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Abstract

The estimation of regression parameters in spatially referenced data plays a cru-
cial role across various scientific domains. A common approach involves employing
an additive regression model to capture the relationship between observations and
covariates, accounting for spatial variability not explained by the covariates through
a Gaussian random field. While theoretical analyses of such models have predom-
inantly focused on prediction and covariance parameter inference, recent attention
has shifted towards understanding the theoretical properties of regression coefficient
estimates, particularly in the context of spatial confounding. This article studies
the effect of misspecified covariates, in particular when the misspecification changes
the smoothness. We analyze the theoretical properties of the generalize least-square
estimator under infill asymptotics, and show that the estimator can have counter-
intuitive properties. In particular, the estimated regression coefficients can converge
to zero as the number of observations increases, despite high correlations between
observations and covariates. Perhaps even more surprising, the estimates can diverge
to infinity under certain conditions. Through an application to temperature and pre-
cipitation data, we show that both behaviors can be observed for real data. Finally,
we propose a simple fix to the problem by adding a smoothing step in the regression.

Keywords: spatial regression, generalized least-squares estimator, maximum likelihood,
misspecification, estimation

1 Introduction

The estimation of regression parameters, sometimes also referred to as fixed effects, for
spatially referenced data is of fundamental importance for practical applications in geo-
statistics, climate, disease mapping, brain imaging, and many other fields. A simple and
commonly used model in these areas is the following additive regression model for obser-
vations Y1, . . . , Yn at spatial locations s1, . . . , sn in some domain D,

Yi =
K∑
k=1

Xk(si)βk + ϵ(si) = X(si)β + ϵ(si), (1)
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where X1, . . . , XK are covariates, β1, . . . , βK regression coefficients, and ϵ is a centered
Gaussian random field that is supposed to capture the spatial variation in the data which
is not captured by the covariates.

The maximum likelihood estimate of the regression coefficients (assuming that the co-
variance function of ϵ is known) is given by the generalized least-squares estimator

β̂GLS = (X⊤Σ−1X)−1X⊤Σ−1Y, (2)

where Y = (Yi, . . . , Yn)
⊤, X is an n×K matrix with entries Xik = Xk(si) and Σ is an n×n

matrix with elements Σij = Cov(ϵ(si), ϵ(sj)). This estimator is typically preferred over the
ordinary least squares estimator for β (obtained by replacing Σ with the identity matrix).
Models of this type have mostly been analyzed theoretically with a focus on prediction or
inference of covariance parameters (e.g., Stein, 1999; Zhang, 2004; Ibragimov and Rozanov,
2012; Kirchner and Bolin, 2022). As noted by Khan and Calder (2022), there has until
recently been few attempts to understand the theoretical properties of the regression coef-
ficient estimates in spatial models like this. However, in the last few years several articles
have investigated so-called spatial confounding problems (see Khan and Berrett, 2023, for
an overview of the literature). Khan and Berrett (2023) note that there is no single def-
inition of spatial confounding, but that one can classify spatial confounding in two broad
categories of model analysis confounding and data generation confounding depending on
the assumptions that are made. In short, data generation confounding assumes that the
model (1) is misspecified and what impact this has on (2). Pioneering work in this area is
Paciorek (2010) which studied the case when ϵ and X are generated by a bivariate Gaussian
random field. On the other hand, model analysis confounding does not assume a specific
misspecification but rather studies the relation between Σ and X and how this effects (2)
and how its expected value deviates from the expected value of the OLS estimator. Early
work in this area is Reich et al. (2006) which studied the case when Σ is generated by a
conditionally autoregressive model for disease-mapping models.

Despite the recent interest in spatial confounding, there are some crucial problems with
the spatial regression model which seem to have been widely overlooked in the literature,
and this is the main focus of this work. Specifically, we are interested in the scenario when
the smoothness of the observed process Y is different from an influential covariate X. To
model this, we suppose that the true data generating process is

Y (s) = SX(s) + ϵ(s),

where ϵ is a Gaussian process, X(s) is some rough covariate, and S is some smoothing
operator. Examples of situations like this, where the observed data are smoother than the
covariate are not uncommon. One example, which we will study in Section 4 is standard-
ized temperature and precipitation residuals over the midwest region of the United States
(Figure 1). If we model the temperature residuals using the precipitation residuals as a
covariate, we visually see that the observations are smoother than the covariate, and that
there is a clear negative correlation between the observations and the covariate.

Because only Y (s) and X(s) are observed, suppose that we use X(s) as a covariate for
Y (s) in a Gaussian process regression

Y (s) = X(s)β + ϵ(s).
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Figure 1: Standardized precipitation and temperature residuals.

In this case, we will show the somewhat counter intuitive result that β → 0 as we get
more data, no matter how high the correlation between Y and X is. Thus, using this
model will severely underestimate the effect that X(s) has on Y (s). Not surprisingly, a
simple solution to this issue is to perform smoothing of the covariate before using it in the
spatial regression. However, we will show that one needs to do this with some care since,
surprisingly, one can obtain that |β| → ∞ as more data is obtained unless the covariate is
smoothed enough.

