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Abstract. Reinforcement learning (RL) based autonomous driving has
emerged as a promising alternative to data-driven imitation learning
approaches. However, crafting effective reward functions for RL poses
challenges due to the complexity of defining and quantifying good driv-
ing behaviors across diverse scenarios. Recently, large pretrained models
have gained significant attention as zero-shot reward models for tasks
specified with desired linguistic goals. However, the desired linguistic
goals for autonomous driving such as “drive safely” are ambiguous and
incomprehensible by pretrained models. On the other hand, undesired
linguistic goals like “collision” are more concrete and tractable. In this
work, we introduce LORD, a novel large models based opposite reward
design through undesired linguistic goals to enable the efficient use of
large pretrained models as zero-shot reward models. Through extensive
experiments, our proposed framework shows its efficiency in leveraging
the power of large pretrained models for achieving safe and enhanced
autonomous driving. Moreover, the proposed approach shows improved
generalization capabilities as it outperforms counterpart methods across
diverse and challenging driving scenarios.

1 Introduction

Autonomous driving is a challenging task that demands both deep comprehen-
sion of the environment and ability to swiftly reacting to changes. Rapid ad-
vancements in deep learning have triggered significant progress in this domain,
mainly through imitation learning (IL) approaches [3,14,15,26]. Despite showing
impressive results, the performance of these IL methodologies heavily relies on
the size of data [5,27]. Thus, IL approaches are inherently subject to dataset bias
and lack rational in decision making. To address these challenges, reinforcement
learning (RL) based approaches that optimize driving policies by interacting with
the environment and maximizing the rewards have gathered growing interest as
alternatives for autonomous driving tasks [16,17,31].

Reinforcement learning thrives when paired with effective reward functions,
which serve as the guiding principles for learning optimal behaviors [4,9–12,44].
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ar
X

iv
:2

40
3.

18
96

5v
1 

 [
cs

.R
O

] 
 2

7 
M

ar
 2

02
4



2 X. Ye et al.

However, crafting these reward functions often proves costly, particularly when
relying on human feedback for their formulation [4, 43]. Additionally, manually
specifying such reward functions presents a formidable challenge in avoiding re-
ward hacking [25]. This challenge is further compounded in the autonomous
driving tasks due to the difficulty of defining and quantifying good driving be-
havior, as well as generalizing them across diverse driving scenarios. To address
these challenges, leveraging large pretrained models emerges as a promising so-
lution for crafting efficient and generalizable reward functions for autonomous
driving systems.

Large pretrained models exhibit human-like reasoning abilities and have
demonstrated remarkable performance across a spectrum of tasks [2, 6, 23, 28,
41, 42, 45]. In the realm of robotics, the integration of these models in reward
functions have shown good performance and promising generalization capabili-
ties [7,30,35]. In these works, experiments evolve around tasks where the desired
goal state is either known or can be easily defined. Thus, describing the desired
goal state in form of a linguistic goal which is comprehensible by pretrained
models enables exploiting the pretrained models as zero-shot reward models.
While these approaches show good performance in variety of robotic tasks, they
encounter significant challenges in autonomous driving. In such intricate scenar-
ios, direct linguistic goals become particularly arduous for large models to grasp,
highlighting the need for more nuanced strategies to ensure effective comprehen-
sion and decision-making.

In this work, we present a novel approach to reward design for safe and en-
hanced autonomous driving: the concept of opposite reward design through un-
desired linguistic goals in order to leverage large pretrained models as zero-shot
reward models. In autonomous driving scenarios, linguistically defining desired
goal state such as “drive safely” can be ambiguous and challenging. However,
undesired linguistic goals, such as “collision”, offer a more tangible and under-
standable objective for both humans and large pretrained models. By introducing
opposite reward design, we aim to enhance the interpretability, generalizability
and effectiveness of autonomous driving systems, making them more capable of
navigating complex environments while prioritizing safety. To harness the full
potential of our approach, we construct a closed-loop driving environment. We
conduct extensive experiments on large pretrained image, video, and language
models to evaluate the efficacy of our proposed framework for closed-loop au-
tonomous driving tasks. Notably, our framework achieves significantly improved
performance over counterpart methods across various driving scenarios.

