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Abstract—This paper investigates the complexities of integrating Large Language
Models (LLMs) into software products, with a focus on the challenges encountered
for determining their readiness for release. Our systematic review of grey literature
identifies common challenges in deploying LLMs, ranging from pre-training and fine-
tuning to user experience considerations. The study introduces a comprehensive
checklist designed to guide practitioners in evaluating key release readiness aspects
such as performance, monitoring, and deployment strategies, aiming to enhance
the reliability and effectiveness of LLM-based applications in real-world settings.

enerative Al, especially Large Language

Models (LLMs), are increasingly being inte-

grated into software products [1], marking a
significant shift in how companies approach product
development and release. This shift is underscored by
the potential economic impact of generative Al, which
is estimated to contribute $2.6 trillion to $4.4 trillion
annually to the global economy as per McKinsey’s
report’.

Determining the release-readiness of a software
product is complex, requiring a product’s compliance
with all user and safety requirements and successful
passage of all quality assurance checks. For genera-
tive Al products, this readiness also involves evaluating
model performance, ethical considerations, and the
potential impact of outputs on users, compounded by
the need to comply with evolving Al legislation across
countries.

To some extent, some of the challenges of ensur-
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ing the production-readiness of generative Al-based
products in real-world settings are still the same as for
systems leveraging traditional machine learning (ML)
systems. These challenges include non-determinism,
due to the inherent variability in Al's decision-making
processes, and the difficulty of testing, due to lack
of explicit requirements for models. These challenges
revealed a need for release checklists, i.e., formal lists
of evaluation criteria that organizations should check
either manually or (semi)automatically, to determine
whether their product is ready for release to end
users [2], [3], [4]-

However, determining when generative Al-based
software products are ready (safe) for release poses
an even more complex challenge. LLMs do not only
inherit the typical ML concerns around data depen-
dency and model unpredictability, but they also face
unique issues such as ensuring contextually accurate
and unbiased language understanding, managing the
vast and evolving scope of human language, and
addressing the ethical implications of their responses
in a wider range of real-world scenarios [12]. Compa-
nies have already begun to share their processes and
experiences through blogs and industry conferences,
contributing to a growing body of “grey literature” on
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the subject.

This paper synthesizes a release checklist for gen-
erative Al-based products. Unlike traditional Al check-
lists, our checklist is compiled from 65 grey literature
sources across 44 organizations, identifying key re-
lease challenges. Our results will enable future au-
tomation of release-readiness evaluation steps.

Several studies have explored release-readiness for
(traditional) ML software, drawing on industry experi-
ences like Google’s testing rubric [2], which empha-
sizes reliability and includes a 28-test scoring system
for assessing ML system production readiness. Zinke-
vich [3] presents a Google-based guide on ML system
development best practices, spanning from integration
to feature engineering. Microsoft’s production check-
list [4] aids teams in evaluating ML model produc-
tion readiness, focusing on performance, metrics, data
quality, integration, and ethical considerations. Unlike
these works, which target traditional ML, our study
develops a release-readiness checklist specifically for
generative Al-based software products.

Our systematic grey literature review follows a similar
approach for search construction as used by earlier
work [13], and aims at capturing the breadth of dis-
cussions surrounding the deployment of LLMs in pro-
duction environments. We started from a base query,
i.e., “generative ai release checklist”, which covers the
seminal resources in the field such as the “LLMs in
Production Conference” [5] and the influential blog
posts of Matt Bornstein [14] and Chip Huyen [6]. We
then split the query into three parts (1. “generative ai”,
2. “release” and 3. “checklist”) and included synonyms
or related words to improve the coverage of grey
literature, yielding the resulting search query:

("generative ai" | "large language

models" | llms | "foundation models"
| chatgpt | "conversational ai") AND
(release | production | deployment |
monitoring | observability | operations)

AND (checklist | checks | guardrails

| considerations | requirements |
practices | patterns | challenges |
methods | risks)

Our search covered the period from June 1, 2018,
the release date of GPT-1 by OpenAl, to September 1,
2023, the start of our survey.