In the next section, we formalize these problems and provide the main theoretical re-
sults, which hold for Gaussian process regression on general compact metric spaces. Thus,
our theoretical results are much more general than the common setting of having obser-
vations in a bounded domain in Rd, and are for example also applicable to data on the
sphere or other manifolds. We also provide more detailed results for Gaussian random
fields with fractional-order covariance operators, where Gaussian Whittle–Matérn fields
(Lindgren et al., 2011, 2022) are important special cases, and extend some of the results to
observations with measurement noise. Two simulation studies are performed in Section 3
to illustrate the results, and Section 4 contains the application to the temperature and
precipitation residuals. We end the article with a discussion in Section 5, where we relate
these results to other recent results for spatial confounding. All proofs are given in the
appendix of the manuscript.

2 Theoretical setup and main results

In this section, we provide the theoretical setup and the main results. We begin with the
most general results and then focus on Gaussian fields with fractional-order covariance
operators as a special case, which contains several important examples for which we can
obtain refined results.

2.1 General results

We let (X , dX ) denote a connected, compact metric space of infinite cardinality and let νX
be a strictly positive and finite Borel measure on (X ,B(X )), where B(X ) denotes the Borel
σ-algebra on X . We further assume that ϵ is a square-integrable and centered Gaussian
process ϵ : X × Ω → R defined on a complete probability space (Ω,A,P). The covariance
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function of ϵ, ϱ : X × X → R, is assumed to be (strictly) positive definite and we denote
the corresponding covariance operator by C:

C : L2(X , νX ) → L2(X , νX ), (Cw)(s) :=
∫
X
ϱ(s, s′)w(s′) dνX (s

′), (3)

Here, L2(X , νX ) is the Hilbert space of real-valued, Borel measurable, square-integrable
functions on X , with inner product (f, g)L2(X ,νX ) =

∫
X f(s)g(s)dνX (s) and induced norm

∥f∥2L2(X ,νX ) = (f, f)L2(X ,νX ) =
∫
X |f(s)|2dνX (s).

The Gaussian process induces a Gaussian measure µ = N(0, C) on the Hilbert space
L2(X , νX ), i.e., for every Borel set A we have µ(A) = P({ω ∈ Ω : Y ( · , ω) ∈ A}). The
Cameron–Martin space C1/2(L2(X , νX )) associated with µ on L2(X , νX ), also known as the
reproducing kernel Hilbert space of µ, is a Hilbert space which is defined as the range
of C1/2 in L2(X , νX ) equipped with the inner product ( · , · )C := (C−1/2 · , C−1/2 · )L2(X ,νX )

and induced norm ∥ · ∥C = ∥C−1 · ∥L2(X ,νX ). We similarly define C1(L2(X , νX )) as the range
of C in L2(X , νX ) equipped with the inner product ( · , · )C2 := (C−1 · , C−1 · )L2(X ,νX ) and
corresponding induced norm.

We are now interested in the maximum-likelihood estimation of a model with a mis-
specified mean value. To make the results more generally applicable than to the setup
mentioned in the introduction, we make the following assumption.

Assumption 1. Suppose that {si}i∈N is a sequence of locations in X which is dense, i.e.,
each s ∈ X is an accumulation point of the sequence, and let {Yi}i∈N be a corresponding
sequence of observations, Yi = Y (si), of the process Y ∼ µβ, where µβ = N(m + βSX, C).
Here S : L2(X , νX ) → L2(X , νX ) is some operator, m ∈ C1/2(L2(X , νX )), and the covariate
X ̸= 0 satisfies X ∈ L2(X , νX ), ∥X∥∞ < ∞ and ∥SX∥∞ < ∞.

Our main theorem is the following.

Theorem 1. Suppose that the data is generated according to Assumption 1 while our
candidate model is that Y ∼ µ̂β, where µ̂β = N(βX, C). Let β̂n denote the maximum
likelihood estimator (under the candidate model) based on the n first observations, then:

(i) if SX /∈ C1/2(L2(X , νX )) and (SX −X) ∈ C1/2(L2(X , νX )), then β̂n → β P-a.s.;

(ii) if SX ∈ C1/2(L2(X , νX )) and (SX −X) /∈ C1/2(L2(X , νX )) then β̂n → 0 P-a.s.;

(iii) if X ∈ C1(L2(X , νX )), then β̂n → β∞ = (Y,X)C/∥X∥2C P-a.s., where β∞ is a random
variable with E(β∞) = (m+ βSX,X)C/∥X∥2C < ∞.

The first two cases of this result can be extended to the situation where measurement
noise is included in the observation equation. That is, suppose that the observations are

Ỹi = Y (si) + ϵi, (4)

where ϵi ∼ N (0, σ2
e), and Y (si) satisfy Assumption 1. We then have the following result.

Corollary 1. Suppose that Ỹi follow (4) while our candidate model is that Yi = Y (si)+ ϵi,,
where Y ∼ µ̂β with µ̂β = N(βX, C). Let β̂n denote the maximum likelihood estimator (under
the candidate model) based on the n first observations, then:
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(i) if SX /∈ C1/2(L2(X , νX )) and (SX −X) ∈ C1/2(L2(X , νX )) then β̂n → β P-a.s.;

(ii) if SX ∈ C1/2(L2(X , νX )) and (SX −X) /∈ C1/2(L2(X , νX )) then β̂n → 0 P-a.s..

