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STABILIZATION OF LINEAR PORT-HAMILTONIAN DESCRIPTOR

SYSTEMS VIA OUTPUT FEEDBACK

DELIN CHU∗ AND VOLKER MEHRMANN†

Abstract. The structure preserving stabilization of (possibly non-regular) linear port-Hamiltonian
descriptor (pHDAE) systems by output feedback is discussed. While for general descriptor systems
the characterization when there exist output feedbacks that lead to an asymptotically stable closed
loop system is a very hard and partially open problem, for systems in pHDAE representation this
problem can be completely solved. Necessary and sufficient conditions are presented that guarantee
that there exist a proportional output feedback such that the resulting closed-loop port-Hamiltonian
descriptor system is (robustly) asymptotically stable. For this it is also necessary that the output
feedback also makes the problem regular and of index at most one. A complete characterization
when this is possible is presented as well.

Keywords: Port-Hamiltonian descriptor system, proportional output feedback,
regularization, index reduction, asymptotic stability, derivative output feedback.

AMS subject classification: 93B05, 93B40, 93B52, 65F35

1. Introduction. In this paper we study proportional output feedback controls
to make a descriptor system, often called differential-algebraic system (DAE) asymp-
totically stable. Consider a general descriptor systems of the form

Eẋ = Ax+Bu, x(t0) = x0

y = Cx+Du, (1.1)

with E,A ∈ Cℓ,n, B ∈ Cℓ,m, C ∈ Cp,n D ∈ Cm,m. Here Cp,n denotes the complex
p×nmatrices, u is the input, y is the output and x is the generalized state (descriptor)
vector, and ẋ denotes the time derivative.

We formulate our results for complex systems but the results hold analogously for
systems with real coefficients. In the following, the real part of a complex number z
is denote by ℜ(z) and we denote that a Hermitian matrix M is positive semidefinite
(positive definite) by M ≥ 0 (M > 0).

In our analysis and in the construction of feedbacks, we need to perform system
transformations of the system. For general descriptor systems, these are changes of
bases x = T x̃, u = V ũ, y = Y ỹ and multiplications of the state equation by S, where
the matrices S, T, V, Y are invertible.

For the matrix pencil λE − A associated with general descriptor systems of the
form (1.1) one has the following classical result [16].

Theorem 1.1. Let E,A ∈ Cℓ,n. Then there exist nonsingular matrices S ∈ Cℓ,ℓ

and T ∈ C
n,n such that

S(λE −A)T = diag(Lǫ1 , . . . ,Lǫp ,L
⊤
η1
, . . . ,L⊤

ηq
,J λ1

ρ1
, . . . ,J λr

ρr
,Nσ1

, . . . ,Nσs
), (1.2)

where the block entries have the following properties:
(i) Every entry Lǫj is a bidiagonal block of size ǫj×(ǫj + 1), ǫj ∈ N0, of the form

λ




1 0
. . .

. . .

1 0


−




0 1
. . .

. . .

0 1


 .
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(ii) Every entry L⊤
ηj

is a bidiagonal block of size (ηj + 1) × ηj, ηj ∈ N0, of the
form

λ




1

0
. . .

. . . 1
0



−




0

1
. . .

. . . 0
1



.

(iii) Every entry J
λj

ρj is a Jordan block of size ρj×ρj, ρj ∈ N, λj ∈ C, of the form

λ




1
. . .

. . .

1



−




λj 1
. . .

. . .

. . . 1
λj



.

(iv) Every entry Nσj
is a nilpotent block of size σj × σj, σj ∈ N, of the form

λ




0 1
. . .

. . .

. . . 1
0



−




1
. . .

. . .

1



.

The Kronecker canonical form is unique up to permutation of the blocks.
For real matrices there exists a real Kronecker canonical form which is obtained

under real transformation matrices S, T . Here, the blocks J
λj

ρj with nonreal λj are in
real Jordan canonical form instead, but the other blocks are as in the complex case.

A value λ0 ∈ C is called a (finite) eigenvalue of λE − A if rank(λ0E − A) <

maxα∈C rank(αE −A). Furthermore, λ0 = ∞ is said to be an eigenvalue of λE−A if
zero is an eigenvalue of λA− E. The size of the largest block Nσj

is called the index
ν of the pencil λE − A, where, by convention, ν = 0 if E is invertible. The matrix
pencil λE − A is called regular if ℓ = n and det(λ0E − A) 6= 0 for some λ0 ∈ C,
otherwise it is called singular. For a given input u, an initial condition x0 is called
consistent if the initail value problem has at least one classical solution.

When descriptor systems are generated in an automated modularized modeling
framework such as e.g. [15], then the resulting system typically is an over- or under-
determined (singular) system. For such singular systems, existence and uniqueness of
the solutions for a given control input and given consistent initial values x(t0) = x0

only be guaranteed except if E,A are square and the pencil λE − A is regular. If
this is not the case then a regularization or reformulation is necessary, see [10, 23].
In control design this is often done via state or output feedback, see e.g. [9, 13].
Feedback design is also used classically to make the system (robustly) asymptotically
stable [22, 37]. However, to do this with output feedback is a difficult and partially
open problem even if E = I, the identity matrix, see e.g. [8, 34].

Note that the definition of stability and asymptotic stability is not defined in a
uniform way in the literature. Some authors just require that the finite eigenvalues
of λE − A are in the (open) left half plane, some require that the pencil λE − A is
furthermore regular and of index at most one, since otherwise arbitrary small pertur-
bations make the system unstable, see [14, 24, 29] for detailed discussions, which also
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include the robustness question when the pencil λE − A is close to singular or high
index.

In this paper we address the problem of determining output feedback controls
u = Fy with F ∈ Cm,p that make the closed loop system regular and of index at most
one, i.e. uniquely solvable for consistent initial conditions, and also (robustly) asymp-
totically stable. We study this problem for the important class of port-Hamiltonian
descriptor system representations that are introduced in the next subsection.

1.1. Port-Hamiltonian descriptor systems. In this subsection we introduce
the framework of port-Hamiltonian descriptor systems.