Publication Title

Inclusion criteria of our search:

e Literature must be authored by or associated with
organizations focused on the field of generative
Al.

e Content should specifically discuss LLMs in pro-
duction settings.

e Accessibility to the full text without restrictions.

The exclusion criteria:

e Product announcements, advertisements, and de-
mos.

News articles.

Non-English literature.

Duplicates.

Literature that mentions LLM production without
detailing the techniques used.

e Articles behind paywalls.

Our search yielded 522 million results, but rele-
vance dropped after the top 100. We collected the
top 100 results and augmented them with additional
searches targeting the top 10 companies in generative
Al and LLMs, as recognized by resources like State
of Al [10] and Gartner [11]. This approach netted
1,100 results, narrowed down to 35 through the above
criteria, plus 30 more from snowball sampling.

The first and third authors developed a taxonomy
for release-readiness challenges and solutions using
a grey literature sample. Initially, they independently
coded 20% of the sample, then converged their tax-
onomies to form a consensus. This taxonomy was
reapplied to re-code the initial sample, with their cod-
ings compared for consistency and conflicts resolved.
Krippendorff’s Kappa was calculated, resulting in a
score of 0.917, indicating high inter-rater reliability
(> 0.8) [15]. This agreement allowed the first au-
thor to code the remaining 80% of the sources. The
findings were organized into a mindmap of release-
readiness challenges and solutions, complemented by
references. Subsequently, the first and second authors
conducted workshops with their team to refine the
mindmap into a checklist, incorporating team feedback.

Our replication package® includes the resulting
mind map to visually organize the findings, the col-
lected notes for each grey resource we reviewed and
an online repository of references for further explo-
ration. We refer to online references in this paper with
the notation “O«number»”.

Zhttps://github.com/SAILResearch/replication-24-harsh-
generative-ai-release-readiness-checklist
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Figure 1 lists the 31 identified release challenges
related to generative Al, and their prevalence in the
grey sources. Note that the latter measures the number
of “mentions” of these challenges in the grey sources,
which is not necessarily equal to the actual frequency
of challenges in practice (companies may use specific
strategies or face challenges without necessarily dis-
cussing them in public media). The top five challenges
discussed are:

1) Reliability: Ensuring that LLMs consistently de-
liver accurate and coherent responses, avoiding
hallucinations.

2) Deployment Resource Management: Optimizing
computational resources for LLMs in production to
improve cost, latency, and performance.

3) Managing Embeddings: Handling the creation,
storage, and update of text documents’ vector rep-
resentations to improve semantic understanding
and response relevance.

4) Pre-deployment Evaluation: Conducting com-
prehensive testing to ensure LLMs’ consistency,
unbiasedness, and safety across demographics
before release.

5) Prompt-centric Orchestration: Effectively de-
signing and managing prompts to utilize LLMs’ full
potential, addressing task decomposition, external
tool integration, and sensitive information protec-
tion for privacy and security.

This section presents a release-readiness checklist
for LLM-based software, derived from our grey lit-
erature findings. It aligns with the software lifecycle
stages depicted in Figure 1’s flowchart, highlighting key
challenges per stage. The checklist offers checkpoints
for assessing an LLM-based product’s readiness and
pinpoints improvement areas, including references and
explanations of effective practices for each challenge.
Practitioners should implement these practices or suit-
able adaptations for each relevant challenge.

C1. When pretraining a new LLM:

C1.1 Check if your LLM needs to be trained using
sensitive/private data provided by others. [043]
def.: Assess if LLM training requires third-party
sensitive data, crucial for privacy compliance and
ethical data use.
sol.: Use Federated Learning (e.g., FedLLM,
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Nvidia Flare) to share models, not data, amongst
partners by aggregating model parameters without
compromising data privacy.

C1.2 Partition the training process across multiple ac-
celerators (i.e., GPUs or Devices) to accelerate
training. [028][042]
sol.: Distributed platforms for LLM workloads,
such as Ray, play a crucial role in enabling par-
allelization, particularly when incorporating ad-
vanced techniques like FL.

