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Abstract. The exploration of new problem classes for quantum computation is an active area
of research. An essentially completely unexplored topic is the use of quantum algorithms and
computing to explore and ask questions about the functional dynamics of neural networks. This
is a component of the still-nascent topic of applying quantum computing to the modeling and
simulations of biological and artificial neural networks. In this work, we show how a care-
fully constructed set of conditions can use two foundational quantum algorithms, Grover and
Deutsch-Josza, in such a way that the output measurements admit an interpretation that guaran-
tees we can infer if a simple representation of a neural network (which applies to both biolog-
ical and artificial networks) after some period of time has the potential to continue sustaining
dynamic activity. Or whether the dynamics are guaranteed to stop either through ’epileptic’
dynamics or quiescence.
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1 Introduction

Quantum computing, at least theoretically at present, has the potential to revolutionize areas where classi-
cal computers show limitations, particularly in cryptography and the simulation of complex physical and
chemical systems, including quantum mechanics itself. Notably, quantum algorithms like Shor’s for integer
factorization could significantly disrupt traditional cryptographic techniques, presenting a mix of challenges
and opportunities in the realm of data security [1]. While research in quantum computing has historically
focused on these well-established topics, the exploration of new problem classes that are particularly suit-
able for quantum computation is an active area of research, to include the application of known quantum
algorithms and the development of new ones. In fact, Google Quantum and X Prize just announced a new
competition specifically to promote the development of practical, real-world quantum computing algorithms
and applications (https://www.xprize.org/prizes/qc-apps).

A still-nascent topic is the application of quantum computing to the modeling and simulation of bio-
logical and artificial neural networks. In particular, a completely unexplored topic is the use of quantum
algorithms and computing to explore and ask questions about the functional dynamics of neural networks.
We propose that prioritizing research in these areas is important, as it can potentially significantly advance
our understanding of the brain and mind and the increasingly rapid development of artificial intelligence.

To be sure, the intersection of quantum computing, neuroscience, and related topics has generated
considerable interest already, leading to quite a few books, technical papers, and popular articles. Some of
what has been written is speculative but scientifically thoughtful (see, for example, [2], [3], [4], [5], [6],
[7]), and a lot is not. Probably most well-known are the arguments by Hammoroff, Penrose, and others
suggesting that microtubules in neurons act as quantum computing elements in fundamental ways [8], [9].
While still controversial, recent experimental results suggest that neurons might indeed leverage properties
of quantum effects in how they compute [10], a remarkable result. Our focus here, however, is different.
We are interested in the practical application of quantum algorithms for probing and understanding neural
dynamics rather than exploring the possibility of quantum computational mechanisms within the brain itself.

Despite the growing interest in these topics, rigorous mathematical and quantitative arguments applying
quantum algorithms for solving meaningful neuroscience and artificial neural network questions remain in
their infancy.

There are two broad areas in which quantum computing may contribute to the scientific study of neural
networks. The first is large-scale simulations of neural dynamics across scales of spatial and temporal
organization, bounded and informed by the known physiology (in the case of the brain) and known models
(for artificial intelligence and machine learning). The second is carefully chosen and structured problems
about neural dynamics that make careful and clever use of quantum algorithms.

Sufficiently large-scale simulations would allow observing, experimenting, and iterating numerical ex-
periments under a wide range of parameter and model conditions. If, as neuroscientists suspect, complex
emergent cognitive properties are partly due to sufficiently large interactions among foundational physiolog-
ical and biological components and processes across temporal and spatial scales of organization, the need
to carry out very large iterative simulations may be critical to understanding the dynamics that give rise to
cognitive properties. Simulations of this kind would support understanding emergent effects that depend on
the scale of the computational space, to the extent it can be computed.

However, open-ended large-scale simulations alone will not be sufficient for understanding how the
brain, or artificial intelligence for that matter, works. In effect, open-ended large-scale simulations in isola-
tion are what led to the significant challenges and missed targets faced by the highly publicized and hugely
funded Blue Brain Project [11]. Arriving at such an understanding necessitates carefully chosen and defined
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problems about the neural network dynamics being simulated. This is critical. Observing neural dynamics
in action — for example, the firing patterns of large numbers of neurons — in isolation and without con-
text, by itself, cannot reveal the underlying algorithms that are operating on those dynamics or why they
exist. It is no different than attempting to understand the brain from a systems perspective by studying a
single participating protein or ion channel in isolation. Quantum computing potentially has a unique role to
play in deciphering and understanding the contributions that scale has on functional network dynamics and
behaviors.