Definition 1.2. A linear time-invariant descriptor system of the form

Eẋ = (J −R)Qx+ (B − P )u,

y = (B + P )HQx+ (S −N)u, (1.3)

with E,Q ∈ Cℓ,n, J,R ∈ Cℓ,ℓ, B,P ∈ Cℓ,m, S = SH , N = −NH ∈ Cm,m is called
port-Hamiltonian differential-algebraic (pHDAE) system with quadratic nonnegative
Hamiltonian

H(x) :=
1

2
ℜ(xHQHEx) ≥ 0 (1.4)

if the following properties are satisfied:
(i) 0 ≤ QHE = EHQ ∈ Cn,n and 0 = ℜ(QH(J − JH)Q);
(ii) the dissipation matrix

W =

[
QHRQ QHP

PHQ S

]
∈ C

n+m,n+m (1.5)

is positive semidefinite, i.e., W = WH ≥ 0.
The class of pHDAE systems provides a unified and natural modeling framework

for the simulation and control of almost all classes of real world physical systems, see
[5, 21, 28, 30, 29, 35, 36] for detailed discussions and a multitude of applications. The
great success of modeling with pHDAE systems is mainly due to its many important
properties.

Key properties of pHDAEs, see e.g. [29], are the invariance of the class under
power-conserving interconnection, which allows modularized automated modeling, the
invariance under Galerkin projection which makes them ideal for discretization and
model reduction, and in particular the encoding of properties like energy dissipation,
stability and passivity in the algebraic structure of the coefficients of the equations.
The class of pHDAE systems also provides an ideal framework for robust and physi-
cally interpretable control design. This follows, in particular, from the power balance
equation and the resulting dissipation inequality, see e.g. [28].

Theorem 1.3. Consider a pHDAE system of the form (1.3). Then for any input
u(t) the power balance equation

d

dt
H(x(t)) = −

[
x(t)
u(t)

]H
W

[
x(t)
u(t)

]
+ ℜ(yH(t)u(t)) (1.6)

holds along any solution x(t). In particular, the dissipation inequality

H(x(t2))−H(x(t1)) ≤

∫ t2

t1

ℜ(y(τ)Hu(τ)) dτ (1.7)
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holds.
In physical space, one can view pHDAE systems as modeling the interaction of

three types of energies by encoding these in the structure of the coefficients. The stored
energy is presented by the nonnegative Hamiltonian H(x), the dissipated energy by

the nonnegative quadratic form D(x, u) =

[
x

u

]H
W

[
x

u

]
and the supplied energy by

S(y, u) = ℜ(yHu).
While for general descriptor systems it is computationally difficult to analyze

whether a system is (robustly) asymptotically stable, see e.g. [7, 37], in the pHDAE
modeling framework, using Theorem 1.3 easily allows to analyze when a pHDAE
system is stable (asymptotically stable). It is well known [25] that if Q has full
column rank, then the pHDAE systems of the form (1.3) are stable (but not necessarily
asymptotically stable) in the sense that all finite eigenvalues are in the closed left half
plane and those on the imaginary axis are semisimple. Furthermore, it is shown in [25]
that the index of a pHDAE system can be at most ν = 2 and in [26] the singularity is
characterized by a common nullspace property. Furthermore, if the system is in the
pHDAE representation, it is only needed to check the semidefiniteness of EHQ and
W , which can be done accurately and with perturbation bounds via the calculation
of Cholesky decompositions, see e.g. [19].

There also exist structure preserving versions of the Kronecker canonical form,
see [1, 6], where in order to preserve the structure and in particular the different types
of energy H,D,S, we require the transformations to satisfy S = TH and Y = V −H ,
see [4, 30]. We will discuss such condensed forms in Section 2.

1.2. Simplified pHDAE reformulation. It has been addressed in [29] how
one can reformulate a general linear pHDAE system to one with ℓ = n and Q = I and
how to remove the feedthrough term, so that Du = (S − N)u = 0. In the following
we will briefly recall this reformulation which would always be the first step of a
regularization procedure.

If in (1.3) Q has full column rank then the state equation can be multiplied with
QH from the left, yielding the system

QHEẋ = QH(J −R)Qx+QH(B − P )u,

y = (B + P )HQx+ (S −N)u.

Then setting Ẽ = QHE, J̃ = QHJQ, R̃ = QHRQ, B̃ = QHB, and P̃ = QHP , the
transformed system

Ẽẋ = (J̃ − R̃)x+ (G̃− P̃ )u,

y = (G̃+ P̃ )Hx+ (S −N)u

is again a pHDAE system, but now has Q̃ = In and hence Ẽ = ẼH ≥ 0. If Q is not
of full column rank then a subsystem of this form can be obtained by performing a
singular value decomposition of Q and then considering only the subsystem associated
with the invertible part, see [29] for details.

One can also always remove the feedthrough term by extending the state space.
Since the Hermitian part of D is semidefinite, one can construct, see [1], a unitary
matrix UD, such that

D = UD

[
D1 0
0 0

]
UH
D ,
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with D1 nonsingular and the Hermitian part of D1 is positive semi-definite. Setting,
with analogous partitioning,

(B − P )UD =
[
B1 − P1 B2 − P2

]
, UH

D u =

[
u1

u2

]
, UH

D y =

[
y1
y2

]
,

the system can be written as

Eẋ = (J −R)x+ (B1 − P1)u1 + (B2 − P2)u2, (1.8a)

y1 = (B1 + P1)
Hx+D1u1, (1.8b)

y2 = (B2 + P2)
Hx. (1.8c)

Since R ≥ 0 we have P2 = 0. Introducing x2 = D1u1 + PH
1 x we obtain the extended

system
[
E 0
0 0

] [
ẋ

ẋ2

]
=

[
J − R 0
D−1

1 PH
1 −D−1

1

] [
x

x2

]
+

[
B1 − P1

I

]
u1 +

[
B2

0

]
u2,

y1 =
[
BH

1 I
] [ x

x2

]
,

y2 = BH
2 x.

By this extension the Hamiltonian H and the dissipated energy D have not changed,
they are just formulated in different variables and the added variables do not change
the values of H and D. Clearly also the supplied energy S stays the same. By

multiplying the state equation with the nonsingular matrix

[
I P1

0 I

]
from the left we

obtain the extended pHDAE system

Ẽ ˙̃x = (J̃ − R̃)x̃+ B̃u,

y = B̃H x̃,

with extended state x̃ = [xH , xH
2 ]H and coefficients

Ẽ =

[
E 0
0 0

]
, J̃ =

[
J + 1

2

(
P1D

−1
1 PH

1 −
(
P1D

−1
1 PH

1

)H)
−P1D

−1
1

D−1
1 PH

1 − 1
2

(
D−1

1 −D−H
1

)

]
,

B̃ =

[
B1 B2

I 0

]
, P̃ = 0, D̃ = 0,

R̃ =

[
R− 1

2

(
P1D

−1
1 PH

1 +
(
P1D

−1
1 PH

1

)H)
0

0 1
2

(
D−1

1 +D−H
1

)

]
.