To understand the implications of these results, let us explore a few important choices
for the operator S in the following corollaries.

Corollary 2. If X = SX+X0 for an additive perturbation satisfying X0 /∈ C1/2(L2(X , νX )),
then β̂n → 0.

The following corollary provides the setup mentioned in the introduction.

Corollary 3. If S is a smoothing operator such that SX ∈ C1/2(L2(X , νX )), then β̂n → 0
if X /∈ C1/2(L2(X , νX )).

From these results, we see that we obtain β̂n → 0 if X is not in the Cameron–Martin
space of the covariance operator, whereas SX is. Thus, to avoid severe bias in these spatial
regression problems, it is crucial to know whether or not the covariate, or the smoothed
covariate, is in the Cameron–Martin space of the covariance operator. In the following
subsection, we provide several examples of these spaces for Gaussian Whittle–Matérn fields.

2.2 Fractional-order covariance operators

In this section, we consider an application of the results of the previous section to Gaussian
random fields with fractional order covariance operators, and provide some additional re-
sults not covered in the general case. For this, we need some additional notation. Suppose
that A : D(A) ⊊ L2(X , νX ) → L2(X , νX ) is a densely defined, self-adjoint and positive
linear operator with a compact inverse (see Bolin and Kirchner, 2023, for details). In this
case, A has a set of eigenvectors {ej}j∈N and corresponding positive eigenvalues {λj}j∈N
which can be taken in a non-decreasing order and which only accumulate at∞. We suppose
that the there exists constants c, C > 0 and η > 0 such that

cjη ≤ λj ≤ Cjη, ∀j ∈ N. (5)

For α > 0, the action of the fractional-order operator Aα : D(Aα) ⊊ L2(X , νX ) → L2(X , νX )
is defined in the spectral sense as

Aαf :=
∞∑
j=1

λα
j (f, ej)L2(X ,νX )ej,

for f ∈ D(Aα). For s > 0, the domain of As is defined as Ḣ2s
A := D(As), where

D(As) = {f ∈ L2(X , νX ) : ∥Asf∥2L2(X ,νX ) =
∞∑
j=1

λ2s
j (f, ej)

2
L2(X ,νX ) < ∞}.

We let Ḣ−s
A denote the dual space of Ḣs

A and note that for s > 0, Ḣs
A is a separable

Hilbert space with inner product (f, g)s,A := (As/2f, As/2g)L2(X ,νX ). Now, suppose that
the covariance operator C of the Gaussian process is C = A−α for some α > 0, then
the Cameron–Martin space is C1/2(L2(X , νX )) = Ḣα

A. This allows us to quantify the
requirements regarding the Cameron–Martin space through Ḣα

A, and we now provide some
explicit examples of these for the popular Whittle–Matérn fields and generalized Whittle–
Matérn fields on various spatial domains.
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Example 1. Suppose that X = D ⊂ Rd is connected, bounded and open domain with
Lipschitz boundary. Choosing A = κ2 − ∇ · (a∇) for a bounded function κ : D → R
and a symmetric Lipschitz and uniformly positive definite function a : D → Rd, and
endowing the operator with homogeneous Dirichlet or Neumann boundary conditions, results
in a generalized Whittle–Matérn field (see, e.g. Bolin and Kirchner, 2020). With a as the
identity function and κ as a positive constant, we obtain the standard Whittle–Matérn
fields as a special case. For these fields, one can characterize the Cameron–Martin spaces
in terms of standard fractional Sobolev spaces Hα(X ), see, e.g., Bolin and Kirchner (2023).
By these results, f ∈ Hα(D) is required to have f ∈ Ḣα

A, and we therefore have an explicit
smoothness requirement on the functions in the Cameron–Martin space.

Example 2. Suppose that X = M is a closed, connected, orientable, smooth and compact
surface in R3. Choosing A = κ2 − ∇M · (a∇M)∆X , where ∇M · is the surface divergence
and ∇M the surface gradient, results in a generalized Whittle–Matérn field on the surface.
The characterization of the Cameron–Martin space can then be done in terms of standard
fractional Sobolev spaces Hα(M) (Herrmann et al., 2020). These results can also be ex-
tended to more general Riemannian manifolds, and in particular are applicable to Gaussian
Whittle–Matérn fields on manifolds by considering A = κ2 −∆M , where κ > 0 is constant
and ∆M is the Laplace–Beltrami operator (Borovitskiy et al., 2020; Harbrecht et al., 2021).

Example 3. Suppose that X = Γ is a compact metric graph, such as a linear network.
Choosing A = κ2 − ∆Γ, where κ > 0 and ∆Γ is the Kirchhoff-Laplacian results in a
Whittle–Matérn field on Γ for which Bolin et al. (2023) provide a representation of the
Cameron–Martin spaces. Bolin et al. (2023) extends this to generalized Whittle–Matérn
fields on Γ, obtained by considering A = κ2 − d(a d), where κ is a bounded function, a is a
positive Lipschitz function, and d is an operator acting as the derivative on the edges of Γ.