C1.3 Anonymize data. [043]

e def.: Alter or remove data to prevent association
with individuals.

e sol.: Use tools (Gretel.ai, Private Al, Tonic.ai)
for data anonymization, complemented by man-
ual checks to catch any nuances automation
might miss.

C1.4 Mitigate training
[026][027][029]

o def.: Attackers may deliberately introduce mis-
leading information in training datasets, leading
LLMs to learn from biased and misleading data.

e sol.: Check the source of external training data
used by your organization, and keep records of
its origins, similar to the methods used in the
Software Bill of Materials (SBOM). Please see
the SPDX specs® for details about emerging Al
and data SBOM scenarios.

data  poisoning  risks.

C2. When fine-tuning an LLM:
C2.1 Minimize unsafe behaviours or align loss function
to complex human values. [02][025][029][058]
e sol.: Reinforcement Learning with Human
Feedback (RLHF) merges instruction fine-tuning
with reinforcement learning, using human pref-
erences (like pairwise comparisons) to train a
reward model, aligning Al behavior with human
values and safety. By doing so, RLHF aims
to reduce the occurrence of unsafe behaviors,
ensuring that Al actions are ethical, appropri-
ate, and aligned with human expectations, thus
enhancing the safety and reliability of Al appli-
cations.
C2.2 Utilize efficient fine-tuning processes to improve
training efficiency. [02][O6][09]
e def.: With models growing in size, full fine-
tuning is impractical on prosumer hardware,
and storing and deploying separate fine-tuned

Shttps://fossa.com/blog/spdx-3-0/,2023
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Frequency of Challenges in Our Grey Literature Results

Reliability

Deployment Resource Management
Managing Embeddings
Pre-deployment Evaluation
Prompt-centric Orchestration
Content Safety and Privacy
Adversary Inputs

Technical Expertise and Cost for Deployment
Latency

Drift

Monitoring for Prompt Injection
Resource Usage

Lack of Knowledge

Prompt Construction

Aligning Loss Function with Complex Human Values
Responsible Al

Response Relevancy

Robust and Constrained Output
Limited Context-length

Training Efficiency

Training Data Poisoning

DDoS

Monitoring for Context Relevancy
Bad Responses and Errors
Accessibility, Trust and UX
Distributed Training
Compatibility and Reproducibility
Monitoring for Cotext-awareness
Need for Content Update

Bias

Private Training

Challenge

Start —>

(4)

’—) ;t;)lning —> engineering —]
*

Pre-training

Start Start

N )

Prompt-
Fine i

Pre-
deployment
Evaluation

)
Post-

deployment Deployment
ployi ¢ ploy:

Monitoring (2)
(]

—Feedback

AN

0 5

10 15 20
# of Citations

FIGURE 1. Frequency of challenges in our grey literature results (The numbers in the flowchart indicate the number of challenges

associated with each stage of the LLM lifecycle)

models for each task is costly, as they are as
large as the original model.

e sol.: Parameter Efficient Fine-Tuning (PEFT)
methods fine-tune only a few additional param-
eters, freezing most of the pre-trained LLM’s pa-
rameters, significantly reducing computational
and storage costs, and addressing catastrophic
forgetting seen in full fine-tuning of LLMs.

C3. When doing prompt engineering:

C3.1 Consider different prompt construction methods.

[O4][07][010][047]

sol.:Explore Zero-shot, Few-shot, and Chain-

of-Thought (CoT) prompting to significantly im-

pact the effectiveness of LLMs. Crafting precise

prompts, including clear instructions or questions
and integrating contextual inputs or examples,
leads to improved response quality and relevance.

Utilize known practices to im-

prove reliability and hallucinations.

