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Why is the consideration of risk integral to robotics?
Consider the scenario of a rescue robot designed to nav-
igate through a constrained environment to locate and
rescue victims. Despite limited visibility and a ground that
is potentially difficult to traverse, the robot is required to
assess whether to execute a planned route or to seek an
alternative route. Delays in finding an alternative route
could negatively impact the victim’s well-being while opt-
ing for the planned route could potentially lead to the
robot getting stuck. How should the robot gauge these
competing risks? The issue of risk assessment is not new to
roboticists and control engineers, and in practical applica-
tions, it is usually tackled using heuristics. For instance, the
robot constructs a map of the environment using computer
vision. As this map is uncertain, one may now attempt
to decrease the robot’s risk by tightening the area that
can safely be traversed. This tightening is often based on
past experimental data. However, this experimental data
may not accurately represent real-world disaster scenarios.

Additionally, an overly conservative tightening might lead
the robot to waste time seeking alternate routes, while too
little tightening could place the robot at risk of entrapment.
Consequently, there is a need for a systematic approach to
assessing the risks and rewards associated with different
actions amid uncertainty.

The need for a systematic approach to risk assessment
has only increased in recent years due to the ubiquity of
autonomous systems that alter our day-to-day experiences
and their need for safety, e.g., for self-driving vehicles, mo-
bile service robots, and bipedal robots. These systems are
expected to function safely in unpredictable environments
and interact seamlessly with humans, whose behavior is
notably challenging to forecast. To reason about risk in
such settings, the fields of systems science and control
engineering have a long history and a rich literature
on analyzing and designing systems under uncertainty.
Existing methodologies can be broadly classified into the
three paradigms of worst-case, risk-neutral, and risk-aware

« 1

ar
X

iv
:2

40
3.

18
97

2v
1 

 [
cs

.R
O

] 
 2

7 
M

ar
 2

02
4

mailto:prithvi.akella@gmail.com
mailto:ames@.caltech.edu
mailto:jwb@robotics.caltech.edu
mailto:anushri.dixit@princeton.edu
mailto:reza.ahmadi@gatik.ai
mailto:llindema@usc.edu
mailto:mchapman@ece.utoronto.ca
mailto:pappasg@seas.upenn.edu


approaches as classified in [1]. In the worst-case paradigm,
a system’s ability to remain safe or perform satisfactorily
is judged by examining its most severe safety violation
or worst performance. This paradigm forms the basis of
robust control [2–4] and robust safety analysis [5]. For
instance, if a system is supposed to track a planned
trajectory, the largest discrepancy between the system’s
realized trajectory and the planned trajectory can serve
as a measure of the system’s performance. Contrarily,
in the risk-neutral paradigm, a system’s capacity to stay
safe or perform satisfactorily is evaluated on average or
probabilistically.1 This paradigm is often used in stochastic
control and reinforcement learning [4, 6, 7] as well as in
verification[8]. In the case of trajectory tracking, one would
consider the average discrepancy between the system’s
realized trajectory and the planned trajectory to gauge the
system’s performance when using a risk-neutral approach.
If the system aims to reach a designated target while
avoiding an unsafe region, the probability of the system
accomplishing these goals can be used to assess the sys-
tem’s performance [9]. However, the worst-case paradigm
may result in an overly conservative risk assessment and
impractical solutions, while the risk-neutral paradigm can
not account for harmful but less likely events. We also
note that the developments in the worst-case and the risk-
neutral paradigms were often mathematically motivated
but not practically driven as one was able to derive an-
alytical solutions to the posed problems. The risk-aware
paradigm, on the other hand, lies conceptually in between
and aims to evaluate a system’s performance by giving
attention to system outcomes that do not correspond to
the worst case or the average. Historically, the risk-aware
paradigm has focused on the application of mean-variance
approximations, e.g., for controller design [10–12], which
is derived from the Markowitz model for evaluating the
risk of financial portfolios [13].

A contemporary risk-aware approach that is adopted
in this survey to mitigate rare and detrimental outcomes
employs the use of tail risk measures, a concept borrowed
from financial literature [14]. As such, this survey will
introduce these measures and explain their relevance in
the context of robotic systems. To preface this explanation,
however, we will first provide a deeper overview of the
aforementioned paradigms, including an emphasis on the
limitations of the worst-case and risk-neutral paradigms,
which prompted the rise of risk-aware study.

Limitations of the risk-neutral and worst-case
paradigms Many systems are affected by uncertainties
that can be well-modeled by random noise. For example,
uneven terrain can disturb a robot’s planned trajectory, a

1Note that the probability of an undesirable event can be ex-
pressed as the expected value over an indicator function, making
probabilistic reasoning conceptually similar to average reasoning.

FIGURE 1: Visualization of common tail risk measures.
The tail-risk measures referenced in the article are shown
above, applied to the random variable X with distribution
function µ. Figure adapted from [15].

wind gust can destabilize an aerial vehicle, and smoke can
interfere with perception during an autonomous rescue
mission. However, designing operating rules to optimize
a system’s performance on average need not yield trust-
worthy performance in practice. For instance, consider
an agricultural robot where the source of uncertainty is
tomorrow’s precipitation, a difficult quantity to predict. An
irrigation protocol that regulates soil moisture on average
may be indifferent to variable weather patterns or spatial
variability of farmland, which may lead to reduced crop
yields or wasted water. In another scenario, imagine a
robot autonomously navigating a disaster-stricken area in
search of survivors. The robot must be able to assess risks
in debris-laden zones while taking into account uncertain-
ties derived from sensor and state estimation inaccuracies.
If the robot operates under a worst-case scenario strategy,
it may not find a feasible path through the rubble due
to its aversion to any risk. On the other hand, a risk-
neutral path-planning approach might expose the robot
to unsafe, mission-jeopardizing situations. These examples
are among the many that underline the limitations of the
risk-neutral and worst-case paradigms in the context of
robotic applications. Case studies from our previous works
will be presented later on to further illustrate these points.

The risk-aware paradigm In comparison to the risk-
neutral and worst-case paradigms, the risk-aware ap-
proach has received relatively little attention within the
robotics and autonomous systems fields. However, the
need for this approach became already evident in previ-
ously mentioned examples of autonomous farming and
search-and-rescue operations. For instance, in autonomous
farming, a risk-aware irrigation strategy can account for
spatial variability in soil moisture and potential future
variations in temperature and precipitation. This would
create a balance between maximizing crop production and
conserving water. In the context of autonomous search-
and-rescue, noisy state estimations and sensor data could
be filtered through a tail-risk perspective to generate paths
that are sufficiently distanced from obstacles yet not overly
conservative, allowing for the completion of the rescue
mission within a predetermined time frame. Traditional
risk assessments have been based on a mean-variance
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trade-off or the probability of a harmful event, such as
machine failure or constraint violation. However, vari-
ance measures the variability of a random variable with
respect to the average in any direction, thus limiting a
system’s ability to predict potential harm. To illustrate, in
the search-and-rescue scenario, using variance to evaluate
the robot’s mission completion time wouldn’t be fitting.
Exceeding the average mission completion time poses a
risk of deadline violation and should be avoided, while
faster mission completion does not present a problem.
On the other hand, the probability of constraint violation
provides a rather rudimentary concept of risk, neglecting
details about the violation like its magnitude or severity.
For instance, rather than simply estimating the probability
of the rescue robot getting stuck, it would be more useful
to estimate the "clearance" along the robot’s path before
navigating through it. Moreover, it might be beneficial
for the robot to initially adopt a conservative approach
to avoid mission-ending scenarios and gradually become
more risk-neutral towards the end of the search in order to
maximize the number of successful rescues. These consid-
erations underscore the need for risk-aware planning and
control methodologies that offer intuitive and systematic
ways of dynamically altering the robot’s risk perception.
This has sparked recent research in robotics that employs
tail risk measures, which will be further discussed.

Tail Risk Measures Succinctly, risk measures are func-
tions over scalar-valued random variables designed to
identify characteristics of interest of the random variable
in question [16]. By tail risk measures, we imply that the
risk measures of interest assess the upper right tail of
the distribution of the random variable. Typically, the
random variable indicates a cost so that tail risk measures
capture the risk of incurring a high cost. Figure 1 depicts
a few examples of such tail risk measures, namely, Value-
at-Risk, Conditional-Value-at-Risk, and Entropic-Value-at-
Risk. The Value-at-Risk at level β ∈ (0, 1) corresponds to
the cutoff value for which a fraction β of the outcomes of
the random variable lies to the right of this cutoff value. A
more formal description of these risk measures will follow
in the Section “Tail Risk Measures: Definitions and Nota-
tion.” We focus on these measures though as they provide
a systematic way of assessing the rare and unsafe (costly)
outcomes that must be limited during planning, control,
and verification. For example, consider a robot travers-
ing through an environment with uncertain information
about the obstacles’ positions due to sensor noise. In this
case, we could define a cost random variable by negating
the minimum distance to all obstacles. As such, more
positive, c.f. more costly outcomes, would correspond to
more unsafe behavior as the system is not maintaining
the required distance to the measured obstacle. Then, as
we have uncertain knowledge of the obstacle’s location,
we aim to minimize the tail risk incurred by this random

cost in an effort to realize safe, risk-aware control actions.
This intuitive approach to risk-aware decision selection
can be applied to several facets of an autonomy stack, i.e.
planning, control, and verification, as has recently been
done in both the controls and robotics communities.

Organization As such, this survey serves as an intro-
duction to risk-aware planning, control, and verification in
robotics, employing tail risk measures - an emerging field
in the literature. Our focus areas include:

» A summary of risk measure theory with an emphasis
on tail risk measures in the section "Tail Risk Mea-
sures: Definitions and Notation". We highlight how
these measures offer a consistent and intuitive means
to adjust the system’s risk aversion levels.

» A discussion on the key principles of risk-aware
planning and control, an introduction of the algo-
rithms, and multiple presentations of real-world case
studies such as planning and control in subterranean
environments. These are covered in the sections
"Risk-Aware Planning" and "Risk-Aware Control".

» A review of temporal logics as a mathematical for-
malism for articulating complex robotic system spec-
ifications in the "Verification" section. Additionally,
we explore why it is important to consider the tail
risk of system trajectories evaluated against these
specifications.

» An introduction of a tail-risk method for safety-
critical controller verification in the "Verification"
section. We demonstrate this risk-aware verification
approach’s ability to effectively identify potential
mission issues while validating the probabilistic veri-
fication statements made within the described frame-
work.

» We end the survey with open problems and future
research directions.

Related Work Despite the crucial need for systematic
risk evaluation in robotics applications, recent surveys do
not emphasize risk-aware planning, control, and verifica-
tion [17–19]. For instance, Schwarting, Alonso-Mora, and
Rus examine planning and decision-making methods for
autonomous driving [17], Karpas and Magazzeni discuss
strategies that enable robots to automatically combine
smaller tasks to achieve broader goals [18], and Brunke
et al. outline the interplay between control theory and
reinforcement learning for safety in robotic applications
[19]. However, these works do not focus on risk mea-
sures. Moreover, Hobbs et al. provide a comprehensive
introduction to non-stochastic run-time assurance systems,
such as a system that overrides an existing controller
when an extreme hazard is detected, without an emphasis
on risk measures [20]. Two closely related works to our
survey are Majumdar and Pavone’s [21] and Wang and
Chapman’s [1]. Majumdar and Pavone propose axioms
for risk measures suitable for robots and provide intuitive
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explanations for these axioms. However, their work does
not take the form of a survey and present algorithms for
risk-aware planning, control, and verification [21]. On the
other hand, Wang and Chapman overview historical and
modern research about risk-aware autonomous systems,
but they do not focus on robotics applications, temporal
logics, or certain tail risk measures such as entropic value-
at-risk and total variation distance-based risk measure [1].
Our survey draws inspiration from Majumdar and Pavone
[21] and Wang and Chapman [1] and aims to elucidate
the concept of tail risk measures for the control systems
community and to showcase their utility for planning,
control, and verification of robotic systems. We provide the
much-needed emphasis on these risk measures in robotics,
helping to ensure that the development and application of
autonomous systems remain safe, effective, and mindful
of potential risks. As we move on in this survey, we will
provide more pointers to relevant literature.

TAIL RISK MEASURES: DEFINITIONS AND
NOTATION
To begin, we will define tail-risk measures and some corre-
sponding notation that will be used throughout the article.
Consider a probability space (Ω,F , P), where Ω, F , and P
are the sample space, the σ-algebra over Ω, and the proba-
bility measure over F , respectively. A random variable X :
Ω −→ R denotes the cost of each outcome, and X is the set
of all such random variables defined on Ω. For any random
variable X ∈ X , FX(x) refers to the cumulative distribution
function with inverse F−1

X (β) = inf{x ∈ R|FX(x) ≥ 1− β}.
For any two random variables X, X′ ∈ X , the expression
X d

= X′ denotes that the random variables X, X′ have the
same distribution under P. Similarly, we use X ≤ X′ as a
shorthand notation to indicate that X(ω) ≤ X′(ω) for all
ω ∈ Ω. Finally, U denotes the uniform random variable
between [0, 1].

