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Fig. 1: We present in-hand manipulation using an extrinsic line contact (shown by the red line in the initial snapshot). The robot only
has a rough estimation of the contact line position. Our proposed robust planning successfully pivots the peg while adjusting its in-hand
pose and thus, can successfully perform the desired insertion task. A naı̈ve planning approach loses the extrinsic line contact and thus,
can not correct the pose of the grasped object. This leads to failure of the plan as seen in the picture.

Abstract— We present in-hand manipulation tasks where
a robot moves an object in grasp, maintains its external
contact mode with the environment, and adjusts its in-hand
pose simultaneously. The proposed manipulation task leads to
complex contact interactions which can be very susceptible to
uncertainties in kinematic and physical parameters. Therefore,
we propose a robust in-hand manipulation method, which
consists of two parts. First, an in-gripper mechanics model
that computes a naı̈ve motion cone assuming all parameters
are precise. Then, a robust planning method refines the motion
cone to maintain desired contact mode regardless of parametric
errors. Real-world experiments were conducted to illustrate
the accuracy of the mechanics model and the effectiveness of
the robust planning framework in the presence of kinematics
parameter errors.

I. INTRODUCTION

Humans are very skilled at performing dexterous manip-
ulation. We can make very skillful use of various contacts
(e.g., with the environment, our own body, etc.) to perform
complex manipulation. In a striking contrast, achieving such
dexterous behavior for robots remains very challenging. Us-
ing environmental contacts efficiently can provide additional
dexterity to robots while performing complex manipula-
tion [1]. However, the current generation of robotic sys-
tems mostly avoid making contacts with their environment.
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Contact interactions lead to discontinuous dynamics, and
thus, it makes planning, estimation and control of contact-
rich tasks involved. Furthermore, generalizable manipulation
requires that the planning and control algorithms be robust to
uncertainties in kinematic as well as physical parameters of
the objects a robot has to manipulate [2]. However, robust
planning of manipulation algorithms is generally involved
and not well understood [3], [4].

In this paper, we study robust in-hand manipulation of
objects using extrinsic contacts. Fig. 1 shows an example
scenario where a robot is holding an object in an incorrect
pose for a desired downstream task, and it needs to reorient
the object while maintaining the grasp. The proposed in-
hand manipulation task presented in the paper can be very
susceptible to uncertainties, leading to failures. Thus, it is
desirable that a planning algorithm be robust to various
uncertainties like grasp center, extrinsic contact location, etc.
We present a method which can incorporate uncertainties in
several of the kinematic constraints to generate robust plans
for perform in-hand manipulation. This idea is also illustrated
in Fig. 1, where a naı̈ve plan can easily lose contact with the
environment due to uncertainty in the grasp location or the
extrinsic contact location.

Maintaining external contact mode is crucial to the success
of contact-rich in-hand manipulation tasks (for example see
Fig. 1). Several previous works have reported that unexpected
contact mode transition can lead to task failure [5], [3]. In this
work, a robust in-hand manipulation framework is presented,
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which fully considers object in-hand slip and parametric
uncertainties. We focus on two-finger gripper grasping and
scenarios where only translational motion is allowed (see
Fig. 1). The proposed robust manipulation framework also
finds the gripper motion that minimizes in-hand translation
of the object. This is to prevent the robot from losing grasp
of the object.

The in-hand manipulation tasks with extrinsic contacts
commonly pose the following two major challenges.

• In-hand Motion Modeling: Given the contact parameters
and gripper motion, the system should predict the object
motion in both the world and the gripper frame. This
is nontrivial since the object is having contact-rich
motion in the environment and sliding in the gripper
simultaneously. Previous work only solved the situation
when the object is static in the environment [6].

• Robustness Against Parametric Error: The generated
gripper trajectory should prevent unexpected contact
mode transition against parametric uncertainties, espe-
cially kinematic parameters such as contact position and
object dimensions.

Consequently, our proposed manipulation framework con-
sists of two parts, respectively corresponding to the two
challenges. 1) An in-gripper mechanics model that predicts
the object in-hand slip and computes a naı̈ve motion cone
that maintains desired contact mode assuming environment
parameters are precise. 2) A robust planning method that
refines the motion cone considering the uncertainty range of
each parameter. A trajectory that minimizes in-gripper slip
will be generated from the refined motion cone 1.