In this work, we show how a carefully constructed problem can leverage two foundational quantum
algorithms, Grover and Deutsch-Josza, in such a way that the output measurements from the quantum com-
putations admit an interpretation that guarantees we can infer a particular behavior about the network dy-
namics. Specifically, we address the following question: Given a simple representation of a neural network
(which applies to both biological and artificial networks) after some period of time of the evolution of its
dynamics, does the network have the potential to continue sustaining dynamic activity? Or are the dynamics
guaranteed to stop in one of two ways: either through ’epileptic’ type saturated dynamics or quiescence
(i.e., all activity dying away)? We show that by structuring (asking) the problem in a particular way, the
implementation of the Grover and Deutsch-Josza algorithms arrives at a solution much more efficiently than
would be possible by strictly classical methods. As we argue in the Discussion section when one considers
the combinatorial size of the computational space of the real brain, for example, these types of questions
become inaccessible to classical methods.

Our intent here is to explore an interesting proof of concept problem and to motivate the potential of
quantum computation to neural networks as an important research direction. We introduce a number of
novel results, including the technical structure of how the problem was set up, and, to our knowledge, one
of the only few examples of a practical application of Deutsch-Jozsa. The first application of this kind
to the study of neural network dynamics. We have intentionally chosen a tractable and applied problem
that has real-world implications and consequences for neural networks, solved in the simplest and most
intuitive possible way using two of the best-known foundational quantum algorithms. Given the bespoke
nature of setting up, mathematically proving (when possible), and solving quantum computing problems, the
results we discuss here are an exercise in thinking about how neural network dynamics questions need to be
structured within a quantum computational framework by leveraging deep knowledge about the physiology
and models of neural networks. While the problem as structured and the quantum computing approaches
we discuss are simple, we have attempted to be mathematically rigorous. The primary focus of this paper is
the theoretical arguments necessary to set up and solve the problem. We do not explicitly suggest the design
of quantum circuits, although we do discuss throughout the paper the various requirements of circuits that
might implement the necessary logic flows and unitary functions.

2 Problem Set Up

Assume we have a (neurobiological or artificial) neural network whose dynamics has evolved for some
period of time To. We want to evaluate a specifically constructed instance of the Deutsch-Jozsa algorithm
to determine if a network is in a state that has the potential to inherently (i.e., in the absence of external
stimulation or inputs) sustain continued dynamic activity or if it cannot. We will show that we can map
the functional condition that the network cannot sustain activity (for two distinct cases) to an output of the
Deutsch-Jozsa algorithm associated with the result of a constant function. Conversely, we can interpret a
none-constant (but not necessarily balanced) output of the algorithm as a network in a state that will continue
sustaining dynamic activity for some future period of time of at least an additional time step beyond To.

The Deutsch-Jozsa algorithm determines whether a given function, which takes a binary input and
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returns a binary output, is either ’constant’ or ’balanced’. A ’constant’ function is one that returns the same
output — either all 0’s or all 1’s — for any input, reflecting a uniform behavior across its domain. In contrast,
a ’balanced’ function returns 0’s for exactly half of the possible inputs and 1’s for the other half.

2.1 Preliminaries and Problem Structure

Define a graph model of a neural network as G = (V,E), where V is the vertex set of the graph G, and E
is the set of edges. A network is modeled by G in the sense that V and E may have additional features or
properties specific to the network being modeled. A node in the network is a vertex with such additional
features or properties.

For every vertex vi ∈ V , at some time To, i.e., a ’snapshot’ of the dynamically evolved state of G at To,
we can define a summation and activation function that determines if all the weighted inputs into vi result
in an activation, i.e., firing, event at To. There are no restrictions on the dynamics prior to To, i.e., between
0 ≤ t ≤ To, or any stimuli that may have caused or influenced those dynamics. The only consideration is the
instantaneous state of the dynamics of the network at To. There are many ways to explicitly construct such
a function within the theory of artificial neural networks and computational and theoretical neurobiology.
For example, our lab has developed a geometric latency-dependent physiologically accurate model that we
have shown is implemented as a computational optimization rule in individual neurons and the connectome
of the worm C. elegans [12] [13] [14] [15] [16].