A risk measure ρ is a function that maps a cost random
variable to a real number, i.e. ρ : X −→ R. Informally, tail
risk measures refer to the behavior of the cost X in the tail
of its distribution. Mathematically, consider the random
variable X ∈ X and the risk-level β ∈ (0, 1). As seen
in [78], we define Xβ to be the tail risk of X such that,

Xβ = F−1
X (1 − β + β U). (1)

In other words, the distribution of the random variable Xβ

is the distribution of X in its β-quantile (or tail) normalized
to sum to 1. It is also clear that as β −→ 0, Xβ −→ ess sup(X).
We are now ready to formally define tail risk measures.

Definition 1 (Tail Risk Measures [78]). For β ∈ (0, 1), a risk
measure ρ is a β-tail risk measure (or simply tail risk measure)
if ρ(X) = ρ(X′) for all X, X′ ∈ X satisfying Xβ

d
= X′

β.

The aforementioned definition is a formal descrip-
tion of tail-risk measures, three of which have fea-

tured more prominently in recent literature — Value-
at-Risk, Conditional-Value-at-Risk, and Entropic-Value-at-
Risk. Their definitions will follow.

Value-at-Risk
Chance constraints can be reformulated by a commonly
used risk measure called the Value-at-Risk (VaR). For a
given confidence level β ∈ (0, 1), VaRβ denotes the β-
quantile value of the cost variable X and is defined as,

VaRβ(X) := inf{z ∈ R | FX(z) ≥ 1 − β}.

Therefore, VaRβ(X) = F−1
X (β). It follows that VaRβ(X) ≤

0 =⇒ P(X ≤ 0) ≥ 1 − β.

Conditional Value-at-Risk
The Conditional Value-at-Risk, CVaRβ, measures the ex-
pected loss in the β-tail of the random variable X. Formally,
for some β ∈ (0, 1] CVaRβ is defined as follows per [14]:

CVaRβ(X) := inf
z∈R

E

[
z +

(X − z)+

β

]
(2)

where we use the notation (X − z)+ = max(0, X − z).
A value of β ≃ 1 corresponds to a risk-neutral case. A
value of β → 0 is rather a risk-averse case2. Importantly,
CVaR is a coherent risk measure [79] (see the text below),
prompting its widespread use in the recent literature.
Furthermore, CVaR is a loose upper bound on VaR, i.e.,

VaRβ(X) ≤ CVaRβ(X) ≤ 0 =⇒ P(X ≤ 0) ≥ 1 − β. (3)

Entropic Value-at-Risk
The Entropic Value-at-Risk, EVaRβ, derived using the Cher-
noff inequality for the random variable in question, is the
tightest upper bound for VaR and CVaR. It was shown
in [80] that EVaRβ and CVaRβ are equal only if there are
no losses (X → −∞) below the VaRβ threshold. For some
β ∈ (0, 1],

EVaRβ(X) := inf
z>0

[
z−1 ln

E[eXz]

β

]
. (4)

Similar to CVaRβ, for EVaRβ, the limit β → 1 corresponds
to a risk-neutral case; whereas, β → 0 corresponds to a
risk-averse case. In fact, it was demonstrated in [81, Propo-
sition 3.2] that limβ→0 EVaRβ(X) = ess sup(X). Finally,
EVaR is also a coherent risk measure and is an upper
bound for both VaR and CVaR:

VaRβ(X) ≤ CVaRβ(X) ≤ EVaRβ(X) ≤ 0,

=⇒ P(X ≤ 0) ≥ 1 − β.

2Another, more intuitive, way to think the widely used CVaR
metric is that it is the expectation of the random variable X con-
ditioned on X ≥ VaRβ(X), i.e., CVaRβ(X) = E[X|X ≥ VaRβ(X)].
For example, the 5% CVaR risk of a portfolio is equivalent to the
expected (mean) return on a portfolio in the worst 5% of scenarios
over a specified time horizon (in this definition we assume that
X is larger for worse returns).
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Estimation Module

Perception Module

Behavior
Planning [22–40]

Motion Planning
[41–53]

Risk-Aware Planning

Control Input Risk-Aware Control [54–59]

Risk-Aware Verification & Validation
[15, 60–77]

FIGURE 2: An overview of a typical (risk-aware) planning and verification pipeline in an autonomy stack.

Total Variation Distance-Based Risk Measure
Oftentimes the exact distribution of the random variable
X to be analyzed is unknown. However, a family of distri-
butions that includes the distribution of X may be known.
Termed the ambiguity set, if we denote the probability
measure for X to be P, we define this set QTVD as follows:

QTVD :=
{

Q : F → [0, 1] |

dTV(P, Q) :=
1
2
∥P − Q∥1 ≤ 1 − β

}
.

We can choose actions by analyzing their cost over the
distributions in this set. Formally, this results in a total vari-
ation distance (TVD) risk-measure termed the total variation
distance (TVD) [82], defined as follows:

TVDβ(X) := sup
Q∈QTVD

EQ(X) = (1 − β) sup
x∈Ω

x + β CVaRβ(X),

where EQ(·) is the expected value w.r.t. the measure Q. It
follows from the definition of TVD,

VaRβ(X) ≤ CVaRβ(X) ≤ TVDβ(X) ≤ 0,

=⇒ P(X ≤ 0) ≥ 1 − β.

Coherent Risk Measures
Coherent risk measures are a prominent class of tail risk
measures and are well-regarded for their robust mathe-
matical properties and their inherent intuitiveness for risk
analysis. Introduced by Artzner et al. [79] in the context
of financial risk management, coherent risk measures sat-
isfy four axiomatic properties: monotonicity, subadditivity,
positive homogeneity, and translational invariance. Mono-
tonicity indicates that adding a less risky outcome to a
portfolio should not increase its risk. Subadditivity implies

that diversifying a risk portfolio should not increase its
overall risk. Positive homogeneity signifies that scaling all
outcomes in a portfolio should proportionally scale its risk.
Translational invariance denotes that adding a risk-free as-
set to a portfolio should decrease its risk correspondingly.
Coherent risk measures offer a rich theoretical foundation
to quantify and manage risk systematically. They enable us
to capture extreme, but rare, high-consequence events and
provide a mechanism to evaluate and compare different
risk scenarios, making them particularly valuable for risk-
aware planning, control, and verification in robotics. We
are now ready to describe coherent risk measures.

Definition 2 (Coherent Risk Measure). We call the risk
measure ρ : X → R, a coherent risk measure, if it satisfies
the following conditions

» Subadditivity: ρ(X + X′) ≤ ρ(X) + ρ(X′), for all
X, X′ ∈ X ;

» Monotonicity: If X ≤ X′ then ρ(X) ≤ ρ(X′) for all
X, X′ ∈ X ;

» Translational Invariance: ρ(X + c) = ρ(X) + c for all
X ∈ X and c ∈ R;

» Positive Homogeneity: ρ(βX) = βρ(X) for all X ∈ X
and β ≥ 0.

Note that the properties of subadditivity and positive
homogeneity together imply that coherent risk measures
are also convex. CVaR, EVaR, and TVD have been recog-
nized as coherent risk measures. Conversely, VaR does not
qualify as a coherent risk measure, as it does not satisfy
the sub-additivity property. This fact limits its utility in
situations where a joint assessment of risks is required,
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which is often the case in risk-aware robotic planning,
control, and verification. While VaR is not a coherent risk
measure, each of the measures defined above has its place
in risk evaluation, depending on the specific requirements
and constraints of the task at hand.

Coherent risk measures provide a snapshot of potential
perils based on current conditions. These measures fall
short when applied to dynamic systems, such as those
common in robotics, where risks and conditions vary
with time. dynamic coherent risk measures extend beyond
the static approach, taking into account the time-varying
nature of risk. They are particularly adept at characterizing
the evolving risk landscape in dynamic environments.
Dynamic risk measures continuously monitor and update
risk assessments in response to changes in the system
and its environment. This capability to adapt and provide
a comprehensive understanding of risk in a fluctuating
context aligns well with the realities of robotic operations
in unstructured environments. To define these measures,
we must first extend the traditional probability spaces
mentioned previously.

Consider a probability space (Ω,F , P), a filtration F0 ⊂
· · · FN ⊂ F , and an adapted sequence of random vari-
ables Xt, t = 0, . . . , N, where N ∈ N≥0 ∪ {∞}. For t =

0, . . . , N, we further define the spaces Xt = Lp(Ω,Ft, P),
p ∈ [1, ∞). Here Lp is the set of all p-bounded random
variables, i.e. Lp(Ω,Ft, P) = {X : Ω → R | EP[|X|p] < ∞}.
Furthermore, let Xt:N = Xt × · · · × XN and X = X0 ×
X1 × · · · . We assume that the sequence X ∈ X is almost
surely bounded (with exceptions having probability zero),
i.e., maxt ess sup |Xt(ω)| < ∞.

To describe how one can evaluate the risk of sub-
sequence Xt, . . . , XN from the perspective of stage t, we
require the following definitions.

Definition 3 (Conditional Risk Measure). A mapping ρt:N :
Xt:N → Xt, where 0 ≤ t ≤ N, is called a conditional risk
measure, if it has the following monoticity property:

ρt:N(X) ≤ ρt:N(X ′), ∀X , ∀X ′ ∈ Xt:N such that X ⪯ X ′.

Definition 4 (Dynamic Risk Measure). A dynamic risk
measure is a sequence of conditional risk measures ρt:N :
Xt:N → Xt, t = 0, . . . , N.

A key attribute of dynamic risk measures is their tempo-
ral consistency [83, Definition 3]: if two scenarios X and X′

are identical for a time interval [τ, θ], and if X is evaluated
to be as favorable as X′ at some future time point θ, then it
stands to reason that X should not be viewed as more risky
than X′ at the earlier time point τ. This principle ensures
that the risk assessment remains coherent and consistent
across different points in time. The definition of a dynamic
coherent risk measure [84, p. 298] then follows from its

static counterpart.

Definition 5 (Dynamic Coherent Risk Measure). We call
the one-step conditional risk measures ρt : Xt+1 → Xt,
t = 1, . . . , N − 1 a coherent risk measure if it satisfies the
following conditions

» Convexity: ρt(X + (1 − λ)X′) ≤ λρt(X) + (1 −
λ)ρt(X′), for all λ ∈ (0, 1) and all X, X′ ∈ Xt+1;

» Monotonicity: If X ≤ X′ then ρt(X) ≤ ρt(X′) for all
X, X′ ∈ Xt+1;

» Translational Invariance: ρt(X + X′) = X + ρt(X′)
for all X ∈ Xt and X′ ∈ Xt+1;

» Positive Homogeneity: ρt(βX) = βρt(X) for all X ∈
Xt+1 and β ≥ 0.

A BRIEF INTRODUCTION TO TAIL RISK
MEASURES IN ROBOTICS
A risk measure ρ maps a random variable X to a real
number that indicates the risk associated with X. The
random variable X can be used in many robotic contexts
where a dynamical system produces random trajectories.
To preface the following exposition, consider a (perhaps)
nonlinear discrete-time control system at time t with state
x(t) ∈ X ⊆ Rn, input u(t) ∈ U , and system disturbances
d(t) ∼ ξ(x, u, t) where ξ(x, u, t) is a (perhaps) state, input,
and time-dependent probability distribution over Rn:

x(t + 1) = f (x(t), u(t), d(t)). (5)

Given a feedback controller U : X → U , we can construct
a closed-loop, stochastically evolving dynamical system.
From a specific initial condition x0 ∈ X , we denote via
Σ(x0) the set of random trajectories x realized by this
closed-loop system, i.e.

a sample of Σ(x0) is x ≜ {x0 ≡ x(0), x(1), . . . }, (6a)

where time update between x(t+ 1), x(t) is provided in (5).
To analyze the tail risk of these trajectories, we require
a mapping from trajectory samples x to the real line.
Denoting the space of possible trajectories as SX , define a
cost function

C : SX → R.

The function C may denote the inverse distance of a
robot’s trajectory to an obstacle and thereby encode the
system’s robustness to a collision. These cost functions
can be constructed from principled approaches when the
system’s desired behavior is expressed as a temporal logic
specification– see Sidebars 3 and 4. The evaluation of cost
C over random system trajectories, i.e., X = C(Σ(x0)),
is likewise a real-valued random variable. For robotic
planning, control, and verification, one can then minimize
a risk cost measure, ρ(C(X)), or consider using risk as
constraint–ρ(C(X)) ≤ r for a risk threshold r.
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RISK-AWARE PLANNING & CONTROL
The robotic behavior, motion planning, and control prob-
lems focus on designing algorithms that allow a robot to
interact intelligently and safely with its surroundings. This
complex process involves deciding on possible actions,
constructing trajectories that a robot can take to achieve
specific high-level goals, e.g., safely navigating through
unstructured environments, and controlling the instanta-
neous robot motions to track the trajectory. Behavior plan-
ning concerns the higher-level decision-making needed to
achieve higher-level robot objectives, while motion plan-
ning plans the details of robot movement, determining
how a robot should move from one location to another
while avoiding obstacles, and factoring in the robot’s
kinematics and dynamics. The control level manages the
details of motion execution by continually computing the
system control inputs that minimize tracking error while
accounting for uncertainty and unexpected events.