In the following we therefore assume that we have a pHDAE system of the form

Eẋ = (J −R)x+Bu,

y = BHx, (1.9)

with E, J,R ∈ Cn,n, B ∈ Cn,m, E = EH ≥ 0, R = RH ≥ 0, J = −JH , with
the quadratic Hamiltonian H(x) = 1

2x
HEx ≥ 0 and the dissipation matrix W =[

R 0
0 0

]
≥ 0. We also assume, without loss of generality, that B has full column

rank by restricting, if necessary, u, y to an appropriate subspace.
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1.3. Problem statements. For general unstructured descriptors systems it has
been studied extensively, see e.g. [9, 10, 11, 12, 31, 32, 33], how to modify system
properties like regularity or the eigenstructure of the system via different types of
feedback. But such general feedback approaches do not necessarily preserve the pH-
DAE structure. For pHDAE systems the natural feedback classes are proportional
output feedbacks, since then the symmetry structure of the coefficients is preserved
and it is sufficient if the feedback preserves the nonnegativity of the energy functions
H and D. We therefore discuss proportional output feedback of the form

u(t) = (FS − FH)y(t) + v(t)

where FS = −FH
S andFH = FH

H are such that the resulting closed loop system

ẋ(t) = (J +BFSB
H − (R +BFHBH))x(t) +Bv(t),

y(t) = BHx(t),

has desired properties. In particular, we study the following three problems:

Problem 1 (Regularization of pHDAE system (1.9) by proportional output feed-
back): Determine matrices FS = −FH

S , FH = FH
H such that the pair (E, J+BFSB

H−
(R+BFHBH)) is regular, and R+BFHBH ≥ 0, i.e., the resulting closed-loop system
is a regular pHDAE system.

Problem 2 (Regularization and index reduction of pHDAE system (1.9) by pro-
portional output feedback): Determine matrices FS = −FH

S , FH = FH
H such that

the pair (E, J + BFSB
H − (R + BFHBH)) is regular, of index at most one, and

R + BFHBH ≥ 0, i.e., the resulting closed-loop system is a regular pHDAE system
of index at most one.

Problem 3. (Stabilization of pHDAE system (1.9) by proportional output feed-
back): Determine matrices FS = −FH

S , FH = FH
H such that the pair (E, J+BFSB

H−
(R + BFHBH)) is regular, of index at most one, has all its finite eigenvalues in the
open left half complex plane, and

R +BFHBH ≥ 0,

i.e., the resulting closed-loop system is a regular pHDAE system of index at most one
and has all its finite eigenvalues in the open left half complex plane.

In some applications it is also possible to use derivative output feedback u = Kẏ

to perform regularization, index reduction and stabilization. The results that we
present also extend to this case, see Appendix B.

All the constructions and conditions that we present are derived via structured
condensed forms that we present in the next section. For completeness we also present
coordinate free versions of the results for which we denote a full column rank matrix
with its columns spanning the right nullspace of a matrix M by S∞(M) and with its
columns spanning the left nullspace of M by T∞(M), respectively.

2. Condensed forms. The basis for the construction of regularizing feedbacks is
the computation of condensed forms. In order to be able to construct the regularizing
feedbacks in a numerically stable way we use unitary transformations. The following
form is a modification of the condensed form presented in [6].
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Lemma 2.1. Consider a pHDAE system of the form (1.9). Then there exist
unitary matrices U and V such that

U
H
BV =

















m− n3 n3

n1 0 B12

n2 B21 B22

n3 0 B32

n4 0 0
n5 0 0
n6 0 0

















, U
H
EU =

















n1 n2 n3 n4 n5 n6

n1 E11 E12 E13 E14 0 0
n2 EH

12 E22 E23 E24 0 0
n3 EH

13 EH

23 E33 E34 0 0
n4 EH

14 EH

24 EH

34 E44 0 0
n5 0 0 0 0 0 0
n6 0 0 0 0 0 0

















, (2.1)

U
H(J −R)U =

















n1 n2 n3 n4 n5 n6

n1 J11 −R11 J12 −R12 J13 −R13 J14 −R14 J15 −R15 J16

n2 −JH

12 −RH

12 J22 −R22 J23 −R23 J24 −R24 J25 −R25 J26

n3 −JH

13 −RH

13 −JH

23 −RH

23 J33 −R33 J34 −R34 J35 −R35 0
n4 −JH

14 −RH

14 −JH

24 −RH

24 −JH

34 −RH

34 J44 −R44 J45 −R45 0
n5 −JH

15 −RH

15 −JH

25 −RH

25 −JH

35 −RH

35 −JH

45 −RH

45 J55 −R55 0
n6 −JH

16 −JH

26 0 0 0 0

















,

where

rank

[
J16
J26

]
= n1 + n2, rank(B21) = n2, rank(B32) = n3, rank(J55 −R55) = n5,

(2.2)
and, furthermore,

rank




E11 E12 E13 E14 0 B12

EH
12 E22 E23 E24 B21 B22

EH
13 EH

23 E33 E34 0 B32

EH
14 EH

24 EH
34 E44 0 0


 = n1 + n2 + n3 + n4, E44 > 0. (2.3)

Proof. A constructive proof that can be directly implemented as a numerical
method is presented in Appendix A.

If one allows nonunitary transformations in Lemma 2.1, then one can reduce the
condensed form further.