In the most general case, we can define this function for all vi ∈ V by

f(V ) =

{
if Σr ≥ ΣT , vi = 1

if Σr < ΣT , vi = 0
(1)

Σr represents a ’running summation’. It reflects the totality of weighted inputs into vi at a given point in
time. ΣT is a ’threshold constant’. It reflects the processes that model the internal dynamics of vi that
ultimately determine if that node will fire or not. For example, in the framework developed by our group,
such internal dynamics are due to the interplay between the geometry of the edges between nodes, the
latencies of discrete signaling events as they travel on those edges before they arrive at downstream nodes,
refractory periods, and weights, to define a particular form of a neurobiological activation function. Many
other representations and models exist for both neurobiological networks and artificial neural networks.

In the simplest case, f(V ) is a linear summation of weighted inputs overcoming a threshold constant
resulting in a deterministic firing event. A form of an ’integrate and fire’ neuron. For simplicity, we assume
this latter form throughout the rest of the paper but refer the reader to the broader literature for a more
comprehensive discussion.

At To every vi ∈ V will have associated with it a value Σr ∈ R that can be normalized between some
defined range

ϵ ≤ Σr ≤ (ϵ+∆)

For example, 0 ≤
∑

r ≤ 1. This range can be approximated by an n-bit string sufficient to encode some
desired degree of precision:

Σr ∈ {0, 1}n

Note that we do not (need to) distinguish with different notation the continuous version of Σr from its n-bit
string representation. Thus, f(V ) is a function that compares an n-bit input Σr ∈ {0, 1}n, the running
summation for each vertex vi ∈ G(V,E), to a constant value threshold ΣT ∈ {0, 1}n. It evaluates this for
each vi at some time To and outputs either 0 or 1, indicating the vertex vi fires (activates) when f(V ) = 1
and does not when f(V ) = 0
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For realistic neural networks — both biological and artificial — the cardinality of V, |V |, could be
in the billions. (See Section 6 below for a discussion about the dimensionality and computational space
of biological neural networks.) But the set of Σr values will be much smaller. Given a realistic (i.e.,
functionally necessary) n-bit precision to represent Σr, many nodes would be expected to have the same
values of Σr. While some other values of Σr may not be repeated and, therefore, unique.

Mathematically, we can construct an ordered list V (in the set-theoretic sense) such that its elements
map a value of Σr for every vi. Informally, we can write this as

V : vi → Σr for every vi ∈ V (2)

It is also possible that only a subset of the available set of total numbers representing all possible values
of n-bit strings that Σr can take on will actually be realized by the network. In other words, we expect that
there will be some n-bit strings that, for some particular instance of an evolution of the network dynamics,
do not show up as a value of Σr.

Let the complete set of all possible n-bit strings of length n be

Sn := {si|si ∈ {0, 1}n} for all n-bit strings of length n (3)

Then the following definitions follow.

Sn := {si|si ∈ {0, 1}n ∧ si = Σr ∈ V} (4)

is the subset Sn ⊂ Sn who’s elements include all n-bit string values necessary to represent all values of Σr.

Sc
nC := {si|si ∈ {0, 1}n ∧ si ̸= Σr ∈ V} (5)

is the subset Sc
n ⊂ Sn who’s elements include all n-bit string values not necessary to represent values of Σr.

It is obvious that Sc
n is the complement of Sn and that

Sn ∪ Sc
n = Sn

Note how there exists a surjective mapping from V → Sn (Figure 1), and

|V| = |V | >> |Sn| ≥ |Sn|

For example, while |V | could be in the billions, the binary representation of values of Σr to two signif-
icant digits (for example, 0 ≤

∑
r ≤ 1) would only necessitate 7 bits, which can encode up to 128 values.

Two significant digits are required to encode 101 values, i.e., 0 to 0.99 plus the value 1.0.

Equations 2, 3, 4, and 5 motivate the technical details of how we use Grover’s algorithm to determine set
membership in Sn given V and how we construct the unitary function to be evaluated by the Deutsch-Jozsa
algorithm.
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Figure 1: There exists a surjective mapping V → Sn. For vi ∈ G(V,E), its corresponding value Σr at time To maps
to one of n-bit string values si ∈ Sn = {0, 1}n.

2.2 Functional Interpretations of f(V ) Outcomes

The goal is to evaluate a specifically constructed instance of the Deutsch-Jozsa algorithm to determine if a
network is in a state that has the potential to inherently (i.e., in the absence of external stimulation or inputs)
sustain continued dynamic activity or whether it cannot.