[O1][02][O3][04][O7][09][O13][O14][018][019]

[022][024][026][034][036][038][040][044][046]

[0O47][057][060][063]

e def.: Achieving consistent outputs for identi-
cal inputs is crucial for user trust in (non-
deterministic) LLMs.

e sol.: Implement model-based evaluation or self-

C3.2
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C3.3

C3.4

evaluation techniques, such as OpenAl Evals,
which involve an LLM to critically self-assess
its own outputs to ensure consistency, reliability,
and ethical appropriateness.

e sol.: Implement self-consistency and multiple
prompting [7] by generating multiple responses
for the same input and determining the final
output through a majority vote or LLM selection.
This can be done using popular LLM APlIs like
OpenAl’s.

e sol.: Guardrails ensure LLM outputs are co-
herent, accurate, factual, and free from harmful
content, also safeguarding against adversar-
ial inputs. Examples are Guardrails.ai, NeMo,
Guidance, and rellm.

Bridge knowledge gaps by enriching prompts with

relevant context. [O38][047][055][056][063]

o def.: LLMs sometimes make incorrect assump-
tions to fill knowledge gaps, leading to halluci-
nations.

e sol.: Utilize Retrieval-Augmented Generation
(RAG) techniques to provide a richer context for
prompts, thereby grounding model responses in
factual content and mitigating hallucinations.

Utilize  vector  stores and embedding
models to store, search and update
vector representations of language data.
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C3.5

C3.6

C3.7

[O2][O5][O7][09][O10][011][O14][O17][O33][O36]

[O38][044][055][060][061][063]

o def.: Vector stores and embedding models are
essential for managing and querying vector rep-
resentations of language data, enabling efficient
retrieval of relevant information (see C3.3) and
reducing hallucinations.

e sol.: Vector stores like Weaviate, Pinecone, and
pgvector, and embedding models by OpenAl,
Huggingface and Cohere, are crucial for cre-
ating, storing, and updating vector representa-
tions of language data, facilitating more accu-
rate and contextually relevant responses.

Employ efficient context-retrieval techniques to

overcome LLM context length limit. [O1][04][O38]

e def.: Large models such as GPT-4 experience
performance decline near their context window
limit, affecting inference time and accuracy.

e sol.: Implement chunking strategies to serve
only the most relevant documents or segments
for each prompt, enhancing the efficiency of
information retrieval.

e sol.: Apply contextual compression methods to
condense and outline essential facts, thereby in-
creasing the density of useful information within
the LLM’s context window.

If your application is used by untrusted users, you
need an approach to deal with adversarial input.

[02][04][018][019][034][026][029][040][054][057]

e def.: LLMs require protection against prompts
injected to manipulate model output.

e sol.: Restrict a model with clear instructions
within prompts as a fundamental defensive
strategy.

e sol.: Guardrails (see C3.2)

e sol.: Adapt SQL injection defense strategies by
parameterizing prompt components, thus sep-
arating instructions from inputs for enhanced
security.

Ensure prompts’ compatibility across changes to

the underlying LLM (e.g., migrating from GPT3.5

to GPT4) and reproducibility across changes to

the prompt itself. [O1][019]

e def.: In prompt engineering, unlike traditional
software engineering where third-party library
updates aim to ensure backward and/or for-
ward compatibility after updates, there is no
guarantee that prompts for an older model will
work with a new version, often necessitating
prompt rewrites. Therefore, if model changes
are anticipated, it is vital to unit-test all prompts
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C3.8

C3.9

with evaluation examples.

e sol.: Temperature ensures consistent output for
the same input at the expense of less creativity.

e sol.: Prompt versioning is essential for tracking
the impact of minor changes on results, necessi-
tating versioning and monitoring each prompt’s
performance.

e sol.: Prompt templates provide a scalable way
to create prompts, including instructions, few-
shot examples, or action sequences for lan-
guage models.

Incorporate practices to en-

sure content safety and privacy.