Corollary 2.2. Consider a pHDAE system of the form (1.9). Then there exist
nonsingular matrices S, T , and a unitary matrix V such that

SBV =




m− n3 n3

n1 0 0
n2 B21 0
n3 0 B32

n4 0 0
n5 0 0
n6 0 0



, SET =




n1 n2 n3 n4 n5 n6

n1 E11 0 E13 0 0 0
n2 0 E22 E23 0 0 0
n3 EH

13 EH
23 E33 0 0 0

n4 0 0 0 E44 0 0
n5 0 0 0 0 0 0
n6 0 0 0 0 0 0




S(J −R)T =




n1 n2 n3 n4 n5 n6

n1 A11 A12 A13 A14 0 A16

n2 A21 A22 A23 A24 0 A26

n3 A31 A32 A33 A34 0 0
n4 A41 A42 A43 A44 0 0
n5 0 0 0 0 A55 0
n6 −AH

16 −AH
26 0 0 0 0



, (2.4)
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where SB = THB,

rank

[
A16

A26

]
= n1 + n2, rank(B21) = n2, rank(B32) = n3, rank(A55) = n5,

(2.5)
and

E11 > 0, E44 > 0,




E11 0 E13

0 E22 E23

EH
13 EH

23 E33


 ≥ 0. (2.6)

Proof. The proof follows by block Gaussian elimination in (2.1).
Using Corollary 2.2 we immediately obtain the following coordinate-free descrip-

tions of the dimensions in the condensed form (2.1).
Corollary 2.3. Consider a pHDAE system of the form (1.9) in the condensed

form (2.4). Then the following statements hold.
(a)

n1 + n4 = rank
[
E B

]
− rank(B),

n3 + n4 = rank(T H
∞ ((J −R)S∞(

[
E

BH

]
))
[
E B

]
),

rank(E13) = rank(T H
∞ (B)ES∞(T H

∞ (
[
E B

]
)(J −R))− n4.

(b)

rank
[
E J − R B

]
= n (2.7)

if and only if

n6 = n1 + n2. (2.8)

(c) rank(E13) = n1 if and only if

rank(T H
∞ (B)ES∞(T H

∞ (
[
E B

]
)(J −R))) = rank

[
E B

]
− rank(B). (2.9)

Proof. The proof follows by direct calculation.
The condensed forms in this section form the basis for the solution of problems

1-3 in the following section.

3. Regularization and stabilization via proportional output feedback.

In this section we characterize the solutions of Problems 1.–3. The characterizations
of the solution to the first two problems have similar conditions as in the unstructured
case.

Theorem 3.1. Consider a pHDAE system (1.9). Then Problem 1. is solvable if
and only if (2.7) holds.

Proof. Suppose that there exist matrices FS = −FH
S and FH = FH

H such that
(E, J +BFSB

H − (R+BFHBH) is regular. Then we have

det(sE − (J +BFSB
H − (R +BFHBH))) 6= 0, for some s ∈ C,

which together with the condensed form (2.4) gives the condition (2.8), which, together
with Corollary 2.3 yields condition (2.7). Hence, necessity follows.
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To show the sufficiency, let condition (2.7) and thus equivalently (2.8) holds. Let
F22 ∈ Cn3×n3 be such that F22 > 0 and that A33 − B32F22B

H
32 is nonsingular. Then

with

FS = 0, FH = V

[
0 0
0 F22

]
V H ,

we have that (E, J +BFSB
H − (R +BFHBH) is regular and R+BFHBH ≥ 0.

If we further require that the index of the closed loop system pencil is reduced to
one then we have the following result.

Theorem 3.2. Consider a pHDAE system of the form (1.9). Then Problem 2.
is solvable if and only if

rank
[
E (J −R)S∞(E) B

]
= n. (3.1)

Proof. Let F = FS − FH , with FS = −FH
S and FH = FH

H be such that (E, J −
R+BFBH) is regular and of index at most one. Then condition (2.7) holds and

rank




E11 0 E13

0 E22 E23

EH
13 EH

23 E33


 = rank(E33). (3.2)

Note that condition (3.2) is equivalent to

E22 = 0, E23 = 0, E11 = E13E
+
33E

H
13, (3.3)

where E+
33 is the Moore-Penrose inverse of E33.

A direct calculation yields that the conditions (2.7) and (3.3) imply condition
(3.1). Hence, the necessity follows.

To show the sufficiency, take

FS = 0, FH = V

[
0 0
0 F22

]
V H ,

with F22 > 0, and T H
∞ (E33)(A33 − B32F22B

H
32)S∞(E33) nonsingular. Then the pair

(E33, A33 −B32F22B
H
32) is regular and of index at most one. Because condition (3.1)

implies conditions (2.7) and (3.3), we have that R + BFHBH ≥ 0 and the pair
(E, J +BFSB

H − (R+BFHBH)) is regular and of index at most one.
After a pHDAE system of the form (1.9) has been regularized and made of index

at most one, the next task is to design a propotional output feedback so that the
resulting closed-loop system is asymptotically stable, i.e. all its finite eigenvalues have
negative real part. While this a very hard and partially unsolved problem for general
descriptor systems, for pHDAE systems the solution is surprisingly simple.

We need the following two lemmas.
Lemma 3.3. Consider E, J,R ∈ Cn,n with E ≥ 0, J = −JH , R ≥ 0, and

E =

[ n1 n2

n1 E11 E12

n2 EH
12 E22

]
, R =

[ n1 n2

n1 R11 0
n2 0 0

]
, J =

[ n1 n1

n1 J11 J12
n2 −JH

12 J22

]
,

where R11 > 0. Then the following statements hold.
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i) J −R is nonsingular if and only if

rank

[
J12
J22

]
= n2.

ii) The pair (E, J −R) has all its finite eigenvalues in the open left half complex
plane if and only if for all purely imaginary s ∈ C

rank

[
J12 − sE12

J22 − sE22

]
= n2. (3.4)

Proof. The proof of i) is trivial.
ii) If the pair (E, J −R) has all its finite eigenvalues in the open left half plane,

then obviously (3.4) holds for all purely imaginary s ∈ C.
Conversely, let (3.4) hold for all purely imaginary s ∈ C. It follows from i) that

(E, J −R) is regular. Next, let s0 ∈ C be any finite eigenvalue of (E, J −R), and let

x =

[
x1

x2

]
∈ Cn (partitioned analogously) be a corresponding eigenvector normalized

such that xHEx = 1. Then we have
[

J11 −R11 J12
−JH

12 J22

]
x = s0

[
E11 E12

EH
12 E22

]
x, (3.5)

and hence,

s0 = xH

[
E11 E12

EH
12 E22

]
x

= xH

[
J11 −R11 J12

−JH
12 J22

]
x = −xH

1 R11x1 + xH

[
J11 J12
−JH

12 J22

]
x,

which gives

ℜ(s0) = −xH
1 R11x1 ≤ 0.