An inability of a network to sustain activity occurs under two conditions. In the first case, the network
becomes ’epileptic, which in our context here implies that all vertices simultaneously fire at To, thereby
ensuring that they continue to do so for times t > To. This essentially results in a perpetually saturated
constant and global firing state for the entire network. (It is possible that epileptic dynamics may lead to
quiescence or maybe in an epileptic state only for some period of time. A discussion about the various
conditions that produce these dynamics is beyond the scope of this paper.) A network in this state cannot
encode or process information. Formally, this will occur when

f(V ) = 1 .∀vi ∈ G(V,E) (6)

In the second case, the network is not capable of sustaining dynamic activity, with the activity eventually
dying away, resulting in a quiescent network. There are a number of conditions that can result in this (see,
for example, Fig 3. and accompanying text in [12]). This will occur when

f(V ) = 0 .∀vi ∈ G(V,E) (7)

In both these cases, F (V ) is a constant function that takes as inputs the n-bit strings in Sn and outputs
a binary value from {0, 1}.

When f(V ) is not constant, it ensures that the network can sustain activity on its own for at least To+1
time steps, i.e., the next time step in its evolution. We will show that we can distinguish between the two
states represented by Equations 6 and 7 by running the algorithm twice. Note that we are not claiming nor
do we require f(V ) to be balanced (in the language of Deutsch-Jozsa). Just that it is not constant. This
is consistent with the unitary function requirement in Deutsch-Jozsa needing to take on the general form
f({0, 1}n) → {0, 1}.

We now have a set of conditions that map the structure of Deutsch-Jozsa to an interpretation associated
with neural network dynamics. We next need to consider how to evaluate whether f(V ) is constant or not
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constant for all vi simultaneously. This will determine whether the network can sustain recurrent activity.
Any classical approach would necessitate evaluating and checking each instance of F (V ) sequentially for
all vi in the network or the use of an equivalent amount of computational resources.

However, this is a special case of Deutsch-Jozsa because we need to evaluate Sn as inputs and not the
full domain Sn. The Deutsch-Jozsa algorithm assumes that the oracle function being evaluated is defined
over the entire domain {0, 1}n. It cannot evaluate a defined subset of {0, 1}n. In other words, the algorithm’s
outputs — and the interpretation of its outputs to determine if the function is constant or balanced — only
make sense when it evaluates f(Sn = {0, 1}n). Thus, it cannot explicitly evaluate f(Sn). The algorithm’s
results would not reflect the behavior of the defined subset of interest, in this case, Sn. To get around this, we
will extend Sn through a specific construction that, when evaluated by Deutsch-Jozsa, allows us to indirectly
interpret the behavior of the network.

3 Determining membership in Sn and Scn using Grover’s algorithm

First, however, we must determine which members of Sn are in Sn. Given how we set up the problem, this
requires searching for each n-bit string si ∈ Sn in the list V of Σr values that resulted from the dynamic
evolution of the network up to time To, the time at which we are evaluating the network. The resultant set
is Sn. The collection of elements in Sn that are not in V make up Sc

n. As introduced above, recall that we
expect some members of Sn to be present in V only once, some to be repeated, and some not to be present at
all. We could potentially use an implementation of Grover’s algorithm to construct Sn much more efficiently
than a purely classical approach that would necessitate sequentially checking each n-bit string element of
Sn in a huge list V.

Recall that the list V contains the values of the running summation Σr for each vertex vi at the obser-
vation time To (equation 2). Each element of V will be one of the n-bit string values in Sn. Label each of
the members in V by {ν1, ν2, · · · , νM}. For each n-bit number si ∈ Sn,we construct an oracle function Uf

that identifies if si is in V. In other words, we check if there exists a νi in V that equals some value of si in
Sn. Formally, the condition we are checking for is

∃νi ∈ V such that νi = si for some si ∈ Sn (8)

We want Uf to perform the operation

Uf |νi⟩ = (−1)f(νi) |νi⟩ (9)

|νi⟩ encodes a state corresponding to an element νi ∈ V. The function f(νi) evaluates to 1 iff νi = si for
one of the elements si ∈ Sn, and 0 otherwise.

In practice, the construction of Uf would necessitate a programmable oracle function that can be re-
coded for each n-bit string si. This might involve the use of conditional quantum gates that implement the
logical statement ’if the current state of νi = si apply a phase flip; otherwise, do nothing’.