II. RELATED WORK

Contact-rich manipulation is the idea to utilize contacts
to extend dexterity of a robotic system[7]. Several previous
work reported its usefulness for non-prehensile manipulation.
Without grasping, a single finger can still actuate an object
via pivoting [8], [9], [10], [11] and planar pushing [12], [13].
Hou et al [5], [14] argued the importance of preventing unex-
pected contact mode shifts and proposed robust manipulation
by maximizing the stable margin of the desired contact mode.

For prehensile manipulation, [15], [16] showed that even
simple grippers can conduct complicated tasks by sequencing
motion primitives with external contact. Holladay et al [16]
modeled gripper contact into a single-point contact and stud-
ied pivoting by object gravity and external contact. [17], [18]
discretized patch gripper contact into multiple point contacts
and achieved in-hand manipulation with push primitives.

Most in-hand manipulation works model gripper-object
contact as point contacts. However, for soft or planar finger-
tips, patched contact is closer to realistic. As a result, some
previous work modeled and planned in-hand manipulation
using the idea of limit surface (LS) [7]. It has been reported
that ellipsoid LS provides a satisfactory approximation for
uniform patched contact [19]. Shi et al [20] deployed this

1A video describing the experiments is available here.

idea and planned dynamic in-hand manipulation. [6] pro-
posed combining friction cone with ellipsoid LS to generate
motion cone for in-hand manipulation.

III. MECHANICS OF IN-HAND MANIPULATION

In this section, we present the model for the in-gripper
movement of an object in the presence of an external sticking
contact. We make the following assumptions for the motion
model:

1) The object kinematics and physical parameters are
known with some uncertainty.

2) The parallel-jaw gripper makes a uniform patch contact
with the object, so the system can be approximated
with a 2D contact model.

3) The gripper provides enough friction to lift up the
object. This assumption is used in subsection III-A.

Assume the object has N contact points with the environ-
ment, its contact mode is denoted by the following variables
in gripper frame of each contact point. a) Contact position
pi ∈ R2. b) Contact normal ni ∈ R2. c) Boolean variables
CCi, true if the object rotates around the contact point is
counter-clockwise. d) Integers SLi ∈ {−1, 0,+1} states if
the contact point i is left-sliding, sticking or right sliding.

Let vw and vh be the object generalized velocity in world
frame and gripper frame, respectively. Let vg be the gripper
motion in world frame. Then, we have vg = vw + (−vh).
The mechanics model targets to find a feasible motion cone
Θg of vg to maintain the desired contact mode and predict
vw and −vh.

Under second-order limit surface (LS) model [20], the
applicable friction wrench wh =

[
fx fy mz

]T
in gripper

frame on the gripper-object patch contact is bounded by an
ellipsoid.(

fx
µgNg

)2

+

(
fy

µgNg

)2

+

(
mz

κµgNg

)2

≤ 1 (1)

µg and Ng are the coefficient of friction between the
object and gripper fingers and the grasping force. κ is an
integration constant. For uniformly distributed circular patch
contact, κ ≈ 0.6r, where r is the radius of the contact
patch [6], [20]. In-hand slip only happens when equality
holds in (1). Since our manipulation tasks requires in-hand
slip, we assume equality always holds in (1) [17]. By the
principle of maximal dissipation, the in-hand motion vh =[
vx vy ω

]T
should be perpendicular to the LS at the

wrench wh [6]. This leads to the following parameterized
representation of in-hand motion.

vh = αwh ⊘ τ

τ =
[
(µgNg)

2 (µgNg)
2 (κµgNg)

2
]T (2)

⊘ stands for element-wise division. α ≥ 0 is a propor-
tional constant. Given the desired contact mode, the possible
range of −vh and vw are respectively defined as Wrench
Motion Set (WMS) and Environmental Motion Set (EMS).
The following two subsections explain their computational
methods.

https://youtu.be/YWk4PPY-IE8
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Fig. 2: In-hand pivoting with single external line contact. The task
is approximated into a 2D contact problem.