We show that x1 6= 0. If we had x1 = 0, then s0 is purely imaginary, x2 6= 0 and
[

J12 − s0E12

J22 − s0E22

]
x2 = 0.

This and the condition that rank

[
J12 − s0E12

J22 − s0E22

]
= n2 yields that x2 = 0 which is a

contradiction. Hence, x1 6= 0 and ℜ(s0) = −xH
1 R11x1 < 0. Therefore, (E, J −R) has

all its finite eigenvalues in the open left half complex plane.
Lemma 3.4. Given J,R, R̃ ∈ C

n,n with J = −JH , R = RH ≥ 0 and R̃ = R̃H ≥ 0.
If J −R is nonsingular, then J − (R+ R̃) is nonsingular.

Proof. Suppose this were not the case, then for some vector x 6= 0 we have
(J − (R+ R̃))x = 0, which implies Jx = 0 and (R+ R̃)x = 0 and then Rx = 0 which
is a contradiction.

We now present necessary and sufficient solvability conditions for Problem 3.
Theorem 3.5. Consider a pHDAE system of the form (1.9). Then Problem 3.

is solvable if and only if the condition (3.1) holds and for all purely imaginary s ∈ C

rank
[
J −R− sE B

]
= n. (3.6)
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Proof. The necessity is obvious since the condition (3.1) follows by Theorem 3.2
and that condition (3.6) holds for all purely imaginary s ∈ C is well-known from the
unstructured case, see e.g. [9].

To prove the sufficiency, let U be a unitary matrix such that

UHB =




n1 0
n2 B2

n3 0


, UHRU =




n1 n2 n3

n1 R11 R12 0
n2 RH

12 R22 0
n3 0 0 0


,

where

rank(B2) = n2, R11 > 0.

Set

UHJU =




n1 n2 n3

n1 J11 J12 J13
n2 −JH

12 J22 J23
n3 −JH

13 −JH
23 J33


, UHEU =




n1 n2 n3

n1 E11 E12 E13

n2 EH
12 E22 E23

n3 EH
13 EH

23 E33


.

Let FS = 0 and FH = FH
H be such that

rank(R +BFHBH) = rank
[
R B

]
, R+BFBH ≥ 0,

i.e.,
[

R11 R12

RH
12 R22 +B2FHBH

2

]
> 0.

Then it follows from Lemma 3.3 and the fact that (3.6) holds for all purely imaginary
s that the pair (E, J − (R + BFHBH)) has all its finite eigenvalues in the open left
half complex plane.

Next, let Ũ ∈ Cn,n be unitary such that

ŨHEŨ =





τ1 τ2 τ3

τ1 Ẽ11 0 0
τ2 0 0 0
τ3 0 0 0



, ŨH(R +BFHBH)Ũ =





τ1 τ2 τ3

τ1 R̃11 R̃12 0
τ2 R̃H

12 R̃22 0
τ3 0 0 0



,

where

Ẽ11 > 0, R̃22 > 0.

Set

ŨHJŨ =




τ1 τ2 τ3

τ1 J̃11 J̃12 J̃13
τ2 −J̃H

12 J̃22 J̃23
τ3 −J̃H

13 −J̃H
23 J̃33


, ŨHB =




τ1 B̃1

τ2 B̃2

τ3 B̃3


.

Note that

rank(R +BFHBH) = rank
[
R B

]
= rank

[
R+BFHBH B

]
,

11



and thus

B̃3 = 0.

Additionally, condition (3.1) implies that

rank

[
J̃23
J̃33

]
= rank

[
−J̃H

23 J̃33
]
= τ3,

and hence by Lemma 3.3 we have that

[
J̃22 − R̃22 J̃23

−J̃H
23 J̃33

]
is nonsingular. Therefore,

the pair (E, J − (R+BFHBH)) is regular and of index at most one.
After the characterization of the existence of output feedbacks that make the

pHDAE system regular and of index at most one as well as asymptotically stable an
important question is to use the feedbacks in such a way that the resulting closed
loo system is robustly regular, of index at most one and asymptotically stable. In
order to do this one needs efficiently computable characterizations what the distance
to the nearest non-regular pHDAE, higher index pHDAE are [17, 20, 26], respectively
the distance to instability [2, 18, 17] are. Furthermore, it is necessary to analyze
how the pHDAE structure can be exploited, and how to compute robust pHDAE
representations, see [3, 27]. This topic is currently under investigation.

4. Concluding Remarks. In this paper, new characterizations have been de-
rived for the regularization, index reduction and stabilization of port-Hamiltonian
descriptor systems (1.9) by proportional output feedback while preserving the port-
Hamiltonian structure. Future work will include the development and implementation
of numerical methods for optimal robust output feedback stabilization.
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[24] V. H. Linh and V. Mehrmann. Lyapunov, Bohl and Sacker-Sell spectral intervals for differential-

algebraic equations. J. Dyn. Differ. Equations, 21(1):153–194, 2009.
[25] C. Mehl, V. Mehrmann, and M. Wojtylak. Linear algebra properties of dissipative Hamiltonian

descriptor systems. SIAM J. Matrix Anal. Appl., 39(3):1489–1519, 2018.
[26] C. Mehl, V. Mehrmann, and M. Wojtylak. Distance problems for dissipative Hamiltonian

systems and related matrix polynomials. Linear Algebra Appl., 623:335–366, 2021.
[27] V. Mehrmann and P. Van Dooren. Optimal robustness of port-Hamiltonian systems. SIAM J.

Matrix Anal. Appl., 41(1):134–151, 2020.
[28] V. Mehrmann and R. Morandin. Structure-preserving discretization for port-Hamiltonian de-

scriptor systems. In 58th IEEE Conference on Decision and Control (CDC), Nice, France,
pages 6863–6868, 2019.

[29] V. Mehrmann and B. Unger. Control of port-Hamiltonian differential-algebraic systems and
applications. Acta Numerica, pages 395–515, 2023.

[30] V. Mehrmann and A.J. van der Schaft. Differential-algebraic systems with dissipative Hamil-
tonian structure. Math. Control Signals Systems, pages 1–44, 2023.