[O1][02][04][05][09][018][024][026][027][038]

[040][057][060]

e def.: This check aims to ensure safety and
privacy in third-party LLM-generated content,
addressing issues that may remain post-RLHF
(see C2.1) fine-tuning. It involves reviewing and
adjusting prompts to avoid generating harmful
or sensitive information, ensuring compliance
with ethical and privacy standards.

e sol.: Models for detecting profanity, such as the
PyPI module “profanity-check”.

e sol.: Use LLMs to evaluate responses for inap-
propriate content.

e sol.: Use Personal Identifiable Information (PII)
masking solutions with LangChain or LLamaln-
dex.

e sol.: Utilize PIl detection tools, such as Mi-
crosoft/presidio or Azure services.

Consider  reusing  prompts, decomposing
a large task into smaller tasks, utilizing
external tools or chaining prompts.

[O7][O10][011][O17][036][038][040][044][O55]

[061][062]

e def.: Prompt orchestration combines strategies
to improve LLM effectiveness, such as reusing
prompts, simplifying complex problems, incor-
porating external tools, and sequencing prompts
for multi-step tasks.

e sol.: Agent and chain orchestration frameworks
like LangChain and Llamalndex excel in sim-
plifying prompt chaining, handling external API
interactions, managing contextual data retrieval
from vector stores, and preserving memory
across multiple LLM calls.

e sol.: Additionally, these frameworks leverage
thought decomposition frameworks such as
CoT, Tree of Thought, or ReAct to break down
complex tasks into more manageable sub-tasks.
This method not only simplifies the problem-
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solving process but also significantly enhances
the effectiveness of the LLM in handling intricate
tasks by guiding it through a structured ap-
proach to reasoning and response generation.

C3.10 Ensure responses are highly constrained using

types, templates and constraints. [061][062][0O63]
sol.: In systems combining LLMs with non-LLM
components, it is crucial to maintain the re-
sponse’s clarity and usability. Constrained decod-
ing, which enforces input constraints, lowers the
risk of prompt injection attacks, boosting security
(LMQL). Unlike guardrails, it limits LLM outputs
at the token level to ensure each output step is
controlled and valid.

C4.2

for adversarial simulations®.

e sol.: Develop task-specific benchmarks with
Eval Driven Development (EDD) for tasks like
summarization or dialogue, focusing on metrics
that reflect the unique aspects of each task, thus
ensuring relevant and effective evaluations.

e sol.: Utilize LLMs for self-evaluation using
frameworks like G-Eval, incorporating Chain-
of-Thought reasoning to enhance transparency
and interpretability in assessments.

Consider practices to ensure accessibility and to

build end-user trust in your application. [02][042]

sol.: For comprehensive guidance on ensuring

human-centric Al interaction, refer to the Al Ul/UX
guidelines provided by industry leaders such as

Microsoft>, Google® and Apple’

C4. Pre-deployment evaluation ensuring that

a model’s performance matches safety C5. During application deployment:

criteria for application deployment. C5.1 Check if you need a commercial
C4.1 Evaluate the performance of or open-source LLM deployment.
your application pre-deployment. [09][019][026][027][029][033][036][037][041]

[O2][O5][06][09][012][015][O17][019][035][O36]

[O38][O55][O56][O58]

e def.: This involves measuring a model's per-
formance against benchmarks and metrics to
ensure it meets system and product standards.
Such evaluations are essential for monitoring
changes and identifying regressions without
manual inspection of every model update.

e sol.: Use A/B Testing to compare model re-
sponses and prompt designs in real-world sce-
narios, offering a direct insight into interaction
quality.

e sol.: For classification tasks with LLMs (like
toxicity detection or document categorization)
and extractive QA without dialogue, use stan-
dard metrics such as recall, precision, and
PRAUC. For tasks lacking correct answers but
having references, like machine translation or
summarization, employ matching-based metrics
(BLEU, ROUGE) or semantic similarity mea-
sures (BERTScore, MoverScore).

e sol.: Conduct human evaluations to capture nu-
ances in language that automated metrics may
miss, providing a comprehensive assessment of
model output quality.

e sol.: Implement Penetration Tests and Red
Teaming (i.e., ethical hackers identifying and
exploiting vulnerabilities specific to LLM sys-
tems) to identify potential vulnerabilities in LLM
systems, including biases or content generation
issues, using resources like Anthropic’s dataset

Publication Title

C5.2

e def.: This decision parallels choosing between
commercial and open-source software, consid-
ering ease of deployment, support, cost, versus
flexibility and innovation potential.

e sol.: Commercial LLMs simplify deployment
and offer robust support, focusing on application
development with a trade-off in higher costs and
reduced flexibility.

e sol.: Open-source LLMs require more techni-
cal and infrastructural investment but allow for
greater customization and cost efficiency, sup-
ported by a vibrant community for development
and troubleshooting.