The process of designing robot plans and controls
should critically consider potential risks and their overall
system implications. These risks include physical risks to
humans close to a robot as well as risks to the robot
itself due to its unpredictable environment and imperfect
robot sensing and perception systems. Notions of risk are
particularly important in high-stakes robot tasks, such as
search and rescue, or exploration of hazardous sites. To
properly manage these risks, this paper advocates for the
use of tail risk measures. Importantly, tail risk measures
focus on more extreme but rarer events, and thus provide
a systematic and principled approach to quantifying and
managing risk in robotics. Integrating tail risk measures
into robotic planning and control modules can lead to more
robust and safer robot operation, effectively balancing
performance and safety under uncertainty.

Historical Remark on Exponential Utility: Risk-aware control
has been in development for at least fifty years. The earliest
contributions concern the exponential utility measure (i.e.,
entropic risk measure):

ρEU,θ(X) := −2
θ log E

[
exp(−θ

2 X)
]

, (7)

where θ ̸= 0 is a risk parameter and X is a nonnegative
random variable, which can be interpreted as a mean-
variance approximation [85]. When θ < 0, the robotic
system is risk averse, while the robot will exhibit more risk
tolerant behavior when θ > 0. When θ = 0, the system is
risk neutral. Notably, the exponential utility is not a tail-
risk measure. To our knowledge, the first paper in the area
of risk-aware control was a 1972 study about finite-state
Markov decision processes by Howard and Matheson,
in which performance was assessed by an exponential
utility criterion [10]. The authors took inspiration from
game theory [86]. One year later, Jacobson investigated
the exponential utility criterion in the classical linear-

quadratic setting (linear dynamics, quadratic costs, Eu-
clidean spaces, and additive Gaussian noise) [11]. Whittle
developed numerous contributions regarding risk-aware
control in the linear-quadratic setting using the exponential
utility measure, including the case of partially observable
systems [85, 87]. While exponential utility continues to
be investigated (e.g., see [88–90]), recent attention focuses
on different types of risk-aware performance and safety
criteria, motivating this survey on tail risk.

Risk-Aware Behavior Planning
While behavior planning techniques rely on various math-
ematical frameworks, this section will focus on the popular
Markov Decision Processes (MDPs), which are widely
utilized for planning under uncertainty, such as in rein-
forcement learning. An MDP is a quadruple,

M = (S , Act, T, κ0)

where S = {s1, . . . , s|S|} represents the states of the au-
tonomous agent(s) and the world model, a set of actions
Act = {α1, . . . , α|Act|} available to the agent, a transition
function T(sj|si, α) defining the likelihood of transitioning
to state sj from state si when taking action α ∈ Act, and an
initial distribution κ0 over the states s ∈ S . The transition
function and initial state distribution must satisfy the
following criteria:

{
∑s∈S T(s|si, α) = 1, ∀ si ∈ S , ∀ α ∈ Act,

∑s∈S κ0(s) = 1.
(8)

A finite Markov Decision Process has finite state and action
spaces. Finally, a policy π maps states to actions, i.e. π :
S → Act.

Then broadly speaking, risk-aware behavior planning
can be approached in one of two ways. The first method
aims to identify an optimal risk-aware policy. Specifi-
cally, consider the robot as a stochastic system, where
the state at time instance t is represented by st and the
action taken is denoted by at. Policies π are defined
as a sequence of actions based on the state history, i.e.
π : (s0, a0, . . . , st−1, at−1, st) 7→ at. Given that the risk
associated with each state-action pair (st, αt) is defined as
a random variable c(st, αt), the nominal goal of risk-aware
policy development is to find a policy that optimizes for
this risk measure. In the context of coherent risk measures,
the optimal policy, π∗, minimizes the tail risk measure ρ

as follows:
π∗ = arg min

π
ρ(c(st, αt)), (9)

where αt = π(s0, α0, . . . , st−1, αt−1, st), which is not neces-
sarily a Markov (memoryless) policy. In a robotic system,
st could denote the robot’s state (position, velocity, etc.), αt
could be the applied control commands, and cost function
c(st, αt) could quantify an undesirable outcome such as
risk of collision or deviation from a target path. The second
method defines the optimal policy as that which selects the
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optimal action α∗t at every state st. This optimal action is
defined as the one that minimizes the tail risk measure ρ

applied to the cost random variable at that state st:

α∗t = arg min
αt

ρ(c(st, αt)) (10)

Both of these formulations aim to minimize risk, not only
considering average-case scenarios but also potential rare,
adverse events captured by the risk measure ρ.

The Discounted MDP Problem
The risk-aware policy identification problem, Equation (9),
considers sequences of actions, rather than a single action.
For this purpose, define a finite sequence of risk measures
{ρt}T

t=0 and a similar sequence of cost functions {ct}T
t=0.

The concept of a “discounted MDP" emerges here,
which seeks to find a policy that minimizes the total risk
over sequences of actions, taking into account a discount
factor. The discount factor, γ ∈ [0, 1], decreases the in-
fluence of future costs and risks in the decision-making
process, implying that immediate risks and costs are given
more weight than future ones. We define the finite-time
discounted cost

Jγ(κ0, π) = ρ0,T(c0, γc1, . . . , γTcT), (11)

where

ρ0,t(c0, γc1, . . . , γtct) = ρ0

(
c0 + ρ1

(
γc1 + ρ2(γ

2c2 + · · ·

+ ρt−1

(
γt−1ct−1 + ρt(γ

tct)
)
· · · )

))
.

Then the optimal policy selection problem is to identify

π∗ ∈ argmin
π

Jγ(κ0, π)

subject to Dγ(κ0, π) ⪯ β (12)

where Dγ(k0, π) denotes a vector of discounted cost func-
tionals, such as J in (11) which include both risk measures
and cost functions. For the infinite-horizon case, the cost
functional definition changes slightly as follows:

Jγ(κ0, π) = lim
T→∞

ρ0,T(c0, γc1, . . . , γTcT). (13)

Similarly, the vector of constraint functionals Dγ(k0, π) can
be finite or infinite horizon as well. For the infinite horizon
case, if the cost functions c and component discounted cost
functionals di ∀ i = 1, 2, . . . , nc (the components of D) are
non-negative and upper-bounded, and the discount factor
γ ∈ (0, 1), then for an initial condition κ0, and a policy
π, we infer from [83, Theorem 3] that both Jγ(κ0, π) and
di

γ(κ0, π) are well-defined (bounded). For the finite horizon
case, a solution always exists.

Prior Work on Discounted MDPs: In an early work in this
vein, the authors of [83] presented techniques for incorpo-
rating this measure into dynamic programming. This work
resulted in a wave of new work evaluating risk measures
in dynamic programming problems [21–24, 91]. E.g., in

[25, 26] the authors identified locally optimal solutions
via gradient descent, to MDP problems with CVaR con-
straints and total expected costs. Notably, [25] provides a
convergence guarantee whereas [26] does not. The authors
of [27, 28] extended these prior notions by developing
sample-based saddle point algorithms to identify policies
for MDPs whose cost is a coherent risk measure, though
not specifically CVaR. Other relevant works include [29–
32].

One question posed by the authors in [33] has caused a
renewal of work in this vein. Specifically, the authors show
that most risk-level dynamic programs cannot guarantee
the recovery of a globally optimal value function despite
discretized state space. To partially address that concern,
in [34, 40] the authors generate optimal risk-aware poli-
cies for MDPs with dynamic coherent risk objectives and
constraints. By phrasing policy generation as a difference
convex program, solutions can also be rapidly identified.
Despite these advances, the field of risk-aware discounted
MDPs still holds numerous avenues for future exploration.
New algorithms and techniques that can handle an expan-
sive range of coherent risk measures and can effectively
manage constraints in MDPs are needed.

The Un-discounted MDP Problem
When the discount factor γ is set to one, the discounted
MDP problem transforms into an undiscounted (con-
strained) Markov Decision Process (MDP) problem, also
referred to as a total cost/reward problem. Such problems
can span both finite and infinite time horizons. However,
it is worth noting that discovering solutions for risk-
aware total cost MDPs is often more elusive compared
to their discounted equivalents. This complexity primarily
arises because the consideration of total costs requires
a comprehensive understanding of the entire trajectory
of states, as opposed to a myopic focus on immediate
outcomes. To guarantee the existence of solutions, it of-
ten becomes necessary to consider a specific subclass of
finite state MDPs, referred to as ’transient MDPs’ in [35].
These MDPs encompass a distinctive cost-free goal state,
or a ’termination’ state sg ∈ S . The goal state transition
probability T(sg | sg , α) is 1, and the cost function c(sg , α)

is 0, for all actions α ∈ Act (see Figure 3). The problem can
readily be extended to multiple goal states: Sg ⊂ S .

Several significant methodologies for solving such
MDPs have been proposed. For instance, the worst-case
CVaR Stochastic Shortest Path (SSP) planning approach
[36] uses dynamic programming to find a solution. The
authors of [35] proposed to solve a total cost undiscounted
MDPs featuring static CVaR measures via the use of a
surrogate MDP, They demonstrated that the resolution of
this surrogate approximates the optimal policy with an
accuracy that can be arbitrarily close to the true solution.
These groundbreaking strides lay a robust framework for
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future explorations and refinement of techniques that can
effectively navigate the intricacies of transient MDPs and
total cost/reward problems. Recently, a novel approach
was proposed in [37], which applies to all coherent risk
measures, a significant expansion of the problem’s scope.
The authors demonstrate the existence of optimal, sta-
tionary, Markovian policies and derive them through a
specially formulated Bellman equation. Furthermore, they
introduce an optimization-based computational technique,
rooted in difference convex programs (DCPs), to determine
the associated value functions and the risk-averse policies.

si

sg sj

T(sg | sg , α) = 1

FIGURE 3: The transition graph of a transient MDP. The
goal state sg is cost-free and absorbing.

The POMDP Problem
Partially observable Markov Decision Processes (POMDPs)
offer a valuable framework for studying decision-making
under uncertainty, particularly when states of the agent
or environment are not directly observable [92, 93]. While
POMDPs can be difficult to design and solve, significant
strides have been made in addressing coherent risk mea-
sure objectives. For instance, [38] explored POMDPs with
coherent risk measure objectives. However, while their
noteworthy theoretical contributions fell short of providing
a computational method for designing policies applicable
to general coherent risk measures. Ahmadi et al. [39] aimed
to address this gap by proposing a method for finding
finite-state controllers for POMDPs with objectives defined
in terms of coherent risk measures. Their novel approach
took advantage of convex optimization techniques, show-
casing the potential of mathematical optimization in policy
design. Nevertheless, their method has its limitations: it
can only be applied when the risk transition mapping is
affine in the policy.

Recognizing this limitation, Ahmadi et al.[40] extended
their prior work [39] to incorporate a broader set of coher-
ent risk measures. They proposed an innovative approach
bounded policy iteration method that identifies finite-state
risk-averse policies. This methodology breaks the problem
down into manageable pieces, tackling convex optimiza-
tion problems at each policy iteration step. This approach
substantially ameliorates the computational tractability of
synthesizing risk-averse policies for POMDPs. By itera-
tively solving these convex optimization problems, the

policy synthesis process becomes markedly more feasible.
However, the methodology outlined in [40] has its

limitations. One notable constraint is that the technique can
currently only be applied to problems involving hundreds
of states due to the computational limitations inherent
to convex optimization. Despite existing limitations, the
exploration of POMDPs in the context of coherent risk
measures presents a promising field of study. As our un-
derstanding deepens and computational methods evolve,
we can anticipate the development of more pragmatic
solutions for planning under uncertainty under a broader
range of coherent risk measures.

Risk-Aware Motion Planning and Control
The behavior planning layer of a hierarchical control sys-
tem generates higher-level strategies for mission satisfac-
tion. These strategies are then guided and tracked by
the motion planning and control layers, accounting for
the robot’s kinematic constraints and control capabilities.
Optimization-based motion planning methods are increas-
ingly popular because they provide optimized system be-
haviors that respect the system’s dynamics, while readily
incorporating state and control constraints. Critically, one
must account for sudden system changes or disturbances
to ensure system safety. Risk-awareness methods can be
integrated into optimal planning control problems.

Our risk-aware motion planning review considers
discrete-time controlled stochastic systems, with the form:

x(t + 1) = f (x(t), u(t), d(t)). (14)

Here, x(t) ∈ Rnx and u(t) ∈ Rnu are the system state
and controls at time t, respectively. The system is af-
fected by a stochastic process noise d(t) ∈ Rnd and
f : Rnx ×Rnu ×Rnd → Rnx . An optimization-based planner
seeks to minimize a system cost J(x, u) ∈ R for initial
condition x(0) = x0 at time t = 0. The optimal controller
U = [u(0), . . . , u(N − 1)] is the solution to the following
optimization problem:

J∗(x(0)) = min
U

ρ

( N−1

∑
t=0

J(x(t), u(t))
)

,

s.t. x(t + 1) = f (x(t), u(t), d(t)),

x(0) = x0, ∀t ∈ {0, . . . N − 1}

Risk-Aware MPC
Model Predictive Control (MPC) applies the finite-horizon
controller (18) in a receding-horizon fashion. Uncertainty
can arise for many reasons. Uncertainty in the robot’s dy-
namics model causes the true system motion to differ from
the predicted one. Such effects are typically accounted for
via process noise, d(t). Sensor noise and imprecise robot
localization or estimation of environment states are other
common sources of uncertainty. There are many ways to
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account for these uncertainties in an MPC framework.
For example, Robust MPC accounts for worst-case dis-
turbances in a set of bounded uncertainties [94]. Robust
approaches are often too conservative because they focus
on worst-case events. Conversely, stochastic MPC [95] only
accounts for the average realization of the cost while
respecting a bound on the probability of violating the state
and control constraints, see Sidebar 1. The resulting policy,
which is often too optimistic, minimizes the MPC objective
in expectation instead of usefully accounting for events in
the tail of the uncertainty distribution.