A. Wrench Motion Set

(2) provides a means to infer WMS from the set of all
possible wh, which is named as the wrench set (WS). Linear
complementarity conditions of the Coulomb friction model
restricts all external contact points can in total provide only
one or two wrench rays. We mainly discuss the case when
there are two wrench rays, and the case with only one wrench
ray can be treated as a degenerated special case. Denote the
gravitational wrench in the gripper frame as G and wrench
rays provided from external contact points in the gripper
frame as w1 and w2, WS can be interpreted as an affine
linear cone

WS = {G+ t1w1 + t2w2|t1, t2 ≥ 0} (3)

By assumption 3 (the gripper friction is sufficient to lift up
the peg), G must fall in the LS. As such, intersection between
LS and WS is a nonempty 3D ellipse arc in the wrench space,
which has the following parameterized representation.

s⃗(θ) = m⃗+ a⃗ cos θ + b⃗ sin θ, θ ∈ [θl, θh] (4)

Combining with (2), WMS can be represented as

WMS = α(m⃗+ a⃗ cos θ + b⃗ sin θ)⊘ τ

θ ∈ [θl, θh], α ≥ 0
(5)

The division in (5) is element-wise. We denote the right-
hand side of (5) by αvWMS(θ). Fig. 3 is an illustration
of WS and WMS taking the case in Fig. 2 as example.
The robot needs to rotate the peg clockwise around the line
contact while maintaining the contact line sticking. System
parameters are summarized in the following:

1) External coefficient friction µe = 0.25.
2) Object mass m = 0.085 kg. Center of mass location

xc = 0.041m, yc = 0.1m. Directions of xc and yc are
marked in Fig. 2.

3) Grasping point location xg = 0.01m, yg = 0.06m.
Directions of xg and yg are marked in Fig. 2.

4) Gripper coefficient of friction µg = 0.4, patch contact
radius 0.01m, grasping force Ng = 20N.

5) Object orientation φ = 70◦.
The intersection between WS and LS are shown in Fig.

3a as the solid red arc. Taking the vertical ray on each point
of the solid arc gives WMS, as shown by the transparent
yellow surface in Fig. 3b.

(a) Wrench Space (b) Motion Space

Fig. 3: (a) The grey ellipsoid is the LS in (1). The two straight pink
rays and their spanned wrenches are respectively frictional wrenches
w1, w2 and WS in (3). The solid red arc is the intersection arc in
(4). The short blue line at the origin (so short that is a little hard to
see) is the gravitational wrench. (b) WMS and EMS are respectively
the yellow surface and the blue ray. The two green plane and the
yellow surface enclosed WMS

⊕
EMS, and its intersection with

ω = 0 plane is Θg , shown by the deep grey wedge.

(a) Wrench Space (b) Motion Space

Fig. 4: Case when Θg is empty. WMS
⊕

EMS does not intersect
with ω = 0 plane, meaning it is infeasible to maintain the desired
contact mode.

(a) Wrench Space (b) Motion Space

Fig. 5: Case when Θg is nonempty and linear cone approximation
fails. When (4) is a superior arc, the motion cone generated from
linear cone approximation (red wedge) flips to the other side. Most
of its elements have positive y-motion, which directly lifts up the
object, so the red wedge gives an incorrect motion cone.

B. Environmental Motion Set

Computing EMS is straightforward from contact kinemat-
ics constraints, which depend on contact mode representation
{pi, ni, CCi, SLi}Ni=1. For example, the sticking line contact
in Fig. 2 has contact mode

p1 =

[
xg cos θ − yg sinφ
xg sin θ + yg cosφ

]
n1 =

[
0
1

]
CC1 = False SL1 = 0

It has only one DoF, so the EMS becomes a single ray,



Fig. 6: Robust Planning Overview. (a) The example scenario where the robot needs to in-gripper pivot the object while maintaining
contact with the two external walls. (b) The motion cone generated from each vertex in ξ ±∆ξ. (c) The robust motion cone by taking
the intersection in (8), the lighter grey wedge is the naı̈ve motion cone assuming parameters are accurate, where the darker grey wedge
is the robust motion cone. (d) The planned robust trajectory from φ = 40◦ to 85◦, the red line is the motion in each step selected from
the robust motion cone.

which is shown by the blue line in Fig. 3b.