Use optimization techniques to meet application
latency, cost and resource requirements.
[O2][O3][04][05][09][017][019][020][024][027]
[028][032][O33][036][038][041][047][060][063]
[O64]

o def.: When choosing third-party LLMs, consider
evolving costs and token size impacts. Opt be-
tween cloud scalability and on-premise security.

e sol.: Semantic caching reduces latency and
unnecessary computations by efficiently reusing

“https://github.com/anthropics/hh-rlhf

Shttps://www.microsoft.com/en-
us/research/publication/guidelines-for-human-ai-interaction/

8https://pair.withgoogle.com/guidebook/

7https://developer.apple.com/design/human-interface-
guidelines/machine-learning
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previous responses, depending on the similarity
algorithm used.

e sol.: Methods like model compression, quan-
tization, pruning, and distillation are used for
model size reduction. Use them to decrease
memory usage, improve computational effi-
ciency, and lower latency.

e sol.: Hardware configuration (GPUs, TPUs,
CPUs) should be consistent with processing,
memory, and storage needs for optimal perfor-
mance.

e sol.: Consider smaller, specialized LLMs for
better cost-efficiency and resource manage-
ment, often providing similar or superior perfor-
mance for specific tasks.

e sol.: Apply memory optimization and distributed
inference strategies, such as data and tensor
parallelism, to manage large models efficiently.

e sol.: Leverage attention layer optimization
methods like FlashAttention and PagedAttention
to minimize memory requirements and enhance
model responsiveness.

e sol.: Optimize request scheduling to man-
age variable latency during inference, ensuring
smooth user interactions with LLM-powered ap-
plications.

C6.3

Ceé.4

C6.5

GPU, memory usage) to maintain performance
standards and adjust as necessary.
If your application is publicly exposed, consider
solutions to prevent DDoS attacks. [O3][08][025]
e sol.: Implement API rate limiting and use
Captcha mechanisms to safeguard user expe-
rience and deter misuse by regulating access.

Monitor the application for model drift.

[O1][0O10][016][O35][038][042] [O43]

e def.: Addressing performance decline due to
shifts in data distribution or user interaction
patterns by monitoring input/output data.

e sol.: Use historical performance data as a
benchmark to identify and address drift in model
behavior or data distribution.

e sol.: Evaluate discrepancies between expected
and actual prompts to adapt and refine LLM
interactions based on real-world use.

e sol.: Implement concept drift detection strate-
gies and cluster analysis using embeddings
(see C3.4) to identify and correct drift issues
post-deployment.

Check if your context-retrieval system can serve

the "relevant" documents. [014][038]

e def.: Ensuring the context-retrieval system
matches user queries with relevant documents,
especially in the face of unique or specific re-

C6. Post-deployment monitoring to set up
feedback loops and improve application
performance.

C6.1 Monitor for prompt injection

quests.
e sol.: Measure query density to evaluate if the

vector store accurately represents user queries,
attacks.

[O7][016][018][026][038][040]

e def.: Detecting adversarial prompt inputs post-
deployment to prevent manipulation of the
LLM’s outputs and avoid unintended interac-
tions.

e sol.: Utilize an adversarial prompt detector
like "rebuff" to identify and filter adversarial
prompts, leveraging LLMs’ capabilities in spe-
cialized tasks like knowledge generation [8] and
self-verification [9].

e sol.: Analyze text similarity between known at-
tacking prompts and current inputs to detect and
mitigate potential threats.

C6.2 Monitor the application for model resource usage.