Risk-aware MPC optimizes risk-averse behavioral poli-
cies: they are not as conservative as in the robust case.
But since they account for “risky” outcomes in the tail
of the uncertainty distribution, they perform better in
practice. In [41], the authors provide an MPC scheme for a
discrete-time dynamical system with process noise whose
objective was a Conditional Value-at-Risk (CVaR) measure.
They further provided new Lyapunov conditions for risk-
sensitive exponential stability. In [42], the authors devised
an MPC scheme that expressed a distributionally-robust
chance constraint along with a risk-aware cost in terms of
a CVaR reformulation. Optimal control using distribution-
ally robust CVaR constraints with second-order moment
ambiguity sets is posed as a semidefinite program in [43].
A tree-based approach for MPC that enumerates all possi-
ble extreme disturbance signals and searches for feedback
policies that account for a tradeoff between robustness and
performance through CVaR metrics was proposed in [44].
In [45], the authors considered multistage risk-averse and
risk-constrained optimal control for general coherent risk
measures with conic representations.

Data-driven MPC that uses samples from the uncer-
tainty distribution is becoming increasingly popular. Risk-
aware MPC approaches provide the required robustness
to account for the gap between enforcing the sample-
based chance constraints for the empirical distribution
and the true chance constraint for the actual uncertainty
distribution. In [46, 47] the authors propose a distribu-
tionally robust data-enabled predictive control (DeePC)
algorithm, that uses finite samples of an unknown system
to make trajectory predictions. Instead of learning the
system dynamics model, the authors propose an equivalent
formulation using these data-driven trajectory predictions
that enjoys strong out-of-sample guarantees using Wasser-
stein distributionally robust CVaR constraints. Reference
[48] considers a learning MPC framework whose infinite
horizon, CVaR-constrained, optimal control solution is ap-
proximated iteratively given a finite number of safe states
and uncertainty samples. Through this iterative method,
the authors construct a data-driven terminal set for dis-
tributionally robust CVaR-constrained iterative MPC with
safety and feasibility guarantees.

MPC is also useful for obstacle avoidance in motion

planning tasks. Risk-aware MPC accounts for varied ob-
stacle behaviors and sensor and process noise not limited
to Gaussian distributions. The MPC scheme in [49] avoids
moving obstacles using a CVaR risk metric. Similar results
were obtained in [50] on the Entropic Value-at-Risk (EVaR)
metric for obstacle avoidance with additional guarantees of
recursive feasibility and finite-time task completion while
following a set of waypoints. In [51], these results were
extended to general coherent risk measures for systems
with process noise to obtain a disturbance feedback policy.
The authors propose various constraint-tightening tech-
niques to make the risk-aware obstacle avoidance MPC
computationally tractable for motion planning. A risk-
constrained MPC formulation was also studied in [52, 53]
wherein the authors computed a risk map for traversing
over rough terrain using CVaR. They incorporated this
CVaR terrain map into MPC constraints to account for
obstacles and terrain hazards.

Sidebar 1 (Model Predictive Control with Uncertainty).
Consider a linear, discrete-time system given by

x(t + 1) = Ax(t) + Bu(t) + Dd(t) (16)

where x(t) ∈ Rnx and u(t) ∈ Rnu are the system state and
controls at time t, respectively. The system is affected by a
stochastic, additive, process noise d(t) ∈ Rnd .
Consider rx state constraints of the form

X := {x ∈ Rnx |Fxx ≤ gx}, Fx ∈ Rrx×nx , gx ∈ Rrx .

We also assume ru control constraints having the form

U := {u ∈ Rnu |Fuu ≤ gu}, Fu ∈ Rru×nx , gu ∈ Rru .

The goal is to steer the system to a set

XF := {x ∈ Rnx |Ff x ≤ gf }, Ff ∈ Rrf ×nx , gx ∈ Rrf ,

while minimizing the control effort and deviation from the
desired trajectory, i.e., we want to minimize the following cost:

J(x, u) := xTQx + uTRu,

where Q ∈ Rnx×nx and R ∈ Rnu×nu are weights on the
state and control costs. Model Predictive Control (MPC)
provides an optimization-based framework to compute the best
N-step control input while satisfying the state and control
constraints. The MPC optimization is given by,

J∗t (x(t)) = min
Ut

E
[
xT

t+N|tPxt+N|t+ (17a)

t+N−1

∑
k=t

(
xT

k|tQxk|t + uT
k|tRuk|t

)]
(17b)

s.t. xk+1|t = Axk|t + Buk|t + Ddk|t, (17c)

Prob(xk|t ̸∈ X ) ≤ β, uk|t ∈ U , (17d)

Prob(xt+N|t ̸∈ XF) ≤ β (17e)

xt|t = x(t) ∀k ∈ {t, . . . t + N − 1},
(17f)

10 »



where, xk|t is the state at time k as predicted at the time t
while starting from the current state xt|t = x(t) and β is the
user chosen risk level. Uncertainty is propagated through the
states as,

xk+1|t = Akxt|t +
k

∑
i=t

(
A(k−i)Bui|t + A(k−i)Ddi|t

)
.

If the uncertainty is i.i.d Gaussian with d(t) ∼ N (0, Σ),
the states x(t) are also Gaussian xk+1|t ∼ N

(
x̂k|t, Σk|t

)

where, x̂k|t = Akxt|t + ∑k
i=t A(k−i)Bui|t and Σk|t =

∑k
i=t DTA(k−i)T

ΣA(k−i)D (the family of normal distributions
is closed under linear transformations). Hence, we can rewrite
the above uncertain MPC optimization as the following deter-
ministic quadratic program,

J∗t (x(t)) = min
Ut

E
[
xT

t+N|tPxt+N|t+

t+N−1

∑
k=t

(
xT

k|tQxk|t + uT
k|tRuk|t

)]

s.t. xk+1|t = Axk|t + Buk|t + Ddk|t,

Fxx̂k|t + FxΦ−1(1 − β)Σk|t ≤ gx,

Fuuk|t ≤ gu,

Ff x̂t+N|t + Ff Φ−1(1 − β)Σt+N|t ≤ gf

xt|t = x(t) ∀k ∈ {t, . . . t + N − 1}.

However, if the uncertainty distribution is non-Gaussian,
the uncertain MPC (18) is not easily reformulated into a
convex optimization program. In this case, must sample the
uncertainty distribution and reformulate the MPC optimiza-
tion as a much more computationally expensive mixed-integer
program. Many tail risk measures such as CVaR, EVaR,
TVD, etc, provide intuitive convex, inner approximations of
chance constraints regardless of the uncertainty distribution.
Hence, we propose risk-aware MPC formulations not only
better account for uncertainty but also provide an efficient
convex reformulation without making assumptions about the
nature of the uncertainty. The resulting deterministic, risk-
aware MPC formulation is given by,

J∗t (x(t)) = min
Ut

ρ
[
xT

t+N|tPxt+N|t+

t+N−1

∑
k=t

(
xT

k|tQxk|t + uT
k|tRuk|t

)]

s.t. xk+1|t = Axk|t + Buk|t + Ddk|t,

ρβ(Fxxk|t − gx) ≤ 0, uk|t ∈ U ,

ρβ(Ff xt+N|t − gf ) ≤ 0

xt|t = x(t) ∀k ∈ {t, . . . t + N − 1}.

Risk-Aware Safety-Critical Control
The design of the feedback control layer also benefits from
a risk-aware approach due to system uncertainties and
the potential for adverse outcomes in real-world dynamic

systems. Control inputs deemed optimal under a deter-
ministic or risk-neutral framework might carry significant
risks due to unpredictability in the system’s response, en-
vironmental factors, or other variables. Traditional control
design methods may fail to consider these risks, potentially
resulting in strategies that are vulnerable to unexpected
events. While robust controllers target worst-case perfor-
mance enhancement in [3], they can be overly conservative
under unlikely scenarios at the expense of sub-optimal per-
formance under more common circumstances. Risk-aware
control system design methodologies can strike a balance
between worst-case and typical operating conditions. The
resulting systems are not only resilient under extreme
circumstances but also optimized for high performance
during routine operations. Risk-aware control design thus
enhances system robustness by offering a broader perfor-
mance perspective, effectively bridging the gap between
robustness under worst-case scenarios and optimization
under nominal performance conditions.

Safety-critical autonomous systems, such as those found
in aerospace and human-robot applications, must account
for risk. These risks are often associated with the un-
certainty of modeling intricate nonlinear dynamics, e.g.
bipedal robots [96], and/or sensing extreme unstructured
environments, e.g. subterranean or extraterrestrial explo-
ration [97]. Safety is often formulated in terms of set-
theoric properties of dynamical systems [98], e.g., reacha-
bility and invariance. Safety verification then involves en-
suring that system solutions stay within a predefined safe
set or, conversely, steer clear of a predetermined unsafe set.
A common technique for this is to calculate the reachable
set of a system under disturbances and controls [8, 99, 100].
Yet, for intricate, high-dimensional systems, these methods
may be impractical or excessively conservative.

Historically, alternative methods for assessing reacha-
bility trace back to Nagumo’s seminal research [101] on the
set invariance of ordinary differential equations (ODEs).
This work was later expanded to include ODEs with inputs
by Aubin and others, under the framework of viability the-
ory [102]. The rise of interest in hybrid systems in the 2000s
led to the development of barrier certificates for safety ver-
ification [103]. The creation of these certificates, however,
involves solving complex polynomial optimization prob-
lems that are challenging for high-dimensional systems,
despite some progress made in the last decade [104]. The
newer concept of barrier functions [105] offers a solution
to the computational difficulties faced by barrier certifi-
cates. These functions can be formulated directly from the
safe set’s definition, simplifying the process. Utilizing this
attribute, barrier functions have been effectively applied
to design safe controllers (without an existing controller)
and safety filters (with an existing controller) for dynamic
systems like biped robots [106] and trucks [107]. These
applications have demonstrated assured performance and
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robustness [108].
Conditional Value-at-Risk is a useful measure for as-

sessing how far a realized trajectory may deviate from
a safe region of operation [43, 54–58]. Defining safety
in terms of CVaR is well-motivated when constraint vi-
olations may be unavoidable: the magnitude of the risk
should be minimized during the undesired excursion [43,
57]. Sets of initial conditions whose safety is characterized
by motions of CVaR can be estimated using dynamic
programming [54–58]. Pointwise CVaR constraints have
also been studied in [54]. Various problems which optimize
a random CVaR objective cost have been studied, such
as ani.e. upper bound approximation [56], a finite-time
solution [57], and an infinite-time solution [58]).

Safety requirements can also be encoded and enforced
via Control Barrier Functions (CBFs), which were proposed
in [105]. CBFs have been used to design safe controllers
for continuous-time dynamical systems, such as bipedal
robots [106] and trucks [107], with guaranteed robust-
ness [108, 109] (see the survey [110] and references therein).
For discrete-time systems, discrete-time barrier functions
were formulated in [111, 112] and applied to multi-robot
coordination [113]. For a class of stochastic (Ito) differential
equations, safety in probability and statistical mean was
studied in [114–118] via stochastic barrier functions.

The first attempt to formulate risk-aware control barrier
functions was carried out in [37], wherein the authors
proposed CVaR control barrier functions as a composition
of a dynamic CVaR metric with a CBF to study safety,
in the CVaR sense, for a discrete-time dynamical system
subject to stochastic uncertainty. A computational method
based on difference convex programs (DCPs) was also
proposed in order to synthesize CVaR-safe controllers.
The method was applied to collision avoidance scenarios
involving a bipedal robot subject to modeling uncertainty.
The CVaR control barrier functions were generalized to
risk-aware control barrier functions (RCBFs) with general
coherent risk measures in [59, 119], where it was shown
that the existence of such barrier functions implies in-
variance in a coherent risk sense. Furthermore, conditions
were proposed based on finite-time RCBFs to guarantee
finite-time reachability to a desired set. In recent work
[120], sampling-based under-approximations of the CVaR
for belief states were used to define risk CBFs.