The standard diffusion operator D in Grover’s algorithm, in this case, would be defined as

D = 2 |σ⟩ ⟨σ| − I (10)

for a uniform superposition of all si ∈ Sn given by

|σ⟩ = 1√
N

N−1∑
si=0

|si⟩ (11)
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I is theN xN identity matrix. Equation 11 defines the search space over which the algorithm will search. D
effectively inverts the probability amplitudes about the average amplitude for a given si, thereby amplifying
the states present in V marked by Uf .

To check if each si ∈ Sn is in V, we need to run the algorithm iteratively 2n times. Continuing the
example from above, for a practically reasonable precision of Σr we would expect this to be at most order
of magnitude 102 times, given a two-digit precision requires 128 values.

We anticipate the number of Grover iterations needed for amplification of a specific si to be approxi-
mately

π

4

√
N

µ
(12)

where µ here is the number of occurrences of a particular si in V, i.e., the number of νi that equal a particular
si. As would be expected, the more occurrences that are present the more efficient the algorithm operates.
Optimizing the number of iterations however is non-trivial, and may benefit from other information or
patterns in how G(V,E) is constructed that may provide further structure and knowledge about V. In the
worst case we would anticipate running the algorithm π

4N times, which would yield a quadratic speedup
over any classical search method which would still be significant given the size of V , i.e., |V | and related
consdierations about the dimensionality of the computational space (see the discussion in Section 6).

If searching for a specific si returns si after measuring, we assume it is present in V. If instead the
algorithm returns a different value sj ̸= si in Sn we conditionally assume si is not in V. We say conditionally
here because, in practice, it is important to consider and take into account the inherent probabilistic nature
of quantum mechanics and quantum algorithms. There is of course a non-zero probability that sj = si when
in fact si is not in V. In practice, some form of verification may be needed, such as re-running the algorithm
for the same value of si more than once.

Finally, once we have identified Sn, determining Sc
n is trivial.

4 Applying Deutsch-Jozsa to Determine if a Network Can Sustain Activity

With Sn and Sc
n identified, we are now ready to make use of the Deutsch-Jozsa algorithm to determine if

the network can sustain inherent recurrent activity at times beyond To or if it cannot. However, as discussed
in detail above, the set we need to evaluate is Sn, not the full domain Sn = {0, 1}n.

4.1 Evaluating Sn and Sc
c with a Two-Part Uf

One way to work around this requirement is to extend Sn into Sn by taking advantage of the fact that
Sn ∪ Sc

n = Sn. We need a construction that extends Sn in such a way that when we evaluate Uf , we can
interpret the result in a way that gives us information about the behavior of the network — specifically, the
evaluation of Equation 1 over Sn — indirectly inferred from the output of the algorithm.

To achieve this, we define a ’two-part’ oracle function Uf that operates on the state |si⟩ |−⟩, where
|−⟩ = 1√

2
(|0⟩ − |1⟩ as is standard. Recall that Equation 1 defines a function f : {0, 1}n → {0, 1}. Then,

for si ∈ Sn
If f(si) = 1 then Uf |si⟩ |−⟩ = − |si⟩ |−⟩ (13a)

In this case Uf flips the phase of |si⟩ when the ancillary qubit is in the |−⟩ state.

If f(si) = 0 then Uf |si⟩ |−⟩ = |si⟩ |−⟩ (13b)
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Here, Uf does not alter the state.

For si ∈ Sc
n, instead of evaluating f(si), like we did for si ∈ Sn, Uf will set each si = 0 or si = 1.

From a functional perspective, similar to Equation 13,

If si = 1∀si ∈ Sc
n then Uf |si⟩ |−⟩ = − |si⟩ |−⟩ (14a)

Analgous to Equation 13a, Uf flips the phase of |si⟩. But, as in Equation 13b,

If f(si) = 0 then Uf |si⟩ |−⟩ = |si⟩ |−⟩ (14b)

From a practical perspective, implementing Uf would initialize all |0⟩n n-qubit registers in superposi-
tion and the ancillary qubit in the |−⟩ state:

|ψo⟩ =
1√
2n

2n−1∑
si=0

|si⟩ ⊗ |−⟩

We then apply Uf as defined in Equations 13 and 14 by first checking the membership of si in either Sn or
Sc
n, followed by applying f(si) when appropriate or ’hardcoding’ the output to either 0 or 1. For the case

where si ∈ Sc
n = 0 Uf applies the identify matrix and leaves the state unchanged.