The main contributions of this work are summarized as follows:

– We propose LORD, a Large models based Opposite Reward Design, which
addresses the ambiguity of linguistic goals in autonomous driving with com-
prehendable undesired linguistic goals. To the best of our knowledge, this is
the first work that leverages large pretrained models with undesired goals in
embodied AI domain.
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– LORD leverages large pretrained image, video and language models with a
cosine distance objective for an efficient reward function design for RL based
autonomous driving.

– Through extensive experiments, we show LORD consistently achieves sig-
nificantly improved generalization performance over counterpart methods
across various challenging driving scenarios.

2 Related Work

2.1 Reward Design for Reinforcement Learning

Reward function plays a pivotal role in reinforcement learning, dictating the
behavior of autonomous agents. Unlike games where rewards occur naturally,
creating a reward function for real-world tasks needs an intentional design that
requires extensive expert supervision. The difficulty motivates many researchers
to directly learn a reward function by observing a human expert performing the
task [1, 8, 24, 44]. However, these approaches become overly complex when ap-
plied to tasks with high dimensional state and action space. More recently, some
work leverage discriminator networks with demonstration sets to assign rewards
based on the likelihood of a state belonging to the demonstration set [9, 10, 12].
Training these discriminator networks still requires a substantial number of ex-
pert demonstrations which is not always feasible due to the limited availability
of such demonstrations. Conversely, another line of work involves using human
pairwise preferences over data samples to learn the reward function [4,11]. While
these methods offer good results in some tasks, they often rely on either a large
number of valid goal states or significant human effort, making them impractical
for many applications, particularly in the context of autonomous driving, where
efficiency and scalability are paramount.

2.2 Reward Design with Large Pretrained Models

Large pretrained models have recently gained interest as an alternative way
for reward design. Describing the goal state through language has been the
centerpiece for designing powerful zero-shot reward models. A line of work in
this direction has focused on using large language models (LLMs) [7,13,18]. For
example, ELLM [7] utilizes LLMs to reward agent for achieving goals suggested
by LLMs. In another work, LLMs have been used as a proxy reward function
to capture human preferences by prompting desired behaviors [18]. More recent
works use large pretrained multi-modal models. Among these works, VLM-RMs
[30] and RoboCLIP [35] leverages vision language models and video language
models, respectively, with desired linguistic goals for the reward design. However,
these works have focused on specific robotic applications where the desired goal
state exists and is comprehensible by large pretrained models [30,35]. In contrast,
our work focuses on autonomous driving where desired goal states either does
not exist or not comprehensible by large pretrained models due to the innate
ambiguity of desired linguistic goals.
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2.3 Language Models in Autonomous Driving

The success of language models in robotics have sparked the interest for incor-
poration of language models in autonomous driving [21,26,34,40]. Several works
have leveraged LLMs for explainable autonomous driving. LINGO-1 presents a
commentator model for reasoning and explainability by training a model com-
bining language with vision and action [36]. Similarly, DriveLM introduces a vi-
sual question answering approach to interpret driving actions [34]. Other works
have focused on enhancing the planning performance for autonomous driving
through language. VLP introduces a plug-in approach by incorporating LLMs
with contrastive learning objective into vision-only end-to-end autonomous driv-
ing systems [26]. Several GPT-based driver agents have also been introduced as
an alternative to existing IL and RL based driver agents [21, 37, 40]. Among
these works, DiLu presents a systematic framework which combines reasoning
and reflection mechanism to improve the decision making capability of the driver
agent [37]. Nevertheless, the substantial reliance on GPT models presents several
limitations, such as the occurrence of hallucinations due to the lack of grounding,
as well as latency issues that are crucial for real-world deployment. Unlike these
approaches, our work utilizes an RL agent with a reward mechanism based on
large pretrained models to circumvent these challenges.

3 Methodology

LORD utilizes large pretrained models to generate step-wise rewards for au-
tonomous agents (i.e. ego vehicles) aiming to encourage desired driving behavior
and outcomes. This is done by evaluating how different the state of the au-
tonomous agent at each time step is from the undesired goal state described by
our opposite linguistic goal for the first time. Moreover, since the state of the
autonomous agent can be observed as an image, a video and a linguistic de-
scription, we investigate vision-and-language, video-and-language and language
models for embedding the agent’s state and undesired goal state, respectively.
Cosine similarity between the agent’s and goal state’s embeddings is calculated.
Followingly, the agent receives cosine distance (i.e., 1 - cosine similarity) as the
reward for each step. We integrate LORD with reinforcement learning algorithm
for closed-loop autonomous driving task. Fig. 1 shows an overview of our LORD
powered RL framework. Details of our method are presented in the following sub-
sections. We first provide a problem formulation of the closed-loop autonomous
driving task in Sec. 3.1. Subsequently, we describe our proposed LORD and its
integration with RL in Sec. 3.2 and Sec. 3.3, respectively.