Sidebar 2 (Risk-Aware Control Barrier Functions). Con-
sider a discrete-time stochastic system given by

x(t + 1) = f (x(t), u(t), d(t)) , P(x(0) = x0) = 1, (19)

where at time t ∈ N≥0, x(t) ∈ X ⊂ Rn is the state,
u(t) ∈ U ⊂ Rm is the control input, d(t) ∈ D is the
stochastic uncertainty/disturbance, and f : Rn × U × D →
Rn. We assume that the initial condition x0 is deterministic
and that |D| is finite, i.e., D = {v1, . . . , v|D|}. At every

time step t, for a state-control pair (x(t), u(t)), the process
disturbance d(t) is drawn from set D according to the
probabilities p = [p1, . . . , p|D|]T , where pi := P(d(t) = vi),
i = 1, 2, . . . , |D|. Note that the probability mass function
for the process disturbance is time-invariant, and that the
process disturbance is independent of the process history and
of the state-control pair (x(t), u(t)). Note that, in particular,
system (19) can capture stochastic hybrid systems, such as
Markovian Jump Systems.
In risk-aware safety analysis, we are interested in studying the
properties of the solutions to (19) with respect to the compact
set S described by:

S := {x ∈ X | h(x) ≥ 0},

Int(S) := {x ∈ X | h(x) > 0}, (20)

∂S := {x ∈ X | h(x) = 0},

where h : X → R is a continuous function.
In the presence of stochastic uncertainties d, assuring almost
sure (with probability one) invariance or safety may not be
feasible. Moreover, enforcing safety in expectation is only
meaningful if the law of large numbers can be invoked and
we are interested in the long-term performance, independent of
the actual fluctuations. RCBFs focus on safety in the dynamic
coherent risk measure sense with conditional expectation as a
special case, allowing for more robust measures of safety.

Definition 6 (ρ-Safety). Given a "safe set" S in (20) and
a time-consistent, dynamic coherent risk measure ρ0:t, the
solutions to (19), starting at x0 ∈ S , are ρ-safe if and only if

ρ0,t (0, 0, . . . , h(x(t))) ≥ 0, ∀t ∈ N≥0. (21)

When x0 ∈ X \ S , we often want to know if S can be reached
in finite time.

Definition 7 (ρ-Reachability). Consider system (19) with
initial condition x0 ∈ X \ S . Given a set S as in (20) and
a time-consistent, dynamic coherent risk measure ρ0:t, S is
ρ-reachable if and only if there exists a constant t∗ such that

ρ0,t∗ (0, 0, . . . , h(x(t∗))) ≥ 0. (22)

Risk-Aware Safety with RCBFs
Definition 8 (Risk-Aware Control Barrier Function).
For the discrete-time system (19) and a dynamic coherent risk
measure ρ, the continuous function h : Rn → R is a risk-
aware control barrier function (RCBF) for the set S as defined
in (20), if there exists a convex class-K function α satisfying
α(r) < r for all r > 0 such that

ρ (h(x(t + 1))) ≥ α(h (x(t))) , ∀x(t) ∈ X . (23)

In [59], the authors demonstrated that the existence of
an RCBF implies invariance/safety in the coherent risk
measure.

Theorem 1. For discrete-time system (19) and the set S as
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described in (20), let ρ be a coherent risk measure. Then, S is
ρ-safe if there exists an RCBF as defined in Definition 8.

Note that the most common choice for function α is a
constant α = α0, where α0 ∈ (0, 1), as α0r < r, ∀r > 0. To
study risk-aware reachability, we require the following.

Definition 9 (Finite-Time RCBF). For discrete-time sys-
tem (19) and dynamic coherent risk measure ρ, the continuous
function h : X → R is a finite-time RCBF for set S , as defined
in (20), if there exist constants 0 < γ < 1 and ε > 0 such that

ρ (h(x(t + 1)))− γh(x(t)) ≥ ε(1 − γ), ∀x(t) ∈ X . (24)

It was also shown in [59] that the existence of a finite-
time RCBF implies ρ-reachability.

Theorem 2. Consider the discrete-time system (19) and a
dynamic coherent risk measure ρ. Let S ⊂ X be as described
in (20). If there exists a finite-time RCBF h : X → R as
in Definition 9, then for all x(0) ∈ X \ S , there exists a
t∗ ∈ N≥0 such that S is ρ-reachable, i.e., inequality (22) holds.
Furthermore,

t∗ ≤ log
(

ε − h (x(0))
ε

)
/log

(
1
γ

)
, (25)

where the constants γ and ε are as defined in Definition 9.

Case Study: Risk-Aware Robotic Motion Planning
in Subterranean Environments
This case study looks at a hierarchical risk-aware
traversability and planning methodology that can be used
for autonomous robot (legged or wheeled robot) traversal
over extreme terrain [52, 53], as motivated by the DARPA
Subterranean challenge. We first need to interpret which
parts of the environment the robot can traverse. Evalua-
tion of a natural terrain’s traversability is difficult due to
uncertainties arising from sensor noise and robot local-
ization errors. Furthermore, there are multiple sources of
terrain hazards such as steep slopes, loose surface material,
sudden elevation drops, and physical obstacles. To account
for these different sources of uncertainty systematically, we
evaluate the conditional value-at-risk of the terrain hazards
to obtain a risk map that can be used in the planning and
control pipeline. The traversability estimate is given by the
random variable R : (M×X ×U ) −→ R that maps from
the map belief, the robot state, and the applied control to
a real-valued traversability cost that we use to assess the
CVaR value. This CVaR risk evaluation, CVaRβ(R), enables
a robot engineer to define the allowable traversability risk
level based on the mission criteria. Furthermore, one can
dynamically adjust the risk level, β, online based on 1) the
mission-level states, i.e., based on the robot’s capabilities
and the environment, and 2) whether the robot is stuck in a
situation wherein there is no feasible path and decreasing
the risk-level (and consequently being less conservative)
might allow the robot to find a feasible, but possibly riskier

FIGURE 4: Left: Trade-off between the probability of reach-
ing the goal and the distance traversed by the robot for
different risk levels. Right: the trade-off between risk taken
and time taken to reach the goal for different risk levels.
Note that β = 1 − a. Figure taken from [52].

FIGURE 5: Four instances from a Monte-Carlo simulation
illustrate how different choices of risk levels, β = 1 − a,
affect the paths taken by the robot. Figure taken from [52].

path. The geometric planner and the kinodynamic MPC
controller then utilize the risk evaluation, CVaRβ(R), to
obtain a risk-aware control policy.

The statistical performance of the aforementioned risk-
aware controllers is evaluated in simulation with randomly
generated environment maps and goals. This study illus-
trates the trade-off between the risk taken by the robot
to reach the goal versus the time taken and total distance
traversed by the robot for different allowable risk levels, β

(see Figure 4). The robot uses longer, low-risk paths when
the robot is risk-averse (low β) and shorter, higher-risk
paths when the robot is risk-neutral (high β), see Figure 5.

This risk-aware traversability evaluation and planning
framework was experimentally tested during the DARPA
Subterranean Challenge and in other real-world subter-
ranean environments. The final competition course of the
DARPA Subterranean Challenge was comprised of tunnel,
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urban, and cave environments for which the traversability
evaluation and navigation results are provided in Figure
6. The following list describes the difficult terrain hazards
found within that environment:

Region A An office-like area with narrow corridors
and small rooms where it is tough to find a feasible
path if the maps are overinflated to avoid obstacles.

Region B A mock post-earthquake warehouse whose
shelving and clutter is difficult to navigate around.

Region C A door connecting the urban and tunnel
part of the course via stairs. The stairs act as a po-
tential sudden drop-off (i.e., a negative obstacle) for
wheeled robots. The drop is hard to detect because
of the narrow doorway.

Region D A narrow passage littered with debris, ver-
tical pipes along the walls, and ceiling obstacles. The
robot must correctly identify the pipes as obstacles.

Region E A small cave opening that mimics real
caves, wherein humans must crawl through the
small openings to reach another cave chamber. The
upward-sloping cave floor and downward-sloping
ceiling make it difficult to differentiate between the
ceiling and the ground. The ceiling height at the
opening is very close to the ground height at the end
of the opening.

Region F A small limestone cave with rubble and
loose rock piles. The robot must distinguish between
traversable and non-traversable rubble.

A statistical analysis of the simulations and the exper-
imental results from the field clearly show that a risk-
aware traversability and planning pipeline provides a
framework where the risk of the entire system can be
adjusted by changing the risk-level β despite there be-
ing multiple risk sources, such as slopes, obstacles, low-
ceilings, and mud. This framework is agnostic to the kind
of ground robot utilized: it has been tested on wheeled
robots (Clearpath Husky) and legged robots (Boston Dy-
namics Spot quadruped).

Case Study: Risk-Aware 3D Bipedal Walking
Control of bipedal walking presents significant challenges,
as evidenced by the variety of approaches taken in the
literature to handle the nonlinearity and complexity of
bipedal robot dynamics [122]. In practice, bipedal walking
dynamics are often simplified by approximate models
subject to stochastic uncertainty [123]. The horizontal robot
state at time t is denoted by xh(t) = [c, p, v]T , where c
represents the horizontal position of the robot’s center of
mass (COM) relative to an inertial frame, p denotes the
horizontal COM position with respect to the stance foot,
and v denotes the horizontal COM velocity. The step-
to-step (S2S) dynamics of the horizontal COM state is
expressed as xh(t+ 1) = Ph(x(t), τ(t)), where τ represents
the joints’ input torques. In practice, deriving the S2S

dynamics analytically is challenging due to the robot’s
nonlinear and hybrid dynamics.

The authors in [123, 124] suggested that a Hybrid-
Linear Inverted Pendulum (H-LIP) walking model [124]
provides an apt approximation for the actual horizontal
S2S dynamics of robot walking. The H-LIP dynamics are
represented as

xH-LIP(t + 1) = AxH-LIP(t) + BuH-LIP(t), (26)

where xH-LIP(t+ 1) = [cH-LIP, pH-LIP, vH-LIP]
T is the H-LIP’s

discrete pre-impact state, and uH-LIP(t) denotes the step
size. The specific expressions for A and B can be found
in [123]. With this approximation, the S2S dynamics can
be rewritten as

xh(t + 1) = Axh(t) + Bu(t) + d(t), (27)

where d(t) := Ph(x(t), τ(t))− Axh(t)− Bu(t) ∈ D can be
viewed as a stochastic disturbance to the linear system.

As seen in Figure 7, a CVaR RCBF-based controller can
ensure safe, risk-aware 3D bipedal walking. The model
discrepancy w is treated as a stochastic uncertainty and
risk factor that could elicit undesirable walking behavior.
To mitigate this risk, CVaR RCBF-based controllers are
synthesized and act as safety filters for the H-LIP-based
stepping controller. These barrier functions delineate safe
regions in terms of robot COM’s horizontal position, en-
suring the robot’s path is maintained within these obstacle-
free areas. Estimation of the uncertainties d is carried out
using extensive simulations that cover a wide range of
walking behaviors. These simulations yield a polytopic set
that bounds the uncertainties d. A CVaR metric can be
calculated on a uniform distribution over the uncertainties
represented in the trajectory d, which in turn supports the
construction of risk-aware barrier function and risk-averse
safe feedback controllers for the bipedal robot.

The simulation results seen in Figure 8 showcase the
effectiveness of the CVaR-based CBF, especially when tak-
ing into account the inherent uncertainties in 3D bipedal
dynamics. Figure 9 presents snapshots from an experiment
conducted at the Caltech AMBER Lab using the Agility
Robotics’ Cassie bipedal Robot.

Open Questions and Future Directions
This section outlined recent advances in risk-aware plan-
ning and control. We applied these ideas to bipedal walk-
ing and terrain traversability analysis for wheeled and
legged robots. Many future research directions are sug-
gested by current work in risk-aware planning and control.

Computation. The best choice of a risk measure for a
specific problem remains an open question. The popular
CVaR and TVD risk measures are computationally attrac-
tive as they can be formed into linear programs. Other risk
measures such as the KL divergence-based EVaR metric
or the Wasserstein metric provide rich expressions of the
uncertainty but are computationally expensive.
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FIGURE 6: Risk-aware traversability analysis of the DARPA Subterranean Challenge final course. Columns, from left
to right: robot front camera view, elevation map (colored by normal direction), risk map (colored by risk level - white:
safe, yellow to red: moderate, black: risky), and planned geometric/kinodynamic paths (yellow lines/red boxes). Figure
taken from [52].
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FIGURE 7: Schematic diagram of a risk-aware bipedal
robot path planning method based on RCBFs with CVaR
risk measure [121]. The diagram features the sequential
flow of processes starting with the SS2 Approximation
of robot dynamics, which leverages the dynamics of the
walking robot, modeled after the Hybrid-Linear Inverted
Pendulum (H-LIP) system, where xt ≡ x(t) denotes the
horizontal position of the center of mass (COM) of the
robot relative to the inertia frame. The H-LIP approxima-
tion is controlled via a legacy controller, such as a model
predictive control, which outputs step size commands
ulegacy. The difference in terms of the horizontal position
of the COM between the H-LIP model and simulation/-
experimental is measured offline and used to construct
the discrete distribution over the uncertainty p(w). The
distribution over uncertainty is used to tune a CVaR-safe
controller based on RCBFs. The outputs of the legacy
controller are then amended online using the CVaR safe
controller to ensure risk-aware safety in the presence of
uncertainty p(w), which adjusts the robot’s locomotion
parameters (in particular, step size u) in real-time.