Checking for membership in Sn versus Sc
n using a set of quantum circuits is a nuanced process, even

though we know the membership of si in each. Because we know a priori set membership in Sn and Sc
n

before the Deutsch-Jozsa step, conceptually, this could be achieved by constructing a series of quantum
circuits that ’mark’ si ∈ Sc

n so that instead of being evaluated by the function given by Equation 13 they are
evaluated by the operation in Equation 14.

Because Sn = {0, 1}n ≡ |0⟩⊗n is in superposition, the operation to mark the members of Sc
n must

be carried out simultaneously across this superposition. This could be achieved using a set of controlled
quantum circuits, each designed to recognize and selectively apply a phase flip to the states corresponding
to si ∈ Sc

n, using additional ancillary qubits. Functionally, this would necessitate many controlled circuits
within Uf where each circuit is designed to recognize and act on one value known to be in the set Sn

c . The
marking operations effectively occur simultaneously because the quantum computation happens in parallel
across the superposition. Using a phase flip to carry out the marking operation might be a computationally
feasible approach because it is a reversible operation that does not collapse the superposition. It subtly alters
the state as part of the operation Uf . The other part of Uf then evaluates f(Sn), the combined Uf operating
on the superposition across the entire domain Sn. We discuss a form of f(Sn) in the next section.

4.2 Constructing Uf to evaluate f(Sn)

We next need an explicit description to construct the part of Uf that evaluates f(Sn) as defined by Equation
1 as a logical quantum circuit.

We first need to encode each si ∈ Sn that corresponds to values of
∑

r ∈ V and the n-bit constant
∑

T

into quantum states. Conceptually, we can assign n-qubits to encode each n-bit value and then construct
f : {0, 1}n → {0, 1} to implement Equation 1 in such a way that it compares the n-qubit encoded values
of

∑
r and

∑
T . The comparison output reflects the function output, either 0 or 1, corresponding to a firing

(discrete signaling) event outcome for each vi in the network.

To achieve this, we can build quantum gates that implement a binary subtraction
∑

r −
∑

T . If the
result of this subtraction is positive or zero then

∑
r ≥

∑
T and f(Sn) = 1. If the subtraction is negative

then
∑

r <
∑

T and f(Sn) = 0.
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The output value of f(Sn) is stored in an ancillary qubit, which has an assigned state |1⟩ for positive
values of the binary subtraction, and |0⟩ when it is negative. This can be achieved by a quantum circuit
that conditionally flips the ancillary qubit based on the outcome of the subtraction. Measurement of the that
qubit then collapses to |1⟩ or |0⟩ appropriately.

Consider first the case for one specific vertex in the network vi ∈ G(V,E), with a corresponding entry
νi ∈ V, where νi encodes the value of Σr at time To (Equation 2). Start with 2n + 1 qubits. The first
q0 . . . q(n−1) qubits represent

∑
r. The next qn . . . q(2n−1) qubits represent

∑
T . The last q2n qubit is the an-

cillary qubit that encodes the comparison result. νi can be represented by the state |ν⟩ = |νn−1νn−2 . . . νo⟩.
The constant value of the threshold ΣT can be represented by the state |c⟩ = |cn−1cn−2 . . . co⟩. The ancillary
qubit is initialized to the |0⟩ state.

One simple approach to carrying out the comparison is via a binary subtraction comparison for each
pair of qubits between |ν⟩ and |c⟩ starting from the most significant digit. This tells us if the result of the
subtraction is negative or positive since we are interested in determining the sign of the resultant operation,
not the actual result. For each pair of bits (νj , cj), perform a controlled operation that determines if νj < cj .
If it does, then it implies that νi is less than ΣT . If the bit values are equal, just move to the next pair until
an inequality occurs.

For example, in keeping with our example from above, a reasonable assumption is n = 7, i.e., we can
represent Σr and ΣT by sufficient precision as two-digit values, which can be encoded by 7-bit numbers.
Assume that |ν⟩ = |ν6ν5ν4ν3ν2ν1νo⟩ = |1010101⟩, representing a decimal value of Σr = 0.85, and that
|c⟩ = |c6c5c4c3c2c1co⟩ = |0110010⟩, representing a value of ΣT = 0.5. Starting from the most significant
bit, we compare |νj⟩ to |cj⟩. In this example the first comparison we do is 1 > 0, which implies that
|ν⟩ > |c⟩. Because we do not actually need to know the result of the comparison, we can immediately stop
here and set the ancillary qubit to |1⟩. A quantum circuit implementation would again likely make use of a
series of controlled gates to achieve this.