3.1 Problem Formulation

We formulate the closed-loop autonomous driving task as a Partially Observable
Markov Decision Process (POMDP) problem defined by a 7-tuple < S,O, θ,A, T,
R, γ >. Specifically, S is the state space of the ego vehicle. O is the observation
space that is determined by emission function θ : S × O → [0, 1]. A is a set of
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Fig. 1: An overview of our LORD powered reinforcement learning framework for closed-
loop autonomous driving task. LORD firstly measures cosine similarity between agent’s
state and undesired goal state using large pretrained models. Followingly, it returns
cosine distance as the reward to the agent.

actions used to drive the ego vehicle. T : S × A × S → [0, 1] is a state tran-
sition probability function. R : Ω × A → R is a reward function to reward
desired driving behavior or outcomes, and γ ∈ (0, 1] is a discount factor. To
learn a good driving policy π(at|st) informing the ego vehicle which action at to
take at the state st, we maximize the expected discounted cumulative rewards
E[
∑∞

t γtrt+1(at, ot+1)|st]. The focus of this paper is to efficiently and effectively
define the reward function R based on the ego vehicle’s observation O and our
opposite linguistic goal noted as goal. Note that the driving policy π is still
learned from the ego vehicle’s state S.

3.2 Large Models based Opposite Reward Design

Fig. 2: The insight of using an opposite
goal. In autonomous driving tasks, de-
sired goal states such as “drive safely”
are ambiguous to grasp, whereas unde-
sired goal states such as “collision” are
tractable more comprehensible to hu-
mans and large pretrained models.

Opposite Linguistic Goal. Recent
work in the field of robotics has shown
a great success in taking large pretrained
models as a zero-shot reward model for
robotic tasks [30, 35]. An essential ele-
ment to the success is that they are able
to describe the desired task and expected
goal state with linguistic descriptions ac-
curately. For example, a task of “a hu-
manoid robot kneeling” is actually an ac-
curate description to the expected goal
state [35]. In this case, when large pre-
trained models project the agent’s cur-
rent state and the desired goal state into
an embedding space, the distance between
the two embeddings forms a natural re-
ward measuring how close the agent is to
the desired goal state. However, for au-
tonomous driving task, while the ultimate
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target is to let the ego vehicle drive safely, it is difficult to describe concretely
what the goal state is since there are infinite ways to keep safe in driving. As a
result, the embedding of the abstract target goal “ego is driving safely” is not
semantically comparable to the ego vehicle’s states and observations. On the
contrary, describing unexpected states that the ego vehicle should avoid is more
tractable. For example, we can easily imagine what a “collision” looks like and
ground it into an observation. Fig. 2 better illustrates our insight. To this end, we
propose to use an opposite linguistic goal “a collision is happening” as opposed
to the target goal “ego is driving safely”.

Observation Representations The ego vehicle’s observation ot at time step
t can be represented in multiple ways: (1) an image capturing the spatial infor-
mation around the ego vehicle; (2) a video containing both spatial and temporal
information with respect to the ego vehicle; (3) a linguistic description to the
ego vehicle’s current situation.

– Image based Observation. Using an image to represent an observation
is straightforward and efficient. A raw image can be obtained directly from
camera-like sensors and a more informative image, like Bird’s Eye View
(BEV) can be built through advanced computer vision method [20]. The
high dimensional image based observation contains rich information includ-
ing surrounding objects and road elements and thus has been wildly adopted
for autonomous driving tasks [14,26]. In this work, without loss of generality,
we use the image rendered by the deployment environment as the observa-
tion. To project the image based observation and our opposite linguistic goal
into the same embedding space, we adopt the vision-and-language model
CLIP [28] to encode the observation and the goal with its image and text
encoders respectively. In particular, we select the CLIP model pretrained on
the large-scale dataset LAION-2B [32] as it has been shown to have superior
performance in [30].