[31] N.K. Nichols and D. Chu. Regularization of descriptor systems. Numerical Algebra, Matrix
Theory, Differential-Algebraic Equations and Control Theory: Festschrift in Honor of
Volker Mehrmann, pages 415–433, 2015.
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Step 1. Determine a unitary matrix U1 such that

UH
1 B =

[
µ1 B1

n− µ1 0

]
,

where rank(B1) = µ1 and set

UH
1 EU1 =

[ µ1 n− µ1

µ1 E
(1)
11 E

(1)
12

n− µ1 (E
(1)
12 )H E

(1)
22

]
,

and

UH
1 (J −R)U1 =

[ µ1 n− µ1

µ1 J
(1)
11 −R

(1)
11 J

(1)
12 −R

(1)
12

n− µ1 −(J
(1)
12 )H − (R

(1)
12 )

H J
(1)
22 −R

(1)
22

]
,

where E
(1)
22 ≥ 0 since E ≥ 0.

Step 2. Determine a unitary matrix U2 such that

UH
2 E

(1)
22 U2 =

[ µ2 n− µ1 − µ2

µ2 Ê22 0
n− µ1 − µ2 0 0

]
,

where E22 > 0 and set

UH
2 (J

(1)
22 −R

(1)
22 )U2 =

[ µ2 n− µ1 − µ2

µ2 J
(2)
22 −R

(2)
22 J

(2)
23 −R

(2)
23

n− µ1 − µ2 −(J
(2)
23 )H − (R

(2)
23 )

H J
(2)
33 −R

(2)
33

]
.

Step 3. Determine a unitary matrix U3 such that

UH
3 (J

(2)
33 −R

(2)
33 ) =

[
n5 J̃3 − R̃3

n6 0

]
,

where rank(J̃3 − R̃3) = n5. Set

UH
3 J

(2)
33 U3 =

[ n5 n6

n5 J55 J
(3)
56

n6 −(J
(3)
56 )H J

(3)
66

]
, U3R

(2)
33 U

H
3 =

[ n5 n6

n5 R55 R
(3)
56

n6 (R
(3)
56 )

H R
(3)
66

]
.

Then

UH
3 (J

(2)
33 −R

(2)
33 )U3 =

[ n5 n6

n5 J55 − R55 J
(3)
56 −R

(3)
56

n6 −(J
(3)
56 )H − (R

(3)
56 )

H J
(3)
66 −R

(3)
66

]

=

[ n5 n6

n5 J55 −R55 J
(3)
56 −R

(3)
56

n6 0 0

]
.
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Note that R ≥ 0 and J = −JH , so, R
(2)
33 ≥ 0, J

(2)
33 = −(J

(2)
33 )H , and thus,

R
(3)
66 = J

(3)
66 = 0, R

(3)
56 = 0, J

(3)
56 = 0.

Define

Ũ1 =

[
I

U3

] [
I

U2

]
U1,

then

ŨH
1 B =




µ1 B1

µ2 0
n5 0
n6 0


, ŨH

1 EŨ1 =




µ1 µ2 n5 n6

µ1 Ê11 Ê12 0 0
µ2 ÊH

12 Ê22 0 0
n5 0 0 0 0
n6 0 0 0 0


,

Ũ1(J −R)Ũ1 =




µ1 µ2 n5 n6

µ1 Ĵ11 −R11 Ĵ12 − R̂12 Ĵ13 − R̂13 Ĵ14 − R̂14

µ2 −ĴH
12 − R̂H

12 Ĵ22 − R̂22 Ĵ23 − R̂23 Ĵ24 − R̂24

n5 −ĴH
13 − R̂H

13 −ĴH
23 − R̂H

23 J55 −R55 0
n6 −ĴH

14 − R̂H
14 −ĴH

24 − R̂H
24 0 0


,

where

rank(B1) = µ1, rank(J55 −R55) = n5, rank(Ê22) = µ2.

In addition, using R ≥ 0, we also have that

R̂14 = 0, R̂24 = 0,

Step 4. Construct unitary matrices U4 and V such that

UH
4

[
Ê11 Ê12

ÊH
12 Ê22

]
U4 =




n1 n2 n3 n4

n1 E11 E12 E13 E14

n2 EH
12 E22 E23 E24

n3 EH
13 EH

23 E33 E34

n4 EH
14 EH

24 EH
34 E44


,

UH
4

[
B1

0

]
V =




m− n3 n3

n1 0 B12

n2 B21 B22

n3 0 B32

n4 0 0


, UH

4

[
Ĵ14

Ĵ24

]
=




n6

n1 J16
n2 J26
n3 0
n4 0


,

where

rank

[
J16
J26

]
= n1 + n2, rank(B21) = n2, rank(B32) = n3,

and

rank
[
EH

14 EH
24 EH

34 E44

]
= n4,
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which, together with E ≥ 0, yields E44 > 0. Moreover,

rank




E11 E12 E13 E14 0 B12

EH
12 E22 E23 E24 B21 B22

EH
13 EH

23 E33 E34 0 B32

EH
14 EH

24 EH
34 E44 0 0


 = rank

[
Ê11 Ê12 B1

ÊH
12 Ê22 0

]

= µ1 + µ2 = n1 + n2 + n3 + n4.

Then

U =

[
U4

I

]
Ũ1,

and V are the transformation matrices to the form (2.1).

Appendix B. The results in this paper can be generalized to the case that one
includes also derivative feedback. We present the extensions in this appendix.

Theorem 4.1. Consider a pHDAE system of the form (1.9). There exists a
derivative feedback matrix K such that the pair (E + BKBH , J − R) is regular and
E +BKBH ≥ 0 if and only if (2.7) holds.

Proof. Suppose there exists matrix K such that (E + BKBH , J − R) is regular.
Then it follows that

det(s(E +BKBH)− (J −R)) 6= 0, for some s ∈ C,

which together with the condensed form (2.4) gives condition (2.8), i.e. by equivalence
also condition (2.7) holds. Hence, necessity is shown.

To show sufficiency, letK22 ∈ Cn3×n3 be such thatK22 > 0 andE33+B32K22B
H
32 >

0. Taking

K = V

[
0 0
0 K22

]
V H ,

it follows from (2.7) (or equivalently from (2.8)) that (E +BKBH , J −R) is regular
and E +BKBH ≥ 0. Hence, the sufficiency is proved.