We assume that the operator S is of the form S = Aγ
S, where AS is an operator

that diagonalizes with respect to the eigenvectors {ej}j∈N, with corresponding positive
eigenvalues {λS,j} satisfying the same asymptotic growth as A:

csj
η ≤ λS,j ≤ CSj

η, ∀j ∈ N,

for some constants cS, Cs > 0. Then, from Theorem 1 it follows that:

Corollary 4. Suppose that the data is generated according to Assumption 1, where C = A−α

for α > 0 and that S = Aγ
S for γ ∈ R. Further suppose that X ∈ Ḣp

A, for some p > 0, and
that X /∈ Ḣ p̃

A for any p̃ > p. The candidate model is Y ∼ µ̂β, where µ̂β = N(βX, C). Let

β̂n denote the maximum likelihood estimator based on the n first observations, then:

β̂n →


β if p < α and γ = 0,

0 if p < α and 2γ ≤ p− α,

β∞ = (Y,X)C/∥X∥2C if p ≥ 2α and γ < 0,

(6)

P-a.s., where β∞ is a random variable with E(β∞) = β(SX,X)C/∥X∥2C < ∞.

We can note that some combinations of p, α and γ are missing in the result. It is more
complicated to get a general result in these cases as the behavior appear to depend on how
the observations are taken. One situation where we can obtain a complete characterization
is if the observations are eigenbasis observations, which is a common assumption is several
theoretical investigations of maximum likelihood estimators, (see, e.g., Cialenco, 2018).
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Proposition 1. Suppose that C = A−α for α > 0 and that S = Aγ
S for γ ∈ R. Further

suppose that X ∈ Ḣp
A for p > 0, and that X /∈ Ḣ p̃

A for p̃ > p. The candidate model is

Y ∼ µ̂β, where µ̂β = N(βX, C). Let β̂n denote the maximum likelihood estimator based on
the n observations Yi = (Y, ei)L2(X ,νX ) for i = 1, . . . , n then

β̂n →


β if p < α and γ = 0,

0 if p < α and γ < 0,

sign(β)∞ if (p < α and γ > 0) or (p ≥ α and γ > p− α),

β∞ = (Y,X)C/∥X∥2C if p ≥ α and γ ≤ p− α,

P-a.s., where β∞ is finite with E(β∞) = β(SX,X)C/∥X∥2C.

This result should carry over to any reasonable fill in limit sequence of observations
such that X⊤Σ−1Y and X⊤Σ−1X in (2) converges to (Y,X)C < ∞ and ∥X∥2C < ∞ as
n → ∞. Thus, we conjecture that for most practical situations, the results obtained for
eigenbasis observations hold also for the point observations, in particular that |β̂n| → ∞ if
p < α and γ > 0 or if p ≥ α and γ > p−α. This is also what we observe in Section 3.2 for
point observations.

3 Simulation experiments

To illustrate the results of the previous section, we here perform a few simulation experi-
ments. In the first experiment we take a time series approach and use a lowess smoother
(Cleveland, 1979) to illustrate the effect of the results. In the second experiment, we
consider a setup similar to the spatial data application in Section 4.

3.1 A time series example

Suppose that we are given data Yi = SX(si) + Z(si) where si ∈ [0, 10], and Z(s) is a
centered Gaussian process with a Matérn covariance with κ = ν = 1 and σ = 0.1. We
generate SX by first simulating a realization X(s) of a centered Gaussian process with
a Matérn covariance with κ = ν = 1 and σ = 0.4, and then smoothing it with a lowess
smoother with smoother span 0.1. An example of the process and covariates can be seen
in Figure 2.

As a first experiment, we assume that we know the covariance function of Z and estimate
two models

Model 1 : Yi = βX(si) + Z(si), Model 2 : Yi = βŜX(si) + Z(si),

where the first model uses the unmodified, rough, covariate X, and the second model
uses ŜX which is a smoothed version of X, obtained by a different lowess smoother with
smoother span 0.2.

For both models, we estimate β using maximum likelihood using an increasing amount
of observations, regularly spaced in the interval [0, 1]. The resulting estimates can be seen
in the columns for Experiment 1 in Table 1, where the values are obtained as averages of
the results for 10 repetitions of the experiment.
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Figure 2: Simulation of Y (s) = SX(s) + Z(s) (black solid), SX(s) (black dashed), the
non-smoothed covariate X(s) (red), and the smoothed covariate ŜX(s) (blue).

Experiment 1 Experiment 2 Experiment 3

n Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
128 0.108 1.059 0.027 1.043 0.026 1.006
256 0.052 1.049 0.018 1.081 0.042 1.023
512 0.026 1.046 0.011 1.094 0.034 1.04
1024 0.014 1.048 0.009 1.097 0.034 1.039

Table 1: Estimates of the regression coefficient β for the three simulation experiments.
Model 1 has a rough covariate whereas Model 2 has a smooth covariate. Each number is
an average over 10 different datasets.

As a second experiment, we redo the same simulations, but estimate the parameters
κ, σ, ν of the covariance function jointly with β when performing the maximum likelihood
estimation. The results are shown in the columns for Experiment 2 in Table 1. Finally,
as a third experiment, we extend the model for Z by adding a nugget effect. That is, we
use a covariance function r(h) = ρ(h) + σ2

e1(h = 0), where σ2
e is the nugget representing

the variance of measurement error. We generate the data Yi assuming this covariance for
Z, where we choose σe = 0.01, and estimate all parameters κ, σ, ν, σe of the covariance
function jointly with β when performing the maximum likelihood estimation. The results
of this experiment are shown in the columns for Experiment 3 in Table 1.