– Video based Observation. A single static image may not be able to cap-
ture the kinematic information, such as the speed and the acceleration of
both the ego and npc vehicles. These information is critical for autonomous
driving. For example, a vehicle is more likely to collide in a congested traffic
scenario if it is driving at a higher speed and with a greater acceleration.
To get an observation containing the kinematic information, we generate a
video by stacking the latest 30 consecutive frames of the images at each time
step t. To compare the video based observation and our opposite linguistic
goal, we utilize the video-and-language model S3D [39]. S3D is pretrained
on HowTo100M dataset [22] which consists of diverse short clips of human
demonstrators performing daily tasks. Therefore, the video encoder and text
encoder of S3D can encode our video based observation and opposite linguis-
tic goal into a semantically meaningful latent space.
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– Text based Observation. Inspired by the recent success of large language
models (LLMs) and their applications, recent work starts to use textual sce-
nario descriptions as the observations [7, 37]. In this way, they can leverage
LLMs’ exceptional human-level abilities to perform the driving task by ask-
ing LLMs to make decisions upon the text based observations. In our work,
we describe the ego vehicle’s current situation in terms of potential colli-
sions. Specifically, we calculate the time to collision (ttc) with each of the
surrounding vehicles based on their distance and speed difference. If the ttc
is smaller than a predefined threshold, we describe it in our text based obser-
vation by “A collision will be happening in {ttc} seconds.”. We also describe
conditional collisions by “A collision would happen in {ttc} seconds if ego
makes a left/right lane change.”. To determine how similar the text based
observation and our opposite linguistic goal are, we adopt a language model
to convert them into embeddings that capture their semantic information.
In practice, we use the pretrained SentenceBERT model [29] which is de-
signed to derive semantically meaningful sentence embeddings that can be
compared using cosine-similarity.

Opposite Reward Generation. Given our opposite linguistic goal goal and
the observation ot at time step t, we define our reward rt as follows,

similarity(ot, goal) =
LMo(ot) · LMg(goal)

||LMo(ot)|| · ||LMg(goal)||
(1)

rt = 1− similarity(ot, goal) (2)

where LMo and LMg denote the large pretrained models used to encode the
observation and the opposite linguistic goal, respectively. Our model choices are
specified in Sec. 3.2. Here, we adopt the cosine distance between the observation
embedding LMo(ot) and the opposite linguistic goal embedding LMg(goal) to
quantify the reward value for the ego vehicle. In this way, when the ego vehicle
is further away from the undesired situation described by our opposite linguistic
goal, the ego vehicle can get a higher reward.

3.3 RL Training with LORD

LORD can be integrated with any standard reinforcement learning algorithms.
In this work, we follow [38], the latest state-of-the-art reinforcement learning
work in autonomous driving domain, by adopting Proximal Policy Optimization
(PPO) [33] algorithm to learn an optimal driving policy π(at|st) for the ego
vehicle. LORD is only used in training. During testing, we evaluate the ego
vehicle by performing the action at ∼ π(at|st) at time step t that only depends
on the state st.
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4 Experiments

We conduct experiments on Highway-env [19] to validate our LORD framework
for closed-loop autonomous driving task. In particular, we aim to seek the an-
swers to the following questions:

– Is our LORD framework effective in addressing the closed-loop autonomous
driving task?

– How does each variant of our method work for the closed-loop autonomous
driving task?

– Does our opposite reward design contribute to the success of our method?

We first introduce our experiment setting in Sec. 4.1, and we rearrange the
remaining of this section to answer each of these questions. In Sec. 4.2, we
compare LORD with baseline methods to answer the first question. We answer
the second question in Sec. 4.3 by conducting an in-depth analysis of the reward
values generated by LORD. Ablation studies are provided in Sec. 4.4 to answer
the third question. Sec. 4.5 presents qualitative results .

4.1 Experiment Setting

Simulation Environment. We adopt Highway-env [19] to conduct all exper-
iments. Highway-env is a well-established simulation platform for closed-loop
autonomous driving task in which npc vehicles can react to ego’s behavior. It is
wildly used in the research work of autonomous driving [37, 38]. We follow [38]
to set up the environment. More particularly, we define the state space S of the
ego vehicle as its kinematic observation which is a V × F array provided by the
environment that describes a list of V nearby vehicles by a set of features of
size F , including the vehicles’ positions, speeds and orientations. We adopt the
discrete meta-actions as the ego vehicle’s action space A that consists of lane
and speed change. In addition, we also create various traffic situation by setting
the density of vehicles and the number of lanes as [37] does to test all methods.
Detailed configurations can be found in the supplementary materials.