EMS = {β
[
p1,y −p1,x −1

]T |β ≥ 0}

Cases with only one wrench ray has two DoFs, then EMS
will become a linear cone spanned by the two motion rays.

C. Motion Cone of Contact Mode

The feasible motion cone that maintains the desired con-
tact mode is the Minkowski sum WMS

⊕
EMS, which is

the cone spanned by the yellow surface and the blue ray
in Fig. 3b. Since the gripper is only allowed translational
motion, we take its intersection with the ω = 0 plane,
which forms the motion cone Θg , visualized by the dark
grey wedge in Fig. 3b. We quantitatively represent Θg as an
angle range [Θg,1,Θg,2]. Given a gripper motion vg in the
motion cone, it can be uniquely decomposed into a motion
in WMS and EMS, which predicts object in-gripper motion.

vg = vw + (−vh), −vh ∈ WMS vw ∈ EMS (6)

There are also cases when WMS
⊕

EMS does not
intersect with the ω = 0 plane. This happens when it is
infeasible for the robot to maintain the desired contact mode
with only translational motion. Fig. 4 illustrates this case, all
system parameters are the same as Fig. 3 except φ = 90◦ and
µe = 0.1. Every translational motion will make the contact
point slip or the object will remain static due to the small µ,
so Θg = ∅.

Notice that the WMS, which is the yellow surface in Fig.
3b is not a linear cone. Its curvature becomes more obvious
with a larger object mass and environmental coefficient of
friction. Previous work approximated WMS as a linear cone
spanned by the edges of WMS, which are motion rays taking
θ = θl or θu in [6]. Linear cone approximation may be valid
when (3) is a minor arc like the example in Fig. 3, but Fig. 5
illustrates its failure when (3) becomes a superior arc. When

the system parameters are the same as Fig. 3, but object mass
is increased to 400 g and µ is increased to 0.5, the linearized
motion cone flips to the other side. These motions simply
lift up the object from the contact plane, which is incorrect.
This shows that linear cone approximation is in general not
applicable when the peg and gripper are moving together.

IV. ROBUST PLANNING METHOD

The motion cone computed in section III assumes a precise
estimation of each contact parameter. In this section, we
refine the motion cone to make it robust against parametric
uncertainties. Using ξ ∈ Rn to denote the set of parameters
whose uncertainties will be considered. For each entry ξi of
ξ, let its uncertainty range be [ξi −∆ξi, ξi + ∆ξi], and we
use ∆ξ to denote the collection of ∆ξi. Each combination of
parameters in the n-dimensional cuboid ξ̃ ∈ ξ±∆ξ generates
a different motion cone Θg,ξ̃. The robust motion cone Θ̄g

should be the intersection of Θg,ξ̃ of all possible ξ̃.

Θ̄g =
⋂

ξ̃∈ξ±∆ξ

Θg,ξ̃ (7)

Practically computing this infinite intersection requires
approximation. When ∆ξi is relatively small compared to ξi,
the motion cone Θg,ξ approximately changes monotonically
in the uncertainty range with each single parameter ξi when
other parameters are fixed. Therefore, (7) can be approxi-
mated as the intersection of Θg generated by vertices of the
cuboid ξ ±∆ξ.

[Θ̄g,1, Θ̄g,2] =: Θ̄g =
⋂

ξ̃∈V(ξ±∆ξ)

Θg,ξ̃ (8)

With the computed robust motion cone Θ̄g , many search-
based planning methods such as greedy search and RRT
[21], [22] can be directly deployed. In this work, given
fixed angular component in vw, we focus on finding vg



at each time step that minimizes the translational part of
−v

(t)
h . Since non-linear trigonometric constraints can easily

trap optimizers in an infeasible local minimum, we apply a
sample-based approach. Candidates θ are uniformly sampled
in a prefixed angle range [θl, θu] with common difference δθ,
and then solve α ≥ 0, β ≥ 0 and Θ ∈ Θ̄g that satisfies the
following equality constraints:[

cosΘ sinΘ 0
]T

= αvWMS(θ) + βvw (9)

The θ that gives the smallest α will be selected. The solved
α and β predicts vh and vw, which formulates the forward
kinematics.