In all three experiments, the estimate of β tends to zero as the number of observations
increases for the first model, whereas the estimate is stable for the second model, despite
that it uses the wrong covariate. This result is expected from the results of the previous
section, but might seem counterintuitive given that X has a high correlation with the
observed data (it was, for example, 0.951 on average for the first experiment).
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3.2 A spatial example

We now illustrate the results in an example related to the application in the next section.
We assume that ϵ in (1) is a Gaussian Matérn field with range κ = 0.4, variance σ2 = 1.32,
and smoothness ν = 2 on the domain in Figure 1. These parameter values were chosen so
that they are similar to parameters for the application. We further assume that X also
is a Gaussian Matérn field, independent of ϵ, with the same parameters κ and σ, and a
different smoothness parameter νX . Finally, we assume that S is chosen so that SX also
is a Gaussian Matérn field with the same parameters κ and σ and a different smoothness
parameter νSX .

We consider 620 observation locations as in the Figure 1 for the application. If we let
Y denote the observations at these locations, the model specifically is

Y = SX+Σ1/2
ϵ Z1,

where SX = Σ
1/2
SX Z2 and X = Σ

1/2
X Z2. Here, Zi are vectors with independent standard

Gaussian variables and Σϵ,ΣX and ,ΣSX denote the covariance matrices corresponding to
Matérn covariance functions with parameters κ = 0.4, σ = 1.3 and smoothness ν = 2, νX ,
and νSX respectively. For νSX we consider the two cases νSX = ν and νSX = ν − 0.5.
In the first, the smoothness of ϵ and SX are equal which is likely the situation one is in
when estimating the smoothness from data. In the second case, SX is rougher than ϵ,
which could occur if the smoothness of ϵ is kept fixed (e.g., if an exponential or a squared
exponential covariance is used).

We subsample Y, X and SX by sampling n out of the 620 observation locations uni-
formly at random and compute β̂n using (2) where n is the number of observations in the
sample. These estimates are computed for different values of νX ∈ [0.5, 10].

In the notation of Section 2.2, the smoothness parameters correspond to α = ν + 1,
p = νX and γ = (νX−νSX)/2. Thus, if Proposition 1 also would hold for point observations,
we expect that

case 1: β̂n →


0 if νX < 2,

β if νX = 2,

∞ if 2 < νX < 3,

β∞ if νX ≥ 3,

case 2: β̂n →


0 if νX < 1.5,

β if νX = 1.5,

∞ if 1.5 < νX < 3,

β∞ if νX ≥ 3,

with E(β∞) = β(SX,X)C/∥X∥C < ∞.
We repeat the experiment 400 times, and the result is seen in Figure 3. One can observe

the result from Proposition 1 emerging as the sample size grows. In particular when νX < 2
for the first case, and νX < 1.5 for the second, the estimator goes to zero. When νX ∈ (2, 3)
for the first case, and νX ∈ (1.5, 3) in the second, there is a positive bias. As the sample
size is not that large in this example, it is not clear if this bias will be unbounded if n was
increased further, but the bias is clearly large enough that it could have serious implications
for the interpretation of the results.

4 An application to reanalysis data

To illustrate the theory on real data we take a data set of precipitation and temperature
reanalysis. The variables are the average summer (June, July and August) temperature,
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Figure 3: The effect of smoothing the covariate for the cases νSX = ν (left) and νSX = ν−0.5
(right). The solid line is the mean effect of 400 simulations, and the dashed lines represent
Monte Carlo 95% confidence bands.

Temperature model Precipitation model

n(space) βP (CI95%) RMSE βT (CI95%) RMSE
15 −0.21 (−0.26,−0.16) 0.19 −0.55 (−0.67,−0.44) 0.41
50 −0.18 (−0.20,−0.16) 0.18 −0.73 (−0.81,−0.65) 0.42
100 −0.15 (−0.16,−0.14) 0.17 −0.80 (−0.86,−0.73) 0.42
250 −0.11 (−0.12,−0.11) 0.17 −1.07 (−1.13,−1.01) 0.43
620 −0.09 (−0.09,−0.09) 0.17 −1.57 (−1.60,−1.50) 0.46

Table 2: Results for modelling temperature with precipitation as covariate and precipitation
with temperature as covariate. The table shows the estimated regression coefficients, their
95% confidence intervals, and the root mean square prediction error for the prediction set.

T (s, t), and the cube-root precipitation, P (s, t), over the Midwest United states for 24 years
(1981-2004). To simplify interpretation we standardize the data for each year. The data
for one year is shown in Figure 1. The empirical correlation between the two variables is
−0.67. This data was studied earlier in Genton and Kleiber (2015) for examining the joint
distribution through various multivariate models, and they in particular studied a linear
coregionalization model,

T (s, t) = a11Z1(s, t),

P (s, t) = a12Z1(s, t) + a22Z2(s, t),

where Z1, Z2 are independent Gaussian random fields. The formulation is motivated by
“We opt for this formulation since temperature is expected to be smoother than precipita-
tion,...”. Therefore the data seems ideal to study in our context as differentiability of the
field determines the Cameron–Martin space of the Matérn covariance.