Domain Adaptation. Highway-env provides a simplified visualization. All ve-
hicles are depicted as rectangles where the ego vehicle is colored in green and npc
vehicles are colored in blue (see Fig. 3a). When a collision happens, the victim
vehicles are colored in red as Fig. 3b illustrates. These rendered images are likely
out of the training distribution of the large pretrained models. In consequence,
our large model based rewards may not work well for the settings with image or
video based observations. To remedy this issue, we modify the graphics of the
Highway-env by replacing the rectangle textures with more photorealistic car
images. Besides, we also remove the useless background of the images. Fig. 3c
and Fig. 3d show the snapshots of our modified Highway-env in which the white
car denotes the ego vehicle and blue cars are npc vehicles. Note that such a
modification is only used for reward generation when using image and video



LORD:Large Models based Opposite Reward Design 9

based observations. Meanwhile, we also customize our opposite linguistic goals
to adapt to the image and video based observations. To be specific, we define
the opposite linguistic goal for image and video based observation as “White car
collides with a blue car.”. In this work, we don’t fine-tune any large models to
adapt to the Highway-env.

(a) Original driving. (b) Original colliding. (c) Modified driving. (d) Modified colliding.

Fig. 3: Illustrations of the original and the modified Highway-env. In the modified
environment, white car denotes the ego vehicle and blue cars depict the npc vehicles.

4.2 Comparison with Baseline Methods

We compare 3 variants of our method (i.e. observation represented by image,
video and text) with following baselines.

– GRAD [38]. The latest state-of-the-art reinforcement learning method for
the Highway-env [19]. It learns driving policy from a graph-based state rep-
resentation using PPO [33] algorithm. The reward is a sum of 1) a constant
surviving reward which is 0.2; 2) a speed reward linearly mapped from the
speed of (20, 40) to (0, 0.8).

– Const. Similar to GRAD except the reward only consists of a constant
surviving reward in order to motivate the ego vehicle to survive as long as
possible.

– DiLu [37]. The latest state-of-the-art large language model-based method.
It leverages large language models to perform step-wise decision-making for
autonomous driving task.

We optimize all methods on lane-4-density-2 setting in Highway-env and
evaluate them on various traffic situations, namely lane-4-density-2, lane-5-
density-2.5 and lane-5-density-3. Each evaluation is repeated 17 times with
different random seeds specified in the code repository1 of DiLu [37]. We report
Success Rate (SR), Traveled Distance (TD) and Rewards (RE) achieved by these
methods in Table 1. Success Rate (SR) is defined in [37] where a success denotes
that the ego vehicle survives over 30 time steps without any collisions. Traveled
Distance (TD) means how far the ego vehicle drives along the x axis before a
collision happens. We also adopt the reward function defined in [38] to calculate
1 https://github.com/PJLab-ADG/DiLu
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Table 1: Performance comparisons of all methods in different traffic situations of high-
way environments. All methods are only optimized on lane-4-density-2 setting and
evaluated on the lane-4-density-2, lane-5-density-2.5, and lane-5-density-3.
The best results are highlighted in bold and the second-best results are marked with
an underline. (SR: Success Rate, TD: Traveled Distance, RE: Rewards)

lane-4-density-2 lane-5-density-2.5 lane-5-density-3
Method SR↑ TD↑ RE↑ SR↑ TD↑ RE↑ SR↑ TD↑ RE↑
GRAD [38] 94.12 930.14 20.16 88.24 930.99 20.35 58.82 664.55 13.61
Const. 100.0 610.17 6.39 88.24 568.03 5.80 52.94 424.07 4.18
DiLu [37] 70.00 - - 65.00 - - 35.00 - -
LORD image 100.0 694.20 9.75 88.24 652.02 9.12 64.71 578.41 8.39
LORD video 100.0 630.37 7.24 88.24 612.77 7.67 82.35 599.86 7.78
LORD text 100.0 682.24 9.27 94.12 630.53 7.94 58.82 493.24 5.59

the Rewards (RE) as an additional metric to evaluate how well the ego vehicle
drives.