Multi-agent interactions. Our discussion of risk-aware
planning and control only considered a single agent. How-
ever, real-world dynamic agents may react to the motion
of the controlled agent, and these effects could potentially
cause unmodeled uncertainty distribution shifts. An im-
portant open problem is how to account for the interac-
tions between dynamic agents in a risk-aware manner.

Approximations of risk. Many risk-aware planning and
control techniques either assume that the uncertainty is
discrete or use approximation techniques like Sample Av-
erage Approximation (SAA) for continuous distributions.
How can we guarantee the correctness of risk evaluation
and control design when using continuous distribution
approximations? The next section introduces methods to
verify the risk-aware behavior of autonomous systems.

FIGURE 8: Risk-averse obstacle avoidance using CVaR
barrier functions (robot behavior and barrier function evo-
lution). The shaded yellow area denotes safe regions. (a)
safety violation with no barrier function; (b) safety vio-
lation with risk-neutral barrier function; (c) safe behavior
with CVaR barrier function. Plots on the right side show
the values of the barrier functions [121].

RISK-AWARE VERIFICATION AND VALIDATION
The previous section provided a high-level summary of
risk-aware planning and control, with a more in-depth
review of existing literature. We highlighted the impor-
tance of analyzing the inherent uncertainties and risks in
robotic operations, particularly when navigating through
unstructured environments. This section briefly summa-
rizes the important companion problem of "risk-aware
verification and validation" (V&V) in robotic systems. The
verification process determines whether a given system
exhibits its desired behavior in the environments in which
it is required to operate. This crucial process ensures that
the integrated system performs safely, reliably, and as
intended under a broad range of operating conditions.

Integration of risk awareness into the V&V process
allows for a more comprehensive evaluation of a robotic
system and its potential to properly respond to risky
situations. Specifically, V&V aims to quantify robotic re-
liability and safety, explicitly considering interactions with
uncertain and unstructured environments [125–128]. As
such, risk-aware V&V requires probabilistic risk assess-
ments, stochastic models, and rigorous testing methods
that cover a wide range of potential scenarios. For instance,
recent work in Human-Robot Interaction (HRI) has devel-
oped procedures to quantify the riskiness of actions taken
by systems in a collaborative context [129–132]. These
methods typically formalize the risk assessment against
existing International Standards, e.g. ISO 14121 [133] and
ISO 12100 [134]. Risk assessment of autonomous systems
in other fields has also emerged [135–138].
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FIGURE 9: Snapshots from an experiment conducted at Caltech’s AMBER Lab, featuring Agility Robotics’ Cassie Robot.
The OptiTrack system that was used for localization tracks reflective markers on the robot to determine its position and
orientation with high precision. The data from OptiTrack was fed into the robot’s control system in real-time, allowing it
to make immediate adjustments to its path. The code that enables the robot to perform motion planning is executed on
a computer embedded within the robot. (left) The initial setup, where the robot’s trajectory is aligned with a sinusoidal
path, represented by a dashed green line. (middle) Mid-course navigation highlighting the effectiveness of the risk
control barrier function-based safety filter. This filter is designed to allow the robot to dynamically avoid obstacles and
unsafe regions, which are indicated by the red solid lines, representing the boundaries of areas the robot should not
enter. (right) successfully following a trajectory that has been adjusted by the risk-aware safety filter. This demonstrates
the practical application of the risk-aware control method outlined in Figure 7, where a robot not only plans its path
in consideration of potential risks but also dynamically adjusts its course in real time to maintain safe navigation.

As mentioned, prior notions of risk have typically
been defined against a corresponding standard and are
developed on a case-by-case basis. This observation has
prompted recent work in risk-aware verification to adopt
the same formal treatment of risk — tail-risk measures
— as used by the synthesis community [21, 139]. This
section delves into the key methodologies and approaches
employed for risk-aware verification and validation in
robotics, starting with a brief overview of its theoreti-
cal foundations and moving toward practical applications
and case studies. As works in this area typically exploit
the quantifiable semantics of temporal logics to quantify
(un)safe system behavior to make risk-aware verification
statements, we begin with a brief overview of temporal
logics [140–142].

Temporal Logic
Temporal logics can be used to express complex sys-
tem specifications and were originally developed for the
analysis and design of reactive systems, i.e., systems
with external inputs such as control systems [143–145].
Temporal logics are extensions of Boolean logic (propo-
sitions, negations, conjunctions, disjunctions) by adding
temporal operators (until, eventually, always) to reason
about the temporal properties of a system. One can make
a distinction between temporal logics that reason over
qualitative and quantitative temporal properties in their
temporal operators. Linear temporal logic, arguably the
most common temporal logic, only reasons over qualitative
temporal properties, while real-time temporal logics such
as metric temporal logic [146] can reason over quantitative
temporal properties. This distinction is best exemplified
where a qualitative temporal property is “eventually reach
the goal region” while its quantitative counterpart could

be “eventually within the next 5 minutes reach the goal
region”. We focus on temporal logic specifications with
quantitative temporal reasoning that can encode combi-
nations of timed reachability (“reach region A within 30
sec”), timed surveillance (“visit regions B, C, and C every
10 − 60 sec while agents form a triangular formation"),
timed safety (“always between 5 − 25 sec stay at least 1
m away from region E"), and many others.

Temporal logics are formally defined by their syntax
and semantics where the syntax defines the rules to con-
struct a temporal logic specification ϕ while the semantics
define when a temporal logic specification ϕ is satisfied (or
violated). Spatiotemporal logics, as opposed to temporal
logics, also permit reasoning about spatial properties, e.g.,
allowing a system designer to quantify to which extent
(with what safety margin) an obstacle is avoided by a
robot. It is this property that enables us to quantify how
well a specification is satisfied c.f. how severely a specifica-
tion is violated, which in turn helps define risk for system
verification. Signal temporal logic is a commonly used
spatiotemporal logic introduced in [147], and we provide a
brief introduction to its syntax and semantics in the sidebar
3. For the remainder of the exposition in this section
though, assume that ϕ denotes a system specification.

With respect to the use of these logics in verification
and validation, over the past decades, the formal methods
community proposed and studied a broad range of system
verification techniques. Existing techniques focus on the
verification of 1) deterministic systems, or 2) uncertain
systems with the two previously discussed viewpoints of
the risk-neutral and the worst-case paradigms. In fact,
automated verification tools were developed for determin-
istic systems, e.g., model checking [144, 145] or theorem
proving [148, 149]. Verification of uncertain systems was
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particularly studied in the risk-neutral paradigm using
probabilistic model checking [150–152], an extension of
deterministic model checking, or statistical model checking
[153–156], which are sampling-based techniques for proba-
bilistic system verification. System verification techniques,
however, should not only be able to reason about the
probability of violating a specification but also be able
to reason about the severity of a violation in terms of
rare harmful outcomes. As briefly discussed previously,
spatiotemporal logics enable us to quantify how well
(severely) a specification is satisfied (violated), and in turn,
allow us to define risk in terms of this quantitative measure
for stochastic systems.

Sidebar 3 (Signal Temporal Logic: Syntax and Seman-
tics). Signal temporal logic (STL) specifications are inter-
preted over continuous-time signals x : R≥0 → Rn. An
STL specification ϕ is recursively constructed from atomic
predicates by using Boolean operators and temporal operators.
These atomic predicates are Boolean-valued functions µ :
Rn → {1, 0} whose truth value is obtained after evaluation
of a real-valued function b : Rn → R. At time t, we obtain
the truth value of µ as

µ(x(t)) :=

{
1 if b(x(t)) ≥ 0

0 otherwise.
(28)

Predicate functions h can encode relationships between state
variables, such as relative or absolute distances. The syntax
of STL defines a set of rules according to which well-defined
STL specifications can be constructed and is given as

ϕ ::= 1 | µ | ¬ϕ′ | ϕ′ ∧ ϕ′′ | ϕ′UIϕ′′ (29)

where the operators ¬, ∧, and UI encode negations, con-
junctions, and the until over the time interval I ⊆ R≥0,
respectively. The syntax in (29) can be understood as follows:
the symbol ::= assigns one of the expressions from the right-
hand side, which are separated by vertical bars, to the free
variable ϕ on the left-hand side. The variables ϕ′ and ϕ′′ on
the right-hand side are already well-defined STL specifications.
While the meaning of negations and conjunctions is clear,
the until operator ϕ′UIϕ′′ encodes that ϕ′ has to hold until
ϕ′′ holds, which has to happen within the time interval I.
We can now use logical equivalences to derive the Boolean
disjunction, implication, and equivalence operators and the
temporal eventually and always operators. In what follows, ⊤
denotes True in the corresponding logical specification:

ϕ′ ∨ ϕ′′ := ¬(¬ϕ′ ∧ ¬ϕ′′) (disjunction),

ϕ′ ⇒ ϕ′′ := ¬ϕ′ ∨ ϕ′′ (implication),

ϕ′ ⇔ ϕ′′ := (ϕ′ ⇒ ϕ′′) ∧ (ϕ′′ ⇒ ϕ′) (equivalence),

FIϕ′ := ⊤UIϕ′ (eventually),

GIϕ := ¬FI¬ϕ′ (always).

The semantics of STL now define when a signal x satisfies an
STL specification ϕ. These semantics are formally defined as
a relation |= between x and ϕ, and (x, t) |= ϕ means that the
signal x satisfies the specification ϕ at time t. We recursively
define the semantics as

(x, t) |= 1 iff holds by definition,

(x, t) |= µ iff h(x(t)) ≥ 0

(x, t) |= ¬ϕ′ iff (x, t) ̸|= ϕ′

(x, t) |= ϕ′ ∧ ϕ′′ iff (x, t) |= ϕ′ and (x, t) |= ϕ′′

(x, t) |= ϕ′UIϕ′′ iff ∃t′′ ∈ t ⊕ I s.t. (x, t′′) |= ϕ′′ and

∀t′ ∈ (t, t′′), (x, t′) |= ϕ′.

Motivations for Tail-Risk Measures in Verification
As mentioned previously then, the existence of these
spatiotemporal logics makes tail-risk measures uniquely
suited to serve as the risk measure of choice for verification
and validation, and this section will provide an example
supporting that claim using the notation offered in Side-
bar 4. Consider for the sake of argument that we have
two controlled systems Σ1, Σ2, a Signal Temporal Logic
specification ϕ denoting the desired behavior required of
both systems and a robustness measure ρϕ for the same
specification ϕ. For context, every signal temporal logic
specification ϕ comes equipped with a quantitative mea-
sure. Let’s further assume that every time we query either
system Σ1 or Σ2, we receive a random trajectory x1 or x2
respectively. Let Ri, i = 1, 2, be a random variable whose
samples ri are the robustness of the trajectories sampled
from system Σi, i.e. ri = ρϕ(xi). Now, let’s assume that an
oracle tells us that for both systems, with probability 1− β

for some β ∈ (0, 1], the random robustness exceeds a cutoff
value ϵ > 0. Furthermore, with probability β, Σ1 exhibits
robustness values between ϵ and 0, whereas Σ2 exhibits
robustness values strictly less than 0. In other words, Σ1
will always realize the desired behavior, while Σ2 will, in
some rare cases, be unable to realize the desired behavior.

Put into the context of tail-risk measures, both systems
exhibit a robustness value-at-risk at risk-level β that is
positive. This fact arises as the oracle mentioned that with
minimum probability 1 − β, both systems exhibit robust-
nesses exceeding ϵ > 0, i.e. VaRβ(Ri) = ϵ > 0. Ending the
analysis here results in the correct conclusion that both
systems exhibit some minimum probability of realizing
satisfactory behavior, and this is a traditional, probabilis-
tic V&V statement. However, by considering conditional
value-at-risk, we can further discriminate between the two
systems, as system 1 is expected to exhibit satisfactory
behavior even in the worst 100β% of cases, whereas system
2 is expected to produce unsatisfactory behavior in the
same cases. This conclusion arises as even in the worse
100β% of cases, the oracle mentioned that system 1 exhibits
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robustness values r1 ∈ [0, ϵ] whereas system 2 exhibits
robustness values r2 < 0. Taking into account the expected
value over those cases - the definition of conditional-
value-at-risk - we conclude that CVaRβ(R1) ≥ 0 whereas
CVaRβ(R2) < 0. Therefore, even if both systems exhibit
similar minimum probabilities of specification satisfaction,
system 1 is "better" than system 2 as it is still expected to
exhibit satisfactory behavior in the worst 100β% of cases.

The example described above highlights the utility of
tail-risk measures in risk-aware V&V. By considering the
robustness value-at-risk, we can make statements on the
minimum probability with which a system exhibits a
desired behavior in its operating environment(s) - this is
the traditional notion of probabilistic V&V. Additionally,
we can utilize tail-risk measures to also make statements
on expected worst-case robustness using the conditional-
value-at-risk, lower bound such expected worst-case ro-
bustness using entropic value-at-risk, and calculate these
values without exact distribution knowledge as will be
described in sections to follow.

Sidebar 4 (Signal Temporal Logic: Robust Semantics).
While the STL semantics tell us if a signal x : R≥0 → Rn

satisfies an STL specification ϕ, it does not give us any
information about the quality of satisfaction. To obtain such
information, one can define robust semantics that quantify
how robustly the signal x satisfies the specification ϕ. If x
satisfies ϕ, we would hence like to quantify how different a
signal x∗ : R → Rn can be from x while still satisfying ϕ.
To quantify this, we first define the closeness of two signals
x, x∗ : R → Rn as

d(x, x∗) := sup
t∈R≥0

∥x(t)− x∗(t)∥.