5 Measurement Interpretations of Uf

When we evaluate Uf , if we set Sc
n = 0 and measure the output to be constant, i.e., |0⟩⊗n, we can interpret

this as the network’s dynamic activity dying away at To + 1. The network is quiescent. This is because, in
this case, the output can only be constant when f(Sn) = 0, given that Sc

n = 0. In other words, the network
is necessarily quiescent because the output from the Deutsch-Jozsa algorithm will evaluate to a constant
function only when f(si) = 0 ∀si ∈ Sn.

If, on the other hand, we set Sc
n = 1 and measure the output to be constant, we can interpret this as the

dynamic activity in the network becoming epileptic since it will only return constant when and f(Sn) = 1.

But if Uf is not constant for either case having set Sc
n = 0 or Sc

n = 1, i.e. the measured output is a
non-zero bit string, we interpret that as the network being in a dynamic state that is neither epileptic nor
quiescent, and therefore, has at least the potential for continued dynamic activity. This is the case because
not constant will only occur when Uf evaluates f(Sn) to some mixture of 1’s and 0’s. In other words, a
mixture of activated and non-activated vertices in the network.

As discussed above, in general, what we cannot say is whether Uf , and therefore f(Sn), is balanced.
But for our purposes, in the context of evaluating the signaling potential of the network, this does not matter.
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6 Discussion

6.1 Quantum versus Classical Considerations for Studying Neural Networks

In this work, we showed how the dynamical signaling potential of neural networks at future times, given the
system’s temporally evolved state, can be determined using quantum computing. While solving the problem
as we have set it up is not outside the realm of what can be achievable by classical methods, we have shown
how leveraging quantum algorithms would solve the problem more efficiently, at least quadratically better
for the Grover search part of the process and exponentially for the evaluation of Sn by Deutsch-Jozsa. For
example, an average 3 lb adult human brain contains approximately 85 billion neurons, i.e. |V | = 85 billion.
At this scale, for the Grover search part of the solution, we estimate that it would take Frontier, the fastest
existing current supercomputer, on the order of hours to solve the problem. On a laptop, the task would
take many hours to days. But at least theoretically, at worst, it would take seconds to minutes to solve on a
quantum computer. Still, this is easily solvable using classical architectures.

However, the disparity between quantum and classical temporal and computing resources very quickly
increases beyond any conceivable classical capabilities as a network’s structure, size, and complexity in-
crease. For example, in the human brain, each of the 85 billion neurons form between 10,000 to 100,000
synaptic connections, leading to an estimated 1016, 10 quadrillion, synapses [17], [18], [19]. If we con-
sider just 1000 neurons, each acting as statistically independent computational elements capable of firing
on their own, if of those just 2% are firing at any given time, the number of possible distinct encodings is
1000!/20! · (1000 − 20)! = 1041. If the entire number of neurons in the neuronal network of the brain
was to be taken into account, the dimensionality of the computational space expressed as the number of
distinct encodings would be order of magnitude 1010

11.95, or about 892 billion digits. By contrast, there
are about 1021 stars in the observable universe. Even more so, the assumption that individual neurons act
as independent computational elements where a summation function thresholds to an activation function,
the way we constructed f(V ) as in Equation 1 and considered the size of the network as |V |, is a gross
oversimplification. We know that each neuron is a functional network onto itself, with individual dendrites
and dendritic compartments acting themselves as independent computational elements [20] [21]. [22].

Lastly, in biological brains, various forms of plasticity — adaptive structural changes in response to dy-
namic functional changes, which in turn reciprocally influence function — continually adjust the network’s
topology, i.e., the formation and retraction of synapses, and the synaptic weights within the network. It is
very possible that future artificial neural networks will also have some form of plasticity that allows them to
adapt and structurally ’morph’ in a dynamic way.

So, in fact, the human brain network is a hierarchical (i.e., nested) family of adaptive and dynamic
networks across many functional scales of organization, from molecular to cellular, individual neurons,
networks of neurons, to networks of brain regions. All of it resulting in an astronomically (literally) huge
computational space.

Furthermore, there are also about another 86 billion non-neuronal cells in the brain. Of these, about 20%
are astrocyte glial cells. Certain sub-types of astrocytes can both listen in and modulate neuronal signaling
and information processing [23]. These cells form an independent network onto themselves while at the
same time cross-talk with the neuronal network. From a computational perspective, very little is still known
about how interactions between neurons and astrocytes result in functional and cognitive outputs. It is one
of the most exciting topics in systems and computational neuroscience. As if this was not all enough, the
brain’s complexity is not just due to the sheer number of connections and size of its computational space but
how these connections and resultant encodings are dynamically reconfigured and modulated. Understanding
neuromodulation is an entire research effort in itself.