Table 2: The performance of our
LORD with addition of the speed re-
ward using text based observation.

lane-4-density-2 lane-5-density-3
SR↑ TD↑ RE↑ SR↑ TD↑ RE↑
94.12 925.94 19.57 64.71 716.47 14.32

As shown in Table 1, in the in-domain
training environment lane-4-density-2,
all variants of our method achieve 100%
success rate (SR), which is 5.88% higher
than the RL-only baseline GRAD and
30% higher than the LLMs-only base-
line DiLu. LORD also shows strong
generalization performance in unseen
out-of domain scenarios. In particular,
for lane-5-density-2.5, our method
with image and video based observation
achieves 88.24% SR, which is same as
GRAD and Const., and 23.24% higher
than DiLu. With text based observation, our method outperforms all the coun-
terpart methods by achieving further 5.88% SR improvement. In the most com-
plex traffic situation, i.e. lane-5-density-3, our method with image and video
based observation outperforms the best performing counterpart method (GRAD)
in terms of SR by 5.89% and 23.53%, respectively. These comparisons demon-
strate that the driving policy learned by our LORD not only helps the ego vehicle
to better avoid collisions in seen environments but also generalizes well to unseen
environments.

For the metrics of Traveled Distance (TD) and Rewards (RE), our method
also outperforms the Const. baseline in all traffic situations, showing that our
large model based reward motivates the ego vehicle to drive faster than a con-
stant survival reward. We note that GRAD achieves much higher TD and RE.
We hypothesize it is because GRAD directly optimizes RE in which the speed
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reward encourages the ego vehicle to speed up. To validate our hypothesis, we
conduct an experiment by adding the additional speed reward into our LORD
method (observation represented by text). Since the speed is a concrete infor-
mation and can be easily obtained from the sensory inputs, adding the speed
reward is straightforward. We report the results in Table 2 and the results show
that our method achieves 51.92 higher TD and 0.71 higher RE than the GRAD
baseline in the challenging lane-5-density-3 setting.

4.3 Deep Dive into LORD

(a) LORD (image) (b) LORD (video)

(c) LORD (text) (d) GRAD [38]

Fig. 4: Illustrations of the reward values generated by our LORD under various ob-
servation representations and GRAD [38] for different states. We distinguish different
states in terms of the ego vehicle’s distance to its nearest front vehicle and their speed
difference. In this way, time to collision can be roughly estimated. Blue points denote
collision-free states while red points indicate the ego vehicle collides with other vehicles.
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Table 1 shows comparison of the 3 variants of our method as detailed in
Sec. 3. Overall, our method with different observation representations achieve
similar performance. Notably, LORD achieves 100% success rate in the training
environment lane-4-density-2 under all image, video and text based obser-
vations, indicating the effectiveness of our LORD method. In terms of general-
ization ability, LORD with text based observation achieves higher success rate
in lane-5-density-2.5 while image and video based observation helps LORD
perform better in lane-5-density-3 environment.

To have an in-depth understanding of the remarkable performance achieved
by LORD, we illustrate in Fig. 4 the reward values generated by LORD for
different states. Since the state of the ego vehicle is a high dimensional vector
that includes position, speed and orientation information of all vehicles in the
scenario, it is impractical to visualize the rewards with respect to the states
directly. It is also extremely difficult to evaluate how good a state is and how
well the reward values align with the goodness of the states. Therefore, we instead
choose 2 features to represent a state, namely the distance to the nearest front
vehicle and the vehicle’s relative speed comparing to the ego vehicle. In this way,
we can estimate their time to collision (ttc), and use the ttc as a surrogate metric
to measure how good the state is. In addition, we also distinguish the collision
and non-collision states by coloring them in red and blue, respectively.

As shown in Fig. 4, the collision states denoted by the red points are centered
as expected at the area having small distance to the front vehicle and negative
speed difference, which means that the ego vehicle collides with the front vehicle
at a higher speed. From Fig. 4a, 4b and 4c, we can see that our LORD consis-
tently assigns smaller rewards to these collision states. For non-collision states
denoted by the blue points, we also observe a decrease in reward values along
the trend over the time to collision, especially when the distance is small and
the speed difference is negative as such a collision is more likely to happen. We
note that when the ego vehicle is far away from the front vehicle or drives slower
than the front vehicle, more tailored features might be needed to evaluate the
state in such cases. Collisions could also happen as the red points in the area
of large distance and positive speed difference show. In comparison, GRAD [38]
gives high rewards even to the collision states as Fig. 4d shows. The rewards also
show a clear upward trend when the speed difference becomes negative, i.e., the
ego vehicle drives faster than its front vehicle. It is expected as GRAD adopts a
speed reward but such a reward strategy doesn’t encourage a safe driving policy.