We now want to compute a value ρϕ such that all signals
x∗ that are such that d(x, x∗) < ρϕ will also satisfy ϕ, i.e.,
(x∗, t) |= ϕ. To do so, we first define the signed distance of the
signal value x(t) to the set of states that satisfy a predicate µ,
denoted by Oµ : {x ∈ Rn|b(x) ≥ 0}, as

Dist(x(t), Oµ) :=





inf
x∗∈cl(Rn\Oµ)

∥x∗ − x(t)∥ if x ∈ Oµ

− inf
x∗∈cl(Oµ)

∥x∗ − x(t)∥ otherwise.

Note that Dist(x(t), Oµ) quantifies the extent to which
µ is satisfied (if Dist(x(t), Oµ) > 0) or violated (if
Dist(x(t), Oµ) < 0). We can now recursively define the robust
semantics of ϕ as a real-valued function ρϕ(x, t) as follows

ρ⊤(x, t) := ∞,

ρµ(x, t) := Dist(x(t), Oµ),

ρ¬ϕ′
(x, t) := −ρϕ′

(x, t),

ρϕ′∧ϕ′′
(x, t) := min(ρϕ′

(x, t), ρϕ(x, t)),

ρϕ′UI ϕ′′
(x, t) := sup

t′′∈t⊕I
min(ρϕ′′

(x, t′′), inf
t′∈(t,t′′)

ρϕ′
(x, t′)).

Finally, it holds that (x, t) |= ϕ if and only if (x∗, t) |= ϕ

for all signals x∗ : R → Rn that are such that d(x, x∗) <

|ρϕ(x, t)|.

A General Overview of Risk-Aware V&V
For most relevant problems, the system to be verified
can be recast as a discrete-time system with known state
and input spaces and (perhaps) known dynamics and
disturbance spaces. Formally, at some time t ∈ Z+ =

{0, 1, 2, . . . }, let x(t) ∈ X be the system state, u(t) ∈ U
be the system control input, d(t) ∈ D be a randomly
sampled disturbance. Then for some distribution function
ξ : X × U × Z+ ×D → [0, 1] over D,

x(t + 1) = f (x(t), u(t), d(t)), (30a)

s. t. d(t) ∼ π(x(t), u(t), t). (30b)

Finally, let U : X × Θ × Z+ → U be the controller
closing the loop for the system to be verified. Note, the
controller U is parameterized with a parameter θ ∈ Θ
to account for exogenous, user-specific inputs that may
influence controller behavior, e.g. parameterized 3-space
locations for packages in a warehouse that a warehouse
robot receives on-the-fly from a central command station
when a package is required to be collected.

Remark. For systems that operate in adversarial envi-
ronments or in the presence of obstacles, the disturbance
distribution ξ can be defined as the singleton distribution
over the adversarial choice at the given state x(t), input
u(t), and time t. For more information see dirac distri-
butions [157] and adversarial testing works such as [158–
161]. We can consider both cases — the case with non-
adversarial, randomized disturbances and the case with
adversarial or otherwise known disturbances — in the
same stochastic setting. Furthermore, the state and input
spaces have been left arbitrary to allow both the continu-
ous space definitions in the controls community and the
finite-state and input definitions in the (PO)MDP computer
science literature.

Closing the loop between (30) and the assumed con-
troller U generates a system Σ that when queried with
a specific initial condition x0 ∈ X0 ⊆ X and controller
parameter θ ∈ Θ produces a (perhaps) different state
trajectory x, which is an element of the signal space
S = {s : Z+ → X}:

a sample of Σ(x0, θ) is x ≜ {x0 ≡ x(0), x(1), . . . } (31a)

s. t. x(t + 1) = f (x(t), U(x(t), θ), d(t)). (31b)

Finally, let C be a classifier function mapping from the
signal and parameter spaces to the real-line, i.e. C :
S ×Θ → [−a, b] where parameters a, b ∈ R++ are finite.
The classifier C delineates between satisfactory behavior
— trajectory and parameter pairs (x, θ) that evaluate to
a positive value, i.e. C(x, θ) ≥ 0 — and unsatisfactory
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behavior — pairs that evaluate to a negative value. Exam-
ples of such a classifier could be the robustness functions
ρ from signal temporal logic, the minimum value of a
barrier function h over time [105], etc. For a description
of robustness measures in Signal Temporal Logic, please
see Sidebar 4. Generally speaking, we define the outcome
of function C to be the robustness of the corresponding
trajectory and parameter pair, i.e. for r = C(x, θ), where
r is the trajectory and parameter pair’s robustness value.
More positive values of C(x, θ) indicate better, more robust
realization of the desired behavior.

Remark The rationale to analyze multiple, non-unique
trajectories x as defined in (31) arises from the fact that
disturbances d in (30) are sampled randomly at each
time t from the distribution function ξ. If the distribution
function ξ were the singleton distribution corresponding
to a specific disturbance d ∈ D for each state, input, and
time (x, u, k) ∈ X × U × Z+, then Σ(x0, θ) would always
produce the same trajectory x upon successive queries at
(x0, θ), and this argument holds ∀ (x0, θ) ∈ X0 × Θ.

The goal of risk-aware verification stems naturally from
the existence of the system trajectory generation func-
tion Σ and the classifier C. Specifically, the goal is to
determine bounds on the risk measure evaluation of C
for trajectories x realized by the system Σ at a chosen
parameter θ and initial condition x0. Stated formally, let
χ be a tail-risk measure, e.g. Value-at-Risk, Conditional-
Value-at-Risk, Entropic-Value-at-Risk, etc. Then, at some
risk-level β ∈ [0, 1], determine an upper or lower bound
to χ (C (Σ(x0, θ))) for some (x0, θ) ∈ X0 × Θ. Figure 10
depicts this generic risk-aware verification pipeline, and
the following section will specify how this pipeline has
been implemented in a variety of recent works. To facilitate
that discussion, we will define the robustness R(x0, θ) to be
the random variable whose samples r = C(x, θ), where x is
a sample of the random variable Σ(x0, θ). In other words,
R(x0, θ) = C(Σ(x0, θ)) — this term was first defined in [15].

Examples
Perhaps the most prevalent examples of risk-aware veri-
fication arise from a re-framing of traditional work in the
Stochastic Model Checking (SMC) community [156, 162–
164]. With respect to the aforementioned pipeline, SMC
assumes the ability to collect system traces — trajectories
x — and evaluate their satisfaction of a desired behavior.
These behaviors are typically expressed as a specification ϕ

in Probabilistic Computational Tree Logic [165], which is
a form of Temporal Logic (see Sidebar 3). As such, each of
these behaviors has satisfiability metrics — classifier func-
tions C in our overarching methodology — with which to
determine trace satisfaction of the desired behavior ϕ.

SMC consists of two different analyses. The first, hy-
pothesis testing, asserts that the system Σ realizes the
behavior ϕ with minimum probability p and determines

the minimum number of system traces that have to be
evaluated to accept or reject this hypothesis. The second,
estimation, exploits either the Chernoff bound or Hoeffd-
ing’s inequality to estimate the probability p with which Σ
realizes ϕ within some tolerance bounds that are a function
of the number of trajectories sampled and evaluated. In
both cases, however, the probability of satisfaction p has
a one-to-one correspondence with the Value-at-Risk of the
random variable R(x0) (we omit θ in the notation here, as
SMC typically does not consider parameterized trajecto-
ries). More specifically, p is such that VaR1−p(R(x0)) ≥ 0.

These are not the only works that take a Value-at-Risk
approach to system verification. In [60], the authors use
scenario optimization to lower bound the Value-at-Risk of
the robustness random variable R(x0, θ) for a user-defined
β ∈ [0, 1]. Similarly, the authors of [61] use a sample-
average-approximation procedure to estimate the Value-at-
Risk of the same robustness variable for any user-defined
β ∈ [0, 1]. In [62], the authors go one step further and
express policy or controller synthesis as an optimization
problem over a general class of risk measures for veri-
fication purposes. They show numerical examples of the
success of a convex-concave procedure at identifying such
policies for a Markov Decision Process. In this case, the
policies optimize for a certain risk sensitivity as expressed
by Value-at-Risk among other risk measures expressed
in Cumulative Prospect Theory [166]. Finally, in [63], the
authors modify a learned controller online whenever the
learned controller outputs an infeasible trajectory. Via a
gradient-descent method, they update controller parame-
ters until the resulting trajectory passes an intermediary
risk-aware verification step, before implementation of the
modified controller. In general, however, any of the afore-
mentioned risk-aware works could also be conceived of
as Value-at-Risk-based verification, insofar as the classifier
functions C were developed against specific standards for
their respective applications [129–132, 135–138]

However, Value-at-Risk verification represents a smaller
fraction of risk-aware verification efforts as compared to
works using coherent risk measures, such as Conditional-
Value-at-Risk. For example, in a similar paradigm as
in [62], in [64] the author proves that there exist polynomial
time algorithms to determine policies for an MDP that are
verifiable by default. Verification arises as the policies are
synthesized to achieve a minimum conditional value at
risk with respect to objective satisfaction. Similarly, in [65]
the authors utilize a CVaR constraint for their optimal
controller and verify that the system remains within a risk-
sensitive safe set defined by the same CVaR constraint.
In [66], the authors develop a procedure for learning a
controller to tackle simultaneous performance and safety
tradeoffs for nonlinear systems and verify the learned
controller by estimating the CVaR of a corresponding
robustness random variable. In [67], the authors constrain
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FIGURE 10: A flowchart for a general risk-aware verification pipeline. In the figure, the parameters θ correspond to
obstacle locations and waypoints for the robots highlighted by white and blue circles [77]. Risk-aware verification
bounds the risk-measure evaluation of evaluated trajectories — the blue data shown in the right figure.

FIGURE 11: Empirical distributions for the Imitation Learning (IL) and Control Barrier Function-based (CBF) controllers
and for the specifications ϕ1-ϕ4 as described in the case study on risk-aware lane-keeping. Figures taken from [68].

the optimal design of supersonic aircraft bodies against
both VaR and CVaR requirements to ensure verifiable, risk-
aware performance despite uncertainties arising from the
transition from laminar to turbulent flow, manufacturing
uncertainties, etc. Examples from a larger body of work,
including those by the authors, can be found in refer-
ences [15, 56, 61, 65, 68–74].

Case Study: Risk-Aware Verification of Lane
Keeping Controllers
In this case study, the goal is to find the least risky con-
troller among two neural network lane-keeping controllers
in the autonomous driving simulator CARLA during a
left-turn [75], see Fig. 12 (top and middle). Lanekeeping
is realized by tracking a set of predefined waypoints. For
verification, we consider the cross-track error ce and the
orientation error θe with respect to the current and next
waypoint, see Fig. 12 (bottom). We consider an imitation
learning (IL) controller [167] and a control barrier function
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FIGURE 12: Top: Simulation environment in the CARLA
autonomous driving simulator. Middle: Left turn on which
we evaluate two neural network lane-keeping controllers.
Bottom: The car’s cross-track error ce and orientation error
θe with respect to waypoints. Figures taken from [68].

(CBF) controller [168]. The car model is stochastic, as the
control inputs are subject to normally distributed noise,
and we uniformly sample the car’s initial position from the
set (ce, θe) ∈ [−1, 1] × [−0.4, 0.4]. We collected N := 1000
trajectories xi in a validation set Dval for each controller.

We are first concerned with cross-track error and con-
sider the specifications ϕ1 := G[0,∞)(|ce| ≤ 2.25) where
2.25 is an empirically obtained threshold indicating that
the car stays within the lane. For the following analysis,
recall that a negative value of −ρϕ1 indicates satisfaction of
ϕ1 and positive values indicate a failure to lane-keep. Up-
per bounds on VaR0.95(−ρϕ1 (x)), CVaR0.85(−ρϕ1 (x)), and

XXXXXXXXR
Controller

IL CBF

VaR0.95(−ρϕ1 (x)) 0.462 1.125
CVaR0.85(−ρϕ1 (x)) 1.436 1.818
E (−ρϕ1 (x)) -0.248 -0.375
Pϕ1 0.975 0.863
VaR0.95(−ρϕ2 (x)) 0.462 -0.794
E (−ρϕ2 (x)) -0.254 -0.81
VaR0.95(−ρϕ3 (x)) -0.324 0.063
E (−ρϕ3 (x)) -0.652 -0.297
VaR0.95(−ρϕ4 (x)) -0.13 -0.32
E (−ρϕ4 (x)) -0.517 -0.533
Pϕ5 1 1

TABLE 1: Tabulated data from [68] for the case study on
risk-aware lane-keeping of the Imitation Learning (IL) and
Control Barrier Function (CBF) controllers.