In order to study how the estimators behave as functions of sample size, we subsample n
of the 620 spatial locations, keeping the data from all 24 years for the subsampled locations.
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Temperature model Precipitation model

n(space) βSP (CI95%) RMSE βST (CI95%) RMSE
15 −0.32 (−0.44,−0.19) 0.17 −0.37 (−0.50,−0.25) 0.42
50 −0.19 (−0.33,−0.06) 0.17 −0.48 (−0.59,−0.38) 0.42
100 −0.19 (−0.33,−0.04) 0.17 −0.55 (−0.65,−0.46) 0.42
250 −0.31 (−0.46,−0.17) 0.17 −0.58 (−0.68,−0.49) 0.42
620 −0.36 (−0.53,−0.19) 0.17 −0.58 (−0.67,−0.49) 0.42

Table 3: Results for modelling temperature with smoothed precipitation as covariate and
precipitation with smoothed temperature as covariate. The table shows the estimated
regression coefficients, their 95% confidence intervals, and the root mean square prediction
error for the prediction set.

We explore both predicting temperature using precipitation as a covariate,

T (s, t) = β0 + βPP (s, t) + ZT (s, t; θT ),

and predicting precipitation using temperature as a covariate,

P (s, t) = β0 + βTT (s, t) + ZP (s, t; θP ).

Here ZT and ZP are fitted using a Matérn covariance with parameters estimated from the
subsampled data. We estimate the regression coefficients and covariance parameters based
on the subsampled dataset. Then, after fitting the parameters we split the data set into a
prediction set of 36 locations, which is predicted given the remaining 584 observations. The
result is shown in Table 2. The coefficients change as the theory suggests, and one can note
the absurd implication of using this model for predicting precipitation using temperature:
As the data is standardized, the yearly variance of both pressure and temperature is one,
while the predictor βTT (s, t) has a variance of 1.572. Also note that the prediction error is
slightly decreasing with n for temperature, even though the coefficient goes to zero, this is
inline with theory as the unsmoothed precipitation cannot contribute to the interpolation.

Finally, we fit the same models but using smoothed covariates. These smoothed covari-
ates are obtained by first estimating the covariance of the covariates, i.e., we estimate the
models P (s, t) = β0 + ZP (s, t; θ

fixed
P ) and T (s, t) = β0 + ZT (s, t; θ

fixed
T ). Then we multiply

the observed precipitation P and temperature T by some powers of the fitted covariance
matrices, yielding SP = Σ3

θfixedP

P and ST = Σ0.5

θfixedT

T. These choices are likely not opti-

mal, but the results are sufficient to ensure that the covariates are smooth enough as can
be seen in the stable estimates in Table 3. Note also that there is no large difference in
prediction error compared to the results in Table 2, which means that the problem cannot
be identified through cross validation.

5 Discussion

We have investigated the implications of misspecifying the smoothness of covariates in
regression models within an infill asymptotic framework, and in particular showed the
importance of ensuring that the covariates do not exhibit rougher characteristics than the
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underlying field. If the covariates are too rough, the corresponding regression coefficients
will converge to zero no matter how high the correlation is with the observed data. This
main result is formally established in Theorem 1.

On the other hand, if a misspecified covariate possess roughness equal to or slightly
smoother than the field, the corresponding regression coefficient may diverge to infinity
under certain scenarios. We were unable to establish this result solely based on the as-
sumption of observations filling the domain; indeed, we suspect that the result need not be
true under such weak conditions. Instead, we demonstrated the behavior utilizing obser-
vations of eigenvectors, as detailed in Proposition 1. However, both simulated data from
random locations (see Section 3.2) and real-world data (see Section 4) indicate that this
behavior holds for point observations at random locations, at least for stationary Gaussian
random fields with Matérn covariances.

We have not encountered any previous works studying misspecified covariates under
infill asymptotics. There are, however, related works worth commenting on. For example
in Gilbert et al. (2023), the regression coefficient is defined as identifiable if it is less smooth
than ϵ, underscoring the significance of smoothness. While their definition of identifiability
aligns with the ability to perfectly separate noise from regression coefficients, we prefer to
denote this as a lack of consistent estimability, to avoid confusion with the classical defi-
nition of identifiability (refer to Definition 5.2 in Lehmann and Casella (2006)). Another
pertinent work is Dupont et al. (2023), which conducts a non-asymptotic analysis of spatial
confounding effects and highlights the impact of smoothing. On page 8, they state, “the
expression in Corollary 3.2 shows firstly that bias in the spatial model is directly linked to
the smoothing in the model, as without smoothing the bias would not arise.” Finally, a
recent method proposed by Dupont et al. (2022) suggests removing the smooth component
of X using a thin plate spline. This recommendation appears contrary to our findings.
However, the authors clarify in their discussion that their methods are designed for co-
variates with non-spatial components, implying a measurement error component within X.
Consequently, their approach would be suitable in scenarios where SX /∈ C1/2(L2(X , νX ))
in our notation.