11



It is not clear how best to approach this unimaginable degree of combinatorial complexity and make
sense of the information being produced. However, it is almost certain that purely classical computational
methods alone will not be feasible. It will take significant continued theoretical and hardware advances in
quantum computing and significant ingenuity regarding how problems are structured to make any sense of
or progress for combinatorial and computational spaces approaching even a fraction of these scales. But
for certain key questions and problems quantum computing could hold the key to truly understanding the
functioning of the brain and artificial neural networks in ways we do not understand today.

At least for the foreseeable future, it is likely that classical-quantum computing hybrid models may be
most successful for simulating and studying the computational space of neural networks. At present, there
is a continued ’leap-frogging’ between problems in combinatorics that quantum computers may be able to
solve that are outside of what is possible for classical computers, contrasted with continued advances in
classical algorithms that surprise the field and can (theoretically) perform as well as quantum algorithms
for certain kinds of problems [24] [21]. And at least at certain scales, current efforts using specialized
(classical) neuromorphic hardware are now approaching simulation sizes that are relatively comparable to
the human brain [25]. The development of specialized neuromorphic computing specifically for carrying out
large-scale simulations of the brain has a very long and rich history [26], [27]. But because, as we argued
in the Introduction, simulations alone will not be enough to understand the brain or the deep inner workings
of artificial neural networks, appropriately asking the right questions to probe this huge combinatorial and
computational space is where we suggest quantum computing has a unique and complementary role to play
compared to classical methods alone.

6.2 Practical Considerations and Applications of This and Future Related Work

One potential practical application of the work we present here and possibly related work is the iterative
numerical experimentation and testing of different parameter conditions on the future state of an evolved
network at the time To at which it is queried. The structure and form of synaptic models, internal dynamic
models of neurons, membrane potential parameters, and network geometry (in the case of biological neural
networks) or variations of activation functions and network architectures (in the case of artificial neural
networks) could be systematically investigated without needing to brute force evolve the network dynamics
de novo. This could be useful as the complexity of the local dynamic rules that govern global network
dynamics increase and become more neurobiologically realistic [12] [13]. Beyond the proof of concept
solution we developed here, it is interesting to consider the use or development of other quantum algorithms
that could more efficiently probe this and related network dynamics problems.

One important consideration is the interplay between computational dimensionality and the physical
constraints brain networks are necessarily subject to and (in contrast to artificial neural networks) seem to
take advantage of that might provide a new perspective on brain algorithms [12], [13] [28] [14].[15] [16].
Other types of physical considerations may be equally relevant in different ways. This is important because
it is almost certain that we have yet to fully discover the right mathematical ideas and descriptions that
implement the biological brain’s algorithms.

A particularly important research direction for quantum computing applications to neural networks is
the development of quantum algorithms and methods that support computing the time evolution of neural
network dynamic models. Successfully doing so in a practical setting at scale is exceedingly challenging
both from a theoretical and engineering perspective but of immense consequence. While several algorithmic
approaches for the time evolution of quantum computational systems have been discussed [29], [30], it is not
at all obvious how to set up and construct the necessary mathematical conditions to compute specific (local)
instances of internal neuronal dynamics and then allow them to temporally (globally) evolve on a network.
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This effort will likely need to use known quantum algorithms and methods creatively and possibly develop
new ones. Any resultant methods would almost certainly have important applications for artificial quantum
neural networks and machine learning, as well as neuroscience. As the quantum internet is built, the abil-
ity to study, interrogate, probe, and understand quantum networks may necessitate models and computing
capabilities that are inherently quantum.

Finally, there is inherent value in thinking about how to structure a question or problem about the dy-
namic behavior or functionality of neural networks within the context of a quantum computing framework
beyond any eventual actual quantum implementation. The theoretical considerations and necessary struc-
ture that formulating such problems in a quantum algorithmic context necessitate is an interesting exercise
in its own right that provides a unique perspective on the interplay between the dimensionality and compu-
tational space of neural networks versus the algorithmic rules that operate on that space. Beyond quantum
computing, it is interesting to think about how such a change in perspective may motivate new models and
analysis approaches for neural networks that are of relevance to theoretical advances or classical computing
implementations that can complement and work alongside quantum computing advances.
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