSPA 78.90% 94.30% 1.95× 1.98×

Table 9: Structured pruning of ResNet-101 on CIFAR-10 without finetuning
CIFAR-10

method acc. drop RF RP

DFPC 4.95% 1.64x 2.22x
OBSPA (ID) 0.93% 1.59x 1.49x
OBSPA (OOD) 1.08% 1.59x 1.49x
OBSPA (DataFree) 1.51% 1.58x 1.49x

Table 10: Structured pruning of ResNet-101 on CIFAR-100 without finetuning
CIFAR-100

method acc. drop RF RP

DFPC 9.40% 1.72x 1.53x
OBSPA (ID) 7.31% 1.68x 1.51x
OBSPA (OOD) 6.68% 1.68x 1.51x
OBSPA (DataFree) 9.95% 1.61x 1.47x

23

Table 11: Accuracy of Base Models of OBSPA experiment
CIFAR-10 CIFAR-100

Model DFPC ours DFPC ours

ResNet-50 94.99% 94.70% 78.85% 78.10%
ResNet-101 95.09% 94.48% 79.43% 81.05%
VGG-19 93.50% 96.04% 72.02% 81.05%

C.3 SPA without fine-tuning

OBSPA with ResNet-101 and Based Models. In this section, we first report the additional exper-
iment result of performing pruning after training with OBSPA on ResNet-101. These results are
detailed in Tab. 9 and Tab. 10. We then provide the test accuracy of the base models used in our
OBSPA and DFPC in Tabs. 4, 9 and 10 as Tab. 11.

OBSPA on ImageNet-1k. We also conduct pruning experiments without fine-tuning on the harder
ImageNet-1k. DFPC does not present results for ImageNet without fine-tuning. We observed
that, while using only less than 1000 calibration data samples or no calibration data, SPA presents
non-trivial compression capabilities being able to maintain accuracy above 70% accuracy.

Table 12: Structured pruning of ResNet-50 on ImageNet without fine-tuning
method accuracy RF RP

Base Model 76.15% 1x 1x
OBSPA (ID) - Low compression 74.27% 1.22× 1.16×
OBSPA (ID) - High compression 70.57% 1.43× 1.20×
OBSPA (OOD) - Low compression 71.60% 1.25× 1.18×
OBSPA (DataFree) - Low compression 70.13% 1.21× 1.19×

C.4 Pruning Time of OBSPA

We compare the pruning time of our OBSPA algorithm to DFPC. The total pruning time of OBSPA
includes all the necessary steps including building the computational graph, analyzing groups and
applying OBSPA to prune and update parameters. For pruning a ResNet-50 on CIFAR-10 or CIFAR-
100, DFPC takes 12 minutes, but our algorithm only takes 1.5 to 2 minutes. Pruning larger networks
such as ResNet-101 and VGG-19 could also be completed within 6 minutes. For ImageNet-1k, a
higher resolution dataset, DFPC also takes 6× more time than ours OBSPA.

The calibration data is processed batch by batch, so the batch size and batch number could also
influence the pruning time. In our experiment, we use 2 batches of calibration data with batch size
equal to 1024 in the CIFAR experiment and 7 batches of 128 data in the ImageNet-1k experiment.

Table 13: Pruning time for OBSPA and DFPC
Method Model Dataset Pruning time

DFPC ResNet-50 CIFAR-10/100 12 min
DFPC ResNet-50 ImageNet-1k 38 min
OBSPA ResNet-50 CIFAR-10/100 1.5-2 min
OBSPA ResNet-101 CIFAR-10/100 3-6 min
OBSPA VGG-19 CIFAR-10/100 3.5-4.5 min
OBSPA ResNet-50 ImageNet-1k 5-6 min

24

	Introduction
	Related Works
	Structurally Prune Anything
	Prune Any Framework
	Prune Any Architecture
	Prune Any Time

	Experiments
	Prune Any Framework
	Prune Any Architecture
	Prune Any Time

	Conclusion
	Method Details
	SPA group visualization
	Building Computational Graph
	Coupling channels via mask propagation
	Importance Estimation
	Pruning Criteria
	OBSPA and SparseGPT
	Implementation details

	Experiments Details
	Dataset Details
	Metric Details
	Setting Details

	Additional Experiment
	Model Framework Conversion Time
	SPA with fine-tuning
	SPA without fine-tuning
	Pruning Time of OBSPA