An intriguing avenue for future research is to explore general assumptions on the obser-
vations under which the regression coefficients tend to infinity under misspecified smooth-
ness. Additionally, investigating whether these properties persist when substituting the
Gaussian field ϵ in (1) with a more general Lévy random field is an interesting topic for
future research.
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A Collected proofs

Throughout the proofs we will use representations of Gaussian fields in terms of Gaussian
white noise W on L2(X , νX ), which can be represented as a family of centered Gaussian
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random variables {W(h) : h ∈ L2(X , νX )} such that

∀f, g ∈ L2(X , νX ), E(W(f)W(g)) = (f, g)L2(X ,νX ).

AGaussian random field ϵ with covariance operator C can then be represented as ϵ = C1/2W .

A.1 General results

Proof of Theorem 1. Let fβ
n denote the density of Y1, . . . , Yn under µβ, and let f̂n(β) de-

note the corresponding density under µ̂β. By the Feldman–Hajek theorem (Da Prato and
Zabczyk, 2014, Theorem 2.25), we have that µβ and µ̂β̂ are equivalent if

m+ βSX − β̂X ∈ C1/2(L2(X , νX )), (7)

and they are orthogonal otherwise.
We start by proving (i). Since SX /∈ C1/2(L2(X , νX )) and SX −X ∈ C1/2(L2(X , νX )),

we have that X /∈ C1/2(L2(X , νX )) and (7) therefore shows that µ̂β̂ is equivalent to µβ

if β = β̂ and that the measures are orthogonal whenever β̂ ̸= β. Because of this, we
by Gikhman and Skorokhod (2004, Theorem 1, p.442) and Da Prato and Zabczyk (2014,
Proposition 2.26) have that

lim
n→∞

log
fβ
n

f̂n(β̂)
=

{
−∞ β̂ ̸= β,

log(c0) β̂ = β,
(8)

with probability 1, where c0 > 0 is the Radon–Nikodym derivative

dµβ

dµ̂β

(y) = exp

(
(y −m− βSX, β (SX −X) +m)C −

1

2
∥β (SX −X) +m∥2C

)
, (9)

for β̂ = β. When β̂ = β, ∥m+βSX−β̂X∥C is finite because SX−X ∈ C1/2(L2(X , νX )) and
m ∈ C1/2(L2(X , νX )). Further, for β̂ = β we have that m + βSX − β̂X ∈ C1/2(L2(X , νX )
so that we can write m + βSX − β̂X = C1/2f for f ∈ L2(X , νX ). Using this and that
y = m+ βSX + ϵ, where ϵ = C1/2W , we obtain that

(y − β̂X,m+ βSX−β̂X)C = (ϵ,m+ βSX − β̂X)C + ∥m+ βSX − β̂X∥C
= (C1/2W , C−1(m+ βSX − β̂X))L2(X ,νX ) + ∥m+ βSX − β̂X∥C
= (C1/2W , C−1/2f)L2(X ,νX ) + ∥m+ βSX − β̂X∥C
= W(f) + ∥m+ βSX − β̂X∥C < ∞ P-a.s.

Thus, c0 < ∞ P-a.s. To prove the claim we need show that β̂n is not a divergent sequence.
It is enough to show that for a fixed ϵ > 0, there exists an N such that ρn(β̂) = log fn −
log f̂n(β̂) < log(c0) − 1 for all |β − β̂| > ϵ whenever n > N . To that end, fix a β∗ with
|β∗ − β| > ϵ and note that by (8), there is an N such that ρn(β

∗) < log(c0)− 1. Next, it is
clear that β̂ 7→ log f̂n(β̂) is strictly concave, and we therefore have that ρn(β̂) < log(c0)− 1
for all β̂ with |β − β̂| > |β∗ − β̂|. This finishes the proof since ϵ was arbitrary.
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We now prove (ii). Since SX /∈ C1/2(L2(X , νX )) and (SX −X) /∈ C1/2(L2(X , νX )), (7)
shows that µ̂β̂ is orthogonal to µβ whenever β̂ ̸= 0. We have that

lim
n→∞

log
fβ
n

f̂n(β̂)
=

{
−∞ β̂ ̸= 0,

log(c0) β̂ = 0,
(10)

with probability 1, where c0 > 0 is the Radon–Nikodym derivative (9), which is finite
because β̂ = 0. The remaining proof is now identical to that of (i).

To prove (iii) note that limn→∞ log fβ
n

f̂n(β)
will be equal (with probability 1) to the Radon–

Nikodym derivative (9). The maximum likelihood estimator of β̂ is the maximizer of this
expression, which is given by

β∗ = argmin
β̂

{
(Y, β̂X)C −

1

2
∥β̂X∥2C

}
=

(Y,X)C
∥X∥2C

.

Now will show that this a random variable with finite variance and expectation. Since
X ∈ C1/2(L2(X , νX )) there exists an X̃ ∈ L2(X , νX ) such that X = C1/2X̃. Furthermore,
Y can be expressed as m+ βSX + C1/2W where W is Gaussian white noise. Thus,

(Y,X)C = (m+ βSX,X)C + (C1/2W , X)C. (11)

Here (C1/2W , X)C = (C1/2W , C−1/2X̃)L2(X ,νX ) = W(X̃) < ∞, P-a.s., since X̃ ∈ L2(X , νX )
and W is Gaussian white noise on L2(X , νX ). Finally, since X ∈ C1(L2(X , νX )) there exists
X̄ ∈ L2(X , νX ) such that X = CX̄ and (m+ βSX,X)C = (m+ βSX, X̄)L2(X ,νX ) < ∞.