Fig. 6 gives an overview of the greedy robust planning
method and an example of a planned robust trajectory. There
are two external contact points and the robot needs to pivot
the peg from φ = 40◦ to 85◦ while ensuring the two contact
points do not separate. System parameters are summarized
in the following:

1) The horizontal and vertical contact plane has respec-
tively 0.1 and 0.12 coefficients of friction.

2) The grasping point xg = 0.055m and yg = 0.0135m,
each with a ±3mm uncertainty. Directions of xg and
yg are marked in Fig. 6(a).

3) The bottom length of the object is 0.027m, with a
±2mm uncertainty.

4) Object mass m = 0.085 kg. Center of mass xc =
0.041m, yc = 0.1m, each with a ±3mm uncertainty.
Directions of xc and yc are marked in Fig. 6(a).

5) Gripper coefficient of friction µg = 0.4, patch contact
radius 0.01m, grasping force Ng = 20N.

From Fig. 6(d) we can see that Θ̄g is a subset of Θg that
further ensures contact mode under parametric uncertainties.

V. EXPERIMENTS

In this section, we present results of different experiments
performed to verify the effectiveness and correctness of the
proposed idea. Two sets of experiments were conducted, each
respectively verifying the proposed model in section III and
showing the effectiveness of the robust planning method in
section IV. We implemented the proposed framework with a
6 DoF MELFA RV-5AS-D Assista manipulator arm with a
Schunk WSG-32 gripper. We put tape on each gripper finger
to make the gripper coefficient of friction close to 0.4. An
april-tag based vision system [23] is used to localize and
grasp objects during the experiments1.

A. Model Verification

In the first set of experiments, we verify the correctness
of the models for the proposed in-hand manipulation. We
verify the proposed model’s accuracy by checking its indi-
cated feasibility. If the model suggests that a contact mode
is infeasible to maintain under the current environmental
setting, we try various motions of the gripper to verify the
infeasibility.

1A video describing the experiments is available here.

Fig. 7: Snapshots of single point pivoting experiments. On the glass
surface, the contact point keeps sliding, so the robot is unable to
pivot it. On the wooden surface, the pivoting succeeded as predicted
by the model.

The example in Fig. 2 is used as the first test case. When
the friction coefficient µ is 0.1, our proposed model in Sec-
tion III predicts infeasibility of reorientation while keeping
the external contact fixed which is also demonstrated in Fig.
4. To verify this, we tried to pivot the object on a plexi-glass
surface, for which the coefficient of friction is approximately
0.1. We commanded the gripper to move 1 cm in ten different
directions {cos 10◦i, sin 10◦i}9i=0 to see if the peg could be
pivoted while maintaining sticking external contact point.
The experiment showed that the robot was not able to pivot
the object in all ten trial motions. When µ = 0.25, a robust
trajectory is successfully planned to rotate φ = 90◦ to
60◦. To verify this, we then switched to a wooden surface
where the coefficient of friction is approximately 0.25. This
time, we directly run the planned pivoting trajectory, and
the experiment showed that the pivoting was successful. The
snapshots of the experiment are presented in Fig. 7.

The second test case is from Fig. 6(a). The object’s
goal pose is φ = 85◦ while ensuring the two contact
points do not separate. The proposed model outputs that
if the starting pose is θ = 0 (or approximately close to
0), one of the contact points will always separate at the
beginning of the planned manipulation. To verify this, we try
to pivot the peg with six different gripper motion directions,
{(cosϕ, sinϕ)|ϕ ∈ {100◦, 120◦, 130◦, 140◦, 150◦, 170◦}},
always starting at θ = 0. The gripper moved 1 cm in each
of the trial directions, and we checked if the contact point
B (as shown in Fig. 6(a)) had separated. We verify contact
separation by trying to insert a paper sheet between the
horizontal plane and the peg. In all six trials, after the gripper
motion, we could easily insert the paper sheet, which means
contact point B had indeed separated. When the starting
angle is φ = 38◦, the proposed method was able to plan
a reorientation trajectory and could be successfully executed
in the experiments. All these experiments are shown in the
supplementary video.

The two test cases verify the predicted feasibility or
infeasibility of the proposed in-hand motion model, which
supports its accuracy.

https://youtu.be/YWk4PPY-IE8


(a) Naı̈ve planning (b) Robust planning

Fig. 8: Snapshots of robust and naı̈ve planning on single point
pivoting under settings (x, −2mm) and (y, +2mm). The robust
planning ensured the contact line does not slip as desired while
naı̈ve planning showed observable slip.