We can also combine Theorems 3.1 and 4.1.
Theorem 4.2. Consider a pHDAE system of the form (1.9). There exist feedback

matrices K, FS = −FH
S and FH = FH

H such that the pair (E+BKBH , J+BFSB
H −

(R+BFHBH) is regular and E +BKBH ≥ 0, R+BFHBH ≥ 0 if and only if (2.7)
holds. Moreover, if condition (2.7) holds, then for any integer r satisfying

rank
[
E B

]
− rank(B) ≤ r ≤ rank

[
E B

]
, (4.1)

there exist matrices K and FH = FH
H and FS = 0 such that (E+BKBH , J+BFSB

H−
(R+BFHBH)) is regular, and

rank(E +BKBH) = r, E +BKBH ≥ 0, R+BFHBH ≥ 0.

Proof. Suppose that there exist matrices K, FS = −FH
S , and FH = FH

H such that
(E +BKBH , J +BFSB

H − (R +BFHBH) is regular. Then

det(sE − (J +BFSB
H − (R +BFHBH))) 6= 0, for some s ∈ C,
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from which we obtain condition (2.8), and equivalently (2.7). Hence, the necessity is
shown.

By Corollary 2.3, conditions (2.7) and (4.1) are equivalent to the conditions (2.8)
and

n1 + n4 ≤ r ≤ n1 + n2 + n3 + n4,

respectively. Since E11 > 0, rank(B21) = n2, rank(B32) = n2 and E ≥ 0, there exists

a matrix K =

[
K11 K12

KH
12 K22

]
such that




E11 0 E13

0 E22 E23

EH
13 EH

23 E33


+




0 0
B21 0
0 B32


K




0 0
B21 0
0 B32



H

≥ 0,

rank(




E11 0 E13

0 E22 E23

EH
13 EH

23 E33



+




0 0

B21 0
0 B32



K




0 0

B21 0
0 B32




H

) = r − n4.

Let F22 > 0 be such that

T H
∞ (E33 +B32K22B

H
32)(A33 −B32F22B

H
32)S∞(E33 +B32K22B

H
32)

is nonsingular and set

K = V KV H , FH = V

[
0 0
0 F22

]
V H , FS = 0.

We then have

rank(E +BKBH) = r, E +BKBH ≥ 0, R+BFHBH ≥ 0,

and (E +BKBH , J +BFSB
H − (R+BFHBH)) is regular.

The corresponding results to achieve an index at most one are as follows.
Theorem 4.3. Consider a pHDAE system of the form (1.9). There exists a

matrix K such that the pair (E+BKBH , J −R) is regular and of index at most one,
and E +BKBH ≥ 0 if and only if conditions (2.7) and (2.9) hold.

Proof. By Lemma 2.3, conditions (2.7) and (2.9) are equivalent to

n6 = n1 + n2, rank(E13) = n1.

If the pair (E +BKBH , J −R) is regular and of index at most one for some K, then
with

[
K11 K12

K21 K22

]
= V HKV,

we have condition (2.7) and

rank




E11 0 E13

0 E22 +B21K11B
H
21 E23 +B21K12B

H
32

EH
13 EH

23 +B32K21B
H
21 E33 +B32K22B

H
32


 = rank(E33 +B32K22B

H
32).

(4.2)
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It is obvious that (4.2) implies

E11 = E13(E33 +B32K22B
H
32)

+EH
13,

which together with E11 > 0 gives rank(E13) = n1, i.e., condition (2.9) holds. Hence,
the necessity is shown.

To show the sufficiency, note that E11 > 0, rank(E13) = n1, and B32 is nonsin-
gular, so there exists K22 = KH

22 such that

E33 +B32K22B
H
32 > 0,

and

rank

[
E11 E13

EH
13 E33 +B32K22B

H
32

]
= rank(E33 +B32K22B

H
32) = n3.

Additionally, since B21 is of full row rank, there exist K11, K12 such that

E22 +B21K11B
H
21 = 0, E23 +B21K12B

H
32 = 0.

Taking

K = V

[
K11 K12

KH
21 K22

]
V H ,

we have that

E +BKBH ≥ 0,

and (E +BKBH , J −R) is regular and of index at most one.
Theorem 4.4. Consider a pHDAE system of the form (1.9). There exist matrices

K, FS = −FH
S , and FH = FH

H such that the pair (E + BKBH , J + BFSB
H − (R +

BFHBH) is regular and of index at most one, and E+BKBH ≥ 0, R+BFHBH ≥ 0
if and only if conditions (2.7) and (2.9) hold. Moreover, under conditions (2.7) and
(2.9), for a given integer r, there exist matrices K, FS = −FH

S and FH = FH
H such

that

E +BKBH ≥ 0, R+BFHBH ≥ 0,

(E+BKBH , (J+BFSB
H)−(R+BFHBH)) is regular, (E+BKBH , (J+BFSB

H)−
(R+BFHBH)) has index at most one and rank(E +BKBH) = r if and only if

rank
[
E B

]
− rank(B) ≤ r ≤ rank(T H

∞ ((J −R)S∞(

[
E

BH

]
))
[
E B

]
). (4.3)

Proof. For any K and F with

K = V

[
K11 K12

K21 K22

]
V H , F = V

[
F11 F12

F21 F22

]
V H , (4.4)

it follows from direct calculation that (E + BKBH , J − R + BFBH) is regular and
of index at most one if and only if condition (2.7) holds,

rank




E11 0 E13

0 E22 +B21K11B
H
21 E23 +B21K12B

H
32

EH
13 EH

23 +BH
32K21B

H
21 E33 +B32K22B

H
32


 = rank(E33 +B32K22B

H
32),

(4.5)
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and (E33 + B32K22B
H
32, A33 + B32F22B

H
32) is regular and of index at most one. Ob-

viously, (4.5) implies rank(E13) = n1, i.e., condition (2.9) holds. Hence, necessity
follows.

The sufficiency follows from the sufficiency of Theorem 4.3 with FS = 0 and
FH = 0.

To study the possible rank of E + BKBH , for any K and F of the form (4.4)
with (E+BKBH , J−R+BFBH) being regular and of index at most one, we obtain

n1 + n4 ≤ rank




E11 0 E13

0 E22 +B21K11B
H
21 E23 +B21K12B

H
32

EH
13 EH

23 +BH
32K21B

H
21 E33 +B32K22B

H
32


+ rank(E44)

= rank(E +BKBH)

= rank(E33 +B32K22B
H
32) + rank(E44)

≤ n3 + n4,

which together with Lemma 2.3 gives condition (4.3).
Let r be any integer satisfying the condition (4.3). We can assume without loss

of generality that

E13 =
[ n1 n3 − n1

E
(1)
13 0

]
, B32 =

[ n1 n3 − n1

n1 B
(1)
32 0

n3 − n1 0 B
(4)
32

]
,

where

rank(E
(1)
13 ) = n1, rank(B

(1)
32 ) = n1, rank(B

(4)
32 ) = n3 − n1.