Proof of Corollary 1. This is an immediate consequence of the proof of Theorem 1 and
Stein (1999, Theorem 6 (Chapter 4)).

A.2 Fractional-order covariance operators

Proof of Corollary 4. Let Ḣ2γ
S denote the domain of Aγ

S and note that we have the equiv-
alence Ḣ0

A
∼= L2(X , νX ) ∼= Ḣ0

S. By Bolin et al. (2020, Lemma 2.1), Aγ
S can be extended

to an isometric isomorphism Aγ
S : Ḣs

S → Ḣs−2γ
S for s ∈ R. Further, because λS,j and λj

have the same asymptotic growth, we have that Ḣs
A
∼= Ḣs

S for s ∈ R. Thus, we have that
SX ∈ Ḣp−2γ

A .
Using the same notation as in the proof of Theorem 1, we have that µβ and µ̂β̂ are

equivalent if and only if βSX − β̂X ∈ Ḣα
A. If γ = 0 and p < α, we have that SX /∈ Ḣα

A

and SX − X = 0 ∈ Ḣα
A. Therefore, the result follows from Theorem 1 (i). If p < α and

2γ < p − α, we have that SX ∈ Ḣp−2γ
A ⊆ Ḣα

A and SX − X /∈ Ḣα
A. Therefore, the result

follows from Theorem 1 (ii) as γ is negative so that S : L2(X , νX ) → L2(X , νX ). Finally, if
p ≥ 2α and γ ≤ 0 , we have that X ∈ Ḣ2α

A and the result follows from Theorem 1 (iii).

Proof of Proposition 1. When the observations are eigenfunction observations, the likeli-
hood is given by l(β) = −1

2

∑n
i=1 λ

α
i (Yi −Xiβ)

2 , where Xi = (X, ei)L2(X ,νX ), and thus

β̂n =

∑n
i=1 λ

α
i YiXi∑n

i=1 λ
α
i X

2
i

.
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First note that Yi = (SX+ ϵ, ei)L2(X ,νX ), where ϵ can be written as ϵ = C1/2W for Gaussian
white noise W on L2(X , νX ). Thus,

β̂n = β

∑n
i=1 λ

α
i Xi(SX, ei)L2(X ,νX )∑n

i=1 λ
α
i X

2
i

+

∑n
i=1 λ

α
i Xi(C1/2W , ej)L2(X ,νX )∑n

i=1 λ
α
i X

2
i

. (12)

The second term is a random variable with

V
[∑n

i=1 λ
α
i Xi(C1/2W , ei)L2(X ,νX )∑n

i=1 λ
α
i X

2
i

]
= V

[∑n
i=1 λ

α/2
i Xiξi∑n

i=1 λ
α
i X

2
i

]
=

∑n
i=1 λ

α
i X

2
i

(
∑n

i=1 λ
α
i X

2
i )

2 = Bn.

Consider first the case p < α: then,
∑∞

i=1 λ
α
i X

2
i = ∞ and hence Bn → 0. Thus, the

asymptotic value of β̂n depends solely on the first term in (12):

β

∑n
i=1 λ

α
i Xi(SX, ei)L2(X ,νX )∑n

i=1 λ
α
i X

2
i

= β

∑n
i=1 λ

α
i λ

γ
S,iX

2
i∑n

i=1 λ
α
i X

2
i

:= βAn.

If γ = 0, we clearly have that An → 1, so β̂ → β. Further,

An ≤
λγ
S,n

∑n
i=1 λ

α
i X

2
i∑n

i=1 λ
α
i X

2
i

= λγ
S,n.

Thus, An → 0 if γ < 0, so in this case β̂n → 0. Now, take m < n, we then have that

An ≥
∑m

i=1 λ
α
i λ

γ
S,iX

2
i + λγ

S,m

∑n
i=m λα

i X
2
i∑m

i=1 λ
α
i X

2
i +

∑n
i=m λα

i X
2
i

=

∑m
i=1 λ

α
i λ

γ
S,iX

2
i∑n

i=m λα
i X

2
i

+ λγ
S,m∑m

i=1 λ
α
i X

2
i∑n

i=m λα
i X

2
i
+ 1

→ λγ
S,m

as n → ∞ because all Xi are bounded and
∑∞

i=1 λ
α
i X

2
i = ∞. Since this holds for any

m < n, we can conclude that An diverges if γ > 0. Now consider the case p ≥ α. In this
case, ∥X∥2C =

∑∞
i=1 λ

α
i X

2
i < ∞. Further,

n∑
i=1

λα
i λ

γ
S,iX

2
i ≤ Cs

n∑
i=1

λα+γ
i X2

i → ∥X∥2A,α+γ < ∞

if α + γ ≤ p. Thus, in this case, β̂n → (Y,X)C/∥X∥2C < ∞ P-a.s.. If, on the other hand,

α + γ > p,
∑n

i=1 λ
α
i λ

γ
S,iX

2
i → ∞ and thus, β̂n → sign(β)∞.
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