4.4 Effectiveness of Opposite Reward Design

To validate our opposite reward design, we conduct ablation study to compare
the 3 variants of our method with the ones using the corresponding target goals.
To be specific, when using image and video to represent the observation, we set
the target goal as “White car drives safely.”. For the setting using text to repre-
sent the observation, the target goal is set as “Ego is driving safely.”. In addition,
when using the target goal, we define the reward rt at time step t as the cosine
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similarity between the state ot and the target goal, i.e. rt = similarity(ot, goal)
where the similarity(·, ·) function is defined in Eq. 1.

Table 3: An ablation study of our method using opposite goals versus target goals.
Our approach witnesses the opposite goals show significantly improved generalization
performance on challenging scenarios.

lane-4-density-2 lane-5-density-2.5 lane-5-density-3
State Goal SR↑ TD↑ RE↑ SR↑ TD↑ RE↑ SR↑ TD↑ RE↑

Image oppo. 100.0 694.20 9.75 88.24 652.02 9.12 64.71 578.41 8.39
target 70.59 672.92 10.03 47.06 639.69 10.01 29.41 527.48 7.78

Video oppo. 100.0 630.37 7.24 88.24 612.77 7.67 82.35 599.86 7.78
target 100.0 679.10 9.14 76.47 646.01 8.34 58.82 519.54 6.32

Text oppo. 100.0 682.24 9.27 94.12 630.53 7.94 58.82 493.24 5.59
target 100.0 672.88 8.87 76.47 583.62 7.52 23.53 305.66 3.81

The comparisons of the methods using our opposite goals and target goals
are shown in Table 3. Overall, in terms of success rate (SR), all variants of our
method with opposite reward design consistently outperform their counterparts
using target goals in all traffic situations, indicating that our opposite reward
design is more effective in learning a safe driving policy. In addition, while the
method using target goals achieves competitive performance in in-domain traffic
situation lane-4-density-2, its performance degrades a lot in more difficult
out-of-domain traffic situations. In particular, with video and text based obser-
vation, the method using target goals achieve 100% SR in lane-4-density-2.
However, its SR drops to 76.47% in lane-5-density-2.5 and finally to 58.82%
and 23.53% respectively in lane-5-density-3. It demonstrates that the target
goal reward design is not generalizable for autonomous driving task. Comparing
to our method, in lane-5-density-2.5, we note that the method with target
goal reward design has a slightly higher rewards (RE) under image and video
based observation. However, its success rates (SR) are much lower. Specifically,
while the target goal reward design obtains 0.89 and 0.67 higher RE under im-
age and video observation, the SR is 41.18% and 11.77% lower than ours. We
explain this as the method using target goals learns to accelerate but ignores the
importance of avoiding collisions. More importantly, in the most difficult traffic
situation lane-5-density-3, our opposite reward design outperforms the tar-
get goal reward design in all metrics, showing the superiority of our method in
generalization.

4.5 Qualitative Results

Fig. 5 depicts how the driving policy learned by our LORD in lane-4-density-2
setting of Highway-env performs in more challenging lane-5-density-3 envi-
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Fig. 5: Illustrations of how the driving policy learned by our LORD with image, video
and text based observation performs in the lane-5-density-3 setting of Highway-env.
The ego vehicle is colored in green with a line depicting its past trajectory. The ego
vehicle behaves properly in the congested traffic scenarios.

ronments with image, video and text based observation respectively. As shown
in the figure, the ego vehicle learns to behave properly in the congested traffic
scenarios even if it hasn’t encountered such situations before. For example, from
the top row of Fig. 5, we can see that the ego vehicle chooses to follow the front
vehicle when there is no room for a lane change. Once the ego vehicle surpasses
all left-lane vehicles, it makes a left lane change to gain more space. The ego
vehicle also learns to overtake its front vehicle with video based observation as
illustrated in the middle row. Similarly, with text based observation, the ego
vehicle also succeeds in improving its situation by changing its lane to the right.
We provide more qualitative results in the supplementary materials.

5 Conclusion and Future Work

In this paper, we introduce a novel large models based opposite reward design
(LORD) framework for autonomous driving. LORD presents opposite reward de-
sign through undesired linguistic goals for efficient use of large pretrained models
as zero-shot reward mechanism since such undesired goals are more tractable and
comprehensible for large pretrained models compared to desired ones. We lever-
age large pretrained image, video and language models with a cosine distance
objective in our reward function. We integrate LORD with reinforcement learn-
ing algorithms to perform autonomous driving tasks. Extensive experiments on
the closed-loop autonomous driving tasks show the efficacy of the opposite re-
ward design mechanism over the desired target goal reward design. Moreover,
LORD achieves improved generalization performance over the counterpart rein-
forcement learning and language model based methods.