Set

E33 =

[ n1 n3 − n1

n1 E
(1)
33 E

(2)
33

n3 − n1 (E
(2)
33 )H E

(4)
33

]
, A33 =

[ n1 n3 − n1

n1 A
(1)
33 A

(2)
33

n3 − n1 A
(3)
33 A

(4)
33

]
.

Let K11, K12, K
(1)
22 , K

(2)
22 and K

(4)
22 be such that

E22 +B21K11B
H
21 = 0, E23 +B21K12B

H
32 = 0,

E
(1)
33 +B

(1)
32 K

(1)
22 (B

(1)
32 )H = (E

(1)
13 )HE−1

11 E
(1)
13 , E

(2)
32 +B

(1)
32 K

(2)
22 (B

(4)
32 )H = 0,

E
(4)
33 +B

(4)
32 K

(4)
22 (B

(4)
32 )H =

[
Λ 0
0 0

]
,

and

K22 =

[
K

(1)
22 K

(2)
22

(K
(2)
22 )H K

(4)
22

]
,

where Λ ∈ C
(r−n1−n4)×(r−n1−n4), Λ > 0. Furthermore, let F

(4)
22 ∈ C

(n1+n3+n4−r)×(n1+n3+n4−r)

satisfy that

F
(4)
22 > 0, A

(4)
33 −B

(4)
32 F

(4)
22 (B

(4)
32 )H =

[
⋆ ⋆

⋆ Σ

]
,
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where Σ ∈ C(n1+n3+n4−r)×(n1+n3+n4−r) is nonsingular. Take

K = V

[
K11 K12

KH
21 K22

]
V H , FH = V

[
0 0

0 F
(4)
22

]
V H , FS = 0.

We then have that

rank(E +BKBH) = r, E +BKBH ≥ 0, R+BFHBH ≥ 0,

and the pair (E + BKBH , J − (R + BFHBH)) is regular and of index at most one.

The following corollary characterizes the case that the rank of E + BKBH is
maximized.

Corollary 4.5. Consider a pHDAE system of the form (1.9). There exists a
matrix K such that

E +BKBH ≥ 0,

the pair (E +BKBH , J −R) is regular and of index at most one and

rank(E +BKBH) = rank
[
E B

]
= max

K̂∈Cm×m

rank(E +BK̂BH),

if and only if

rank

[
E (J −R)S∞(

[
E

BH

]
) B

]
= n (4.6)

Proof. By the sufficiency proof of Theorem 4.3, there exists a matrix K such that
E + BKBH ≥ 0, the pair (E + BKBH , J − R) is regular and of index at most one
and

rank(E +BKBH) = rank
[
E B

]
= max

K̂∈Cm×m

rank(E +BK̂BH)

if and only if conditions (2.7) and (2.9) hold, and

n3 + n4 = rank
[
E B

]
,

and thus, if and only if

n6 = n1 + n2 = 0,

or equivalently, condition (4.6) holds.
We can also combine regularization, index reduction and stabilization via propor-

tional and derivative output feedback.
Theorem 4.6. Consider a pHDAE system of the form (1.9). There exist feedback

matrices K, FS = −FH
S , FH = FH

H such that the pair (E + BKBH , J + BFSB
H −

(R + BFHBH)) is regular, of index at most one, has all its finite eigenvalues in the
open left half complex plane, and

E +BKBH ≥ 0, R+BFHBH ≥ (4.7)

if and only if conditions (2.7), (2.9), and (3.6) for all purely imaginary s, hold.
Moreover, under these conditions for a given integer r, there exist matrices K, FS =
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−FH
S and FH = FH

H such that the pair (E+BKBH , (J +BFSB
H)− (R+BFHBH))

is regular, of index at most one, has all its finite eigenvalues in the open left half
complex plane, (4.7) holds, and

rank(E +BKBH) = r

if and only if (4.3) holds.
Proof. The necessity of conditions (2.7), (2.9) and (4.3) follow from Theorem 4.4

and the condition (3.6) is a standard condition in linear control [22].
For the sufficiency, for any integer r satisfying (4.3), let K = KH and FH ≥ 0

be chosen as in the sufficiency proof of Theorem 4.4, i.e., such that the pair (E +
BKBH , J − (R +BFHBH)) is regular and of index at most one,

E +BKBH ≥ 0, R +BFHBH ≥ 0, rank(E +BKBH) = r.

Let F̃H ≥ 0 be such that

rank(R +B(FH + F̃H)BH) = rank
[
R +BFHBH B

]
= rank

[
R B

]
.

Note that for all purely imaginary s we have that

rank
[
J − (R +BFHBH)− s(E +BKBH) B

]
= rank

[
J −R− sE B

]
= n,

and it follows from the sufficiency proof of Theorem 3.5 that the pair

(E +BKBH , J −B(FH + F̃H)BH)

has all its finite eigenvalues in the open left half complex plane. Furthermore,

R+B(FH + F̃H)BH = R+BFHBH +BF̃HBH ≥ 0,

and

T∞(E +BKBH) = S∞(E +BKBH),

and by Lemma 3.3 it follows that

T H
∞ (E +BKBH)(J − (R+B(FH + F̃H)BH))S∞(E +BKBH)

= T H
∞ (E +BKBH)(J − (R +BFHBH))S∞(E +BKBH)

−T H
∞ (E +BKBH)(BF̃HBH)S∞(E +BKBH)

is nonsingular. Therefore, the pair (E +BKBH , J −B(FH + F̃H)BH) is of index at
most one.

Remark 1. Consider the condensed form (2.4). Then forK = V

[
K11 K12

KH
12 K22

]
V H

the closed loop system (E + BKBH , J −R) has all its finite eigenvalues in the open
left half complex plane if and only if the pair

[
E33 +B32K22B

H
32 0

0 E44

]
,

[
A33 A34

A43 A44

]
)

has all its finite eigenvalues in the open left half complex plane. So, the stabilization
of the pHDAE system (1.9) by only derivative output feedback cannot be achieved in
general.

21