Naı̈ve
Robust x, −2mm x, Exact x, +2mm

y, −2mm
4.6mm

1.7mm
2.4mm

NE
NE

NE

y, Exact
3.8mm

NE
2.2 mm

NE
NE

NE

y, +2mm
3.5mm

NE
1.6mm

NE
NE

NE

TABLE I: Sliding distance of the contact point. NE stands for
negligible, which means no slippery is visually recognizable.

B. Effectiveness of Robust Planning

This subsection elaborates on the effectiveness of the ro-
bust planning method by comparing with the naı̈ve planning,
where the action is selected from the naı̈ve motion cone Θg

(as mentioned in Section III and IV). The example in Fig.
2 is used as the first test case. We consider the uncertainty
in the grasp center (xg and yg) and the CoM position (xc

and yc). We assume the grasp center and CoM position have
3mm uncertainty in both x and y direction and generated the
gripper motion trajectory using the robust planning method.
The benchmark trajectory is generated using the naı̈ve plan-
ning method. We intentionally added ±2mm displacement,
respectively, to the x and y coordinates of the grasping point
and compared the performance of robust and naı̈ve planning.
The results are summarized in table I. Robust planning was
able to ensure sticking contact in almost all cases, while
naı̈ve planning showed detectable contact point slip. The
robust planning also had a 1.7mm slip when both the x
and y coordinates of the grasp center have −2mm error.
This is most likely because the contact point fell out of the
planned uncertainty range in this setting. Snapshots of naı̈ve
and robust planning are shown in Fig. 8.

The second test case is when the robot needs to re-
orient the object from horizontal to vertical pose while
maintaining contact with an edge of a cuboid, as shown in
Fig. 9. Failure is declared if the object loses contact with its
environment during execution. We executed the robust and
naı̈ve trajectory 10 times each. Robust planning succeeded in
all 10 trials and naı̈ve planning only marginally succeeded in
two trials (meaning the peg was almost losing contact when
reorientation completes).

Thus, we show that the robust planning method can

(a) Starting Pose (b) Naı̈ve planning (c) Robust planning

Fig. 9: Snapshots of pivoting using an environmental edge. Naı̈ve
planning tends to lose external contact and fail the pivoting,
while robust planning can maintain external contact and complete
pivoting.

(a) Mayo Bottle (b) Mustard Bottle (c) Glue Bottle

Fig. 10: Snapshots of two point pivoting on three different daily
objects.

effectively maintain the contact mode against parametric
uncertainties. We also successfully implemented robust plan-
ning on three additional daily objects as shown in Fig. 10.
Only a rough estimate of the contact point and CoM position
was given to the system. This shows that our proposed
manipulation framework is generalizable to various object
shapes.

VI. CONCLUSION AND FUTURE WORK

Generalizable manipulation remains one of the biggest
challenges in robotics community due to the challenges
imposed by contact-rich interactions during manipulation.
Planning robust behavior of a robot in the presence of
uncertain contact parameters is very challenging and is not
well explored in literature. This paper proposed a robust
planning method for in-hand manipulation task while main-
taining extrinsic contacts. Given a desired contact mode and
uncertainty range of each parameter, it first uses an in-
gripper mechanics model to compute the motion cone for
each combination of vertex parameters of the uncertainty
range and takes their intersection to obtain the robust motion
cone. Real world experiments were conducted to verify the
accuracy of the in-gripper mechanics model. The comparison
between the proposed robust planning and naı̈ve planning
also elaborated on the effectiveness of the robust tuning
framework for maintaining contact mode under parametric
uncertainties. Since the proposed method gives a robust
motion cone for each contact mode and can provide forward
dynamics, it can naturally combine with search-based algo-
rithms such as rapidly exploring random tree search, which
forms an interesting application and future work.

There are nevertheless limitations of our proposed method.
In the robust planning process, the robust motion cone Θ̄g

may sometimes become an empty set for longer horizons
and larger uncertainty range. As such, combining with tactile



feedback methods [18], [24], [25] becomes an important
future work.
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