Our experiments are currently confined to Highway-env simulation as base-
line approaches only report their performance in this simulation. We also note
that the exceptional abilities of large pretrained models have not been fully uti-
lized due to the simulated images and videos we input and thereby limits the
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performance of our approach. We will assess our approach on more environments
in our future work. In this work, our study has evolved around the “collision”
as our opposite linguistic goal. In reality, there are numerous undesired driving
behaviors and situations the autonomous agents should avoid, such as running a
red light, occupying an emergency lane or violating other traffic rules. With our
opposite reward design, we can add these undesired behaviors as additional op-
posite linguistic goals into our LORD framework so that we can further optimize
the driving policy. In our future work, we will explore these in more sophisticated
environments as Highway-env does not contain such detailed information.
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Appendix

A Implementation Details

A.1 Detailed Setup of Highway-env

We follow the code repository 2 of GRAD baseline to setup Highway-env. Table 4
shows our customized configurations and we use default values for other param-
eters. During training, we set lane_count as 4 and vehicles_density as 2 to
train all methods in lane-4-density-2 setting. In addition, we set duration
as 60 to train the agent to address long-horizon tasks. During testing, we set
lane_count and vehicles_density accordingly and change duration to 30 to
evaluate the success rate of all methods in lane-4-density-2, lane-5-density-
2.5 and lane-5-density-3 settings.

Table 4: Configurations of Highway-env for training.

Parameter Value
observation
–type Kinematics
–features [presence, x, y, vx, vy, cos_h, sin_h, heading]
–absolute True
–normalize True
–vehicles_count 33
–see_behind True

action
–type DiscreteMetaAction
–target_speeds [20, 25, 30, 35, 40]

duration 60
ego_spacing 4
lane_count 4
vehicles_density 2

A.2 Observation Design

To enable a more efficient use of large pretrained models as zero-shot reward
models, we empirically adopt the following observation designs as inputs to the
large pretrained models. (1) For image based observation, we adopt the simulated
image rendered by Highway-env with the parameter scaling being set to 10.
We then replace the rectangles used to represent the ego and npc vehicles with
more photorealistic car images. We further remove the image background and we
crop the image to the size of 224×224 centered on the ego vehicle. (2) For video
2 https://github.com/zerongxi/graph-sdc
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based observation, we stack the latest 30 consecutive image based observations
with a 15Hz frequency. (3) For text based observation, we only pay attention
to the nearby vehicles that are within 5 × ego_speed meters of the ego vehicle
and drive on the same, left or right lane of the ego vehicle. We then calculate
the ego vehicle’s time to collision (ttc) to each of these attended vehicles. If a
vehicle drives on the same lane of the ego vehicle and the ttc is smaller than 5s,
we describe it in our text based observation by “A collision will be happening
in {ttc}s.”. Otherwise, we give a description of “No foreseeable collision in 5s.”.
We also describe conditional collisions by “A collision would happen in {ttc}s if
ego makes a left/right lane change.”. Examples of the three types of observations
can be found in Fig. 6 and Fig. 7.

B Case Study

B.1 Rewards from Different Observations

Fig. 6: An example of our image, video and text based observations and the corre-
sponding rewards for a non-collision state.
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Fig. 6 and Fig. 7 present the rewards we get from different observations
for a non-collision and a collision state respectively. While the reward values are
nonidentical across different observations, they are all higher for the non-collision
state compared to the collision one. In this way, the ego vehicle can distinguish
the dangerous states and learn a safe driving policy.

Fig. 7: An example of our image, video and text based observations and the corre-
sponding rewards for a collision state.

B.2 Qualitative Results

Fig. 8 shows more examples of how the driving policy learned by our LORD with
image, video and text based observation performs in the lane-5-density-3 set-
ting of Highway-env. We can observe that the ego vehicle learns diverse ways to
avoid collisions in congested traffic scenarios. The results shall be better viewed
in the supplementary videos.
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(a) LORD with image based observation.

(b) LORD with video based observation.

(c) LORD with text based observation.

Fig. 8: The driving policy learned by our LORD with image, video and text based
observation.
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