[O3][09][026][032][O35][063]

e def.: Continuously assess model performance,
resource consumption, and cost efficiency to
fine-tune operations post-deployment.

e sol.: Track LLM token count and utilization for
cost-effective operation.

e sol.: Regularly monitor system resources (CPU,
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C6.6

adjusting as needed to improve data relevance.
Significant drift in query density indicates that
the vector store lacks closely related data.

e sol.: Utilize ranking metrics to assess and en-
hance the precision of the search and retrieval
process, ensuring users receive the most perti-
nent information.

Evaluate the context served by the application to
the LLM. [O58]

e def.: Context evaluation in LLM applications is
crucial for maintaining response credibility, refer-
ring to how the LLM uses the prompt, guiding
information, and its inherent knowledge base to
generate accurate and relevant responses.

e sol.: Employ secondary LLMs for cross-
evaluation of context relevance, quantifying the
integrity of responses.

e sol.: Critically evaluate how LLMs apply con-
text in generating responses to ensure factual
accuracy and appropriateness. The goal is to
verify that the LLM correctly understands the
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Ce6.7

C6.8

C6.9

C6.10

C6.11

topic, checks the accuracy of the information
it references or provides, and incorporates this
information in a way that is both correct and
relevant.

Check LLM responses  for

[O16][O35][056][058]

o def.: Regularly verify whether LLM outputs align
with expected topics and maintain appropriate
sentiment, w.r.t. the end user.

e sol.: Track changes in LLM response sentiment
to ensure consistency with expected topics,
tone, and relevance for appropriate interactions.

e sol.: Ensure responses stay relevant to prede-
fined topics (e.g., politics).

e sol.: Analyze the semantic similarity between
queries and responses to ensure the LLM ac-
curately addresses user intents.

Continuously evaluate the need for content up-
dates for the context-retrieval system. [O38]

e def.: Inability of the LLM to answer some
queries may signal a need to update the vector
store (see C3.4).

e sol.: Count an LLM’s failures to answer prompts
to create a refusal metric.

Ensure fairness. [035][040][042][043]

e def.: LLMs can inherit and propagate biases
from their training data. Organizations need to
track and measure these biases in outputs using
fairness metrics, which may vary by domain,
including gender, race, or other unintentional
biases.

e sol.: Sentiment score (see C6.7)

e sol.: Assess the model's performance across
various demographic groups, e.g., Gender Bias
can be measured by comparing the model’s
performance across different genders.

e sol.: Combine toxicity classifiers with sentiment
analysis (see C6.7) to identify and mitigate
harmful content in LLM outputs, ensuring they
are unbiased, safe, and respectful.

Monitor the application for model latency.
[O10][011][032][035][036] [042][057][063]

e def.: Keeping latency within acceptable limits is
crucial for maintaining a positive user experi-
ence and operational efficiency in LLMOps.

e sol.: Use observability tools to identify high-
latency prompts via API latency metadata, al-
lowing for targeted optimization.

Monitor the application for bad model responses.
[O35][040]

e def.: LLMs can occasionally generate unwanted

relevance.
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responses.

e sol.: Value both implicit and explicit user feed-
back as key indicators for monitoring, especially
negative or confused reactions.

External Validity

Our checklist may not cover all nuances of LLM
readiness due to the rapid advancements in the field
since our survey. Despite this, the core challenges
and solutions remain relevant. Consider the checklist
a foundational tool for practitioners to build upon and
adapt to the changing LLM technology landscape.

Internal Validity

Our checklist was created by a team of human coders,
which may introduce bias. We attempted to mitigate
this by using an established empirical methodology.

This paper investigates the release readiness of soft-
ware products integrated with LLMs, synthesizing a
comprehensive checklist to guide practitioners in eval-
uating their LLM products’ readiness for release. As
the generative Al landscape rapidly evolves, this check-
list underscores the need for ongoing adaptation and
community engagement to ensure the responsible and
effective use of LLMs in software development.

We are grateful to Mitacs and the National Bank of
Canada for their support for our research.
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