E(−ρϕ1 (x)) are reported in Table 1, along with the empir-
ical satisfaction rate Pϕ1 := |{xi ∈ Dval|xi satisfies ϕ1}|/N.
Clearly, the IL controller is the least risky one in terms of
VaR0.95 and CVaR0.85, and it also has the highest empirical
satisfaction rate. Interestingly though, the CBF controller
performs better on average. This result can also be seen
in the empirical histograms of Fig. 11 (top left). We hy-
pothesize that this behavior arises from the long tail of
risky behavior for the CBF controller, which corresponds
to transient system behavior. We also analyzed the con-
trollers’ behavior more closely by looking at the cross-
track error during the steady-state and transient phases
for the specifications ϕ2 := G[10,∞)(|ce| ≤ 2.25) and ϕ3 :=
F[0,5]G[0,5](|ce| ≤ 1.25), respectively. The upper bounds of
the VaR0.95(−ρϕi (x)) and E(−ρϕi (x)) for ϕ2 and ϕ2 are
shown in Table 1 as well.

Interestingly, the IL controller is the least risky one only
during the transient phase, while the CBF controller is the
least risky one in steady state. The corresponding empirical
distributions are shown in Figs. 11 (top right and bottom
left). Finally, let us verify the controller risk in terms of the
orientation error θe. Consider ϕ4 := G[0,∞)

(
(ce ≥ 1.25) =⇒

F[0,2]G[0,1](θe ≤ 0) ∧ (ce ≤ −1.25) =⇒ F[0,2]G[0,1](θe ≥ 0)
)

which expresses the need for the controller to react to large
cross-track errors ce using the right orientation adjustment.

For this specification, the CBF controller is the least
risky controller, which aligns with our observation that
it is a better controller during steady-state. It can further
be observed that both controllers have the same empiri-
cal satisfaction probability, while our risk analysis better
quantifies a controller’s quality. The empirical distribution
of both controllers is shown in Fig. 11 (bottom right).

Case Study: Risk-Aware Safety-Critical System
Verification and Applications to Policy Synthesis
This case study aims to verify a quadruped’s ability to
render positive a collision-avoidance barrier function h for
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FIGURE 13: Validation data for probabilistic lower bounds
reported on VaR0.99(R) for controllers generated for a
quadruped (top) and robotarium (bottom). As shown, the
reported lower bounds (red) generated by the scenario
approach mentioned in Sidebar 5 are accurate as they
lower bounds the true VaR0.99(R) (black). Information for
this figure comes from [76].

at least T = 150 time-steps with a time-step ∆t = 0.1
[76]. Keeping consistent with our notation for the general
overview for risk-aware V&V, our parameters θ include
the locations of 4 randomly placed static obstacles in a
5 × 5 meter grid, and the center coordinates of a goal
region g in the same grid. Hence, θ ∈ [−5, 5]10 ≜ Θ. To
simplify our analysis, we represent the quadruped as a
unicycle system, and as such, we assume we can initialize
the quadruped at a random planar position and angular
orientation in the grid, i.e. x0 ∈ [−5, 5]2 × [0, 2π] ≜ X0.
Our classifier function C evaluates the discrete-time frac-
tional difference of a candidate barrier function h that
the quadruped is to keep positive. As such, the classi-
fier outputs the minimum value over all time-steps k of
h(x(t + 1)/h(x(t)), as realized by the quadruped over one
trajectory x = {x(0), x(1), . . . , x(150)}. Therefore, C(x) < 0
is equivalent to stating that there existed an interior time-
step xj ∈ x such that h(xj) < 0 and the quadruped failed
to remain safe.

Slightly different from the general overview, however,
instead of aiming to determine a lower bound on the
Value-at-Risk level β = 0.9 of the robustness random
variable R(x0, θ), we also randomize over initial conditions
and parameters (x0, θ) from their combined space. As such,
the evaluation r of a sampled trajectory x generated by first
sampling (x0, θ) ∼ U[X0 × Θ] is a sample of the holistic
robustness random variable R — this term was first defined
in [15]. That being said, we still aim to lower bound
VaRβ=0.9(R), which, according to the sample-based meth-
ods detailed in Sidebar 5, has a known sample complexity
(number N of trajectories to be evaluated) to determine
such a lower bound. Therefore, after taking N = 50
trajectories, we can state with ≈ 99.5% confidence, that the
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FIGURE 14: Worst case safety information for the
quadrupedal case study. Over the 50 sampled trials, the
quadruped realizes a positive barrier value every time,
which, according to the concentration inequality results
in Sidebar 5, implies that the system should always keep
positive the barrier function h with minimum probability
90% and with confidence 99.5%. Information for this figure
comes from [76].

quadruped will realize positive value trajectories with 90%
probability, as the identified lower bound on VaRβ=0.9(R)
was positive. The associated safety information is depicted
in Figure 14.

We can also show that the reported probabilistic bounds
are accurate. In [77] we employed the same, risk-aware
verification procedure as described above, to validate the
controllers for a Quadruped and a multi-agent robotic
system [169]. The expressions for the classifier function
were the same in both cases, though we will refrain from
reproducing them here for the sake of brevity. Suffice it to
say that any trajectory that evaluates to a positive value
under C would have made non-trivial progress toward
a goal while avoiding static/moving obstacles within 10
seconds. To that end then, we only implemented con-
trollers on hardware systems once they exhibited a positive
lower bound for VaR0.99(R). To determine such a lower
bound we sampled 300 trajectories for both controllers
and calculated their robustness under the aforementioned
classifier C. Doing so for our chosen controllers indicated
positive lower bounds, and we can verify the accuracy of
these lower bounds by taking 20000 trajectories, evaluating
them, numerically approximating the distribution of the
holistic robustness random variable R, and reporting the
numeric VaR0.99(R) as our approximation. Figure 13 show-
cases the validity of the reported lower bounds, overlaid
on the numeric approximation of the distribution for R,
and Figure 15 shows tiles of the controllers implemented
on their respective hardware systems. Note that in all of
the randomized cases, the controllers steered the systems
successfully to their goals while avoiding all obstacles. This
controller reliability is the primary reason we take a tail-
risk approach to verification, as the purpose of the pro-
cedure is to identify rare, unsafe phenomena and ensure
that even in those rare cases, the system still performs
admirably.
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Sidebar 5 (Concentration Inequalities: Risk Measure
Estimation). This sidebar will briefly describe two methods to
estimate the tail risk measures expounded upon in this article.
We will describe these methods as they are applied to arbitrary
scalar random variables X over a probability space (Ω,F , P).
Sample-Average Approximation This first method esti-
mates VaRβ(X), CVaRβ(X) for any β ∈ (0, 1) and any
scalar random variable X. Let {xi}N

i=1 be a set of N inde-
pendently drawn samples of X. The empirical distribution
function F̂N(x) for X based on this set of samples is

F̂N(x) =
1
N

N

∑
i=1

1(x ≤ xi), ∀ xi ∈ {xi}N
i=1. (32)

with 1 being the indicator function. The Sample-Average Ap-
proximation (SAA) exploits the Dvoretsky-Kiefer-Wolfowitz
Inequality [170] built upon by Paul Massart in [171], which
proves that the empirical distribution has bounded deviation
with respect to the true cumulative distribution function F for
X to within some probability δ ∈ (0, 1):

F̂N(x)−
√

1
2N

ln
(

2
δ

)
≤ F(x) (33a)

≤ F̂N(x) +

√
1

2N
ln

(
2
δ

)
, w.p. ≥ 1 − δ. (33b)

The tail risk VaRβ(X) can be lower and upper bounded for
any β ∈ (0, 1) using (33). Define upper bound VaRβ(X) as:

VaRβ(X, δ) =

inf

{
x ∈ R

∣∣∣∣ F̂N(x)−
√

1
2N

ln
(

2
δ

)
≥ 1 − β

}
,

and let the lower bound VaRβ(X) be defined as:

VaRβ(X, δ) =

inf

{
x ∈ R

∣∣∣∣ F̂N(x) +

√
1

2N
ln

(
2
δ

)
≥ 1 − β

}
.

Then, using (33), the following result holds ∀ β, δ ∈ (0, 1)

VaRβ(X, δ) ≤ VaRβ(X) ≤ VaRβ(X, δ) w.p. ≥ 1 − δ.

Note that as the number of samples, N, of the random variable
X increases, the gap between the upper and lower bounds
shrinks, as the bounds converge to the true value VaRβ(X).
Similar methods exist to estimate CVaRβ(X) as well [172].
Scenario Bounds. The second method upper bounds
VaRβ(X), CVaRβ(X), EVaRβ(X) for any β ∈ (0, 1). As
before, let {xi}N

i=1 be a set of N independently drawn samples
of the scalar random variable X. Consider the following
optimization problem, termed a scenario program [173]:

ζ∗N = argmin
ζ∈R

ζ,

subject to ζ ≥ xi, ∀ xi ∈ {xk}N
k=1.

(34)

The theory of scenario optimization states that the solution
to this optimization problem is an upper bound on VaRβ(X)

with minimum probability 1 − (1 − β)N , i.e. if X has proba-
bility density function π, then

PN
π

[
ζ∗N ≥ VaRβ(X)

]
≥ 1 − (1 − β)N . (35)

The above result was proven in [60]. Note that (35) does not
need the density function π for X to be known. It just requires
an ability to take N independent samples of X. Therefore, if
we have a constant c ∈ R such that Pπ [x ≤ c] = 1, then
we can exploit this inequality (35) to similarly upper bound
CVaRβ(X) and EVaRβ(X). Details on this approach can be
found in Section 3 of [15].

FIGURE 15: Hardware demonstration of controllers ver-
ified from a tail-risk perspective. As the implemented
controllers were “verified" since the reported lower bound
on their Robustness Value-at-Risk was positive, we expect
decent behavior in practice. This notion is corroborated by
the fact that the verified controllers performed admirably
despite randomized test cases generated for each system.
Figure adapted from [77].

Open Questions and Future Directions in V&V
Sample Complexity
There exist several open questions in risk-aware verifica-
tion, though the most notable one concerns the small tail
probability requirements for industrial applications. More
specifically, for most product-level robotic systems requir-
ing a verification statement, i.e. autonomous cars, factory
robots, flight software, etc, current standards require these
systems to be verified to arbitrarily high probabilities, i.e.
1 − 10−4, 1 − 10−6, 1 − 10−9 or even higher. If we assume
that the underlying distributions are known, i.e. Gaussian
as is typically done, then this analysis can be carried out in
a tractable, even analytic, fashion. However, if we follow
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the philosophy underlying the sample-based works that
have recently become more popular, as they do not as-
sume underlying distributional knowledge for verification,
then verifying systems to these probabilities could require
hundreds of thousands of samples or even more. If each
of those samples constitutes even one experimental run of
the system, then this makes the direct application of these
theoretical concepts exceedingly costly or time-intensive.
As such, reducing this sample complexity, whether via in-
telligent test design or by leveraging partial system knowl-
edge, would go a long way to facilitate the widespread
industrial adoption of these currently theoretical pipelines.

Compositional Verification
In a similar vein as prior, this second open question
stems from a primarily industrial concern as well. Namely,
typical large-scale systems are composed of a variety
of moving parts, each of which has to satisfy its own
component specifications such that the larger, architec-
tured system satisfies a grander objective. Per the prior
pipeline, each component could be verified separately in
a probabilistic fashion, but in systems with potentially
hundreds of separately engineered parts, separate veri-
fication procedures could be potentially prohibitive. On
the other hand, the system could be verified as a large-
scale black-box system, though this could similarly fall
under the sample-complexity questions as risen in the
prior subsection. As such, determining an optimal way
of breaking down these larger-scale, system-level speci-
fications, into easily verifiable subcomponents for their
respective systems remains an open problem. Indeed, the
satisfiability of a given signal temporal logic specification
itself remains a challenging problem. Determining the min-
imum number of such subcomponents would also mitigate
any further sample-complexity issues arising from separate
verification procedures as well. On the other hand, perhaps
via smart instrumentation, all verification procedures for
all subcomponents could be performed simultaneously.

OPEN PROBLEMS AND FUTURE DIRECTIONS
Our discourse up to this point has predominantly centered
on the utilization of tail-risk measures in the domains of
planning, control, and verification within robotic systems.
Nonetheless, it is crucial to emphasize the broader ap-
plicability and potential impact of these notions. In this
section, we detail several emerging areas that have gained
substantial attention.

Risk-Aware Learning
There exists a rich body of literature exploring the integra-
tion of tail-risk measures within learning paradigms such
as reinforcement learning, supervised learning, and unsu-
pervised learning. These studies delve into diverse topics
ranging from risk-sensitive reward functions and policy

optimization to risk-aware feature learning and model
training. Such research underscores the versatile role of
tail-risk measures in not only guiding robotic behavior in
uncertain environments but also enabling robots to learn
and adapt in a risk-aware manner over time. Thus, to
provide a comprehensive overview of the role of tail-risk
measures in robotics, it is crucial to shed light on their
applications in learning-based contexts as well.

The recent exploration into risk-averse reinforcement
learning is well encapsulated by the work of Greenberg
et al. [174]. They emphasized the challenges of optimizing
risk measures, as conventional methods often overlook
high-return strategies. To address this, they proposed a
soft risk mechanism coupled with a Cross-Entropy module
for efficient risk sampling. This innovative method, while
maintaining risk aversion, demonstrated improved risk
aversion across diverse benchmarks, setting a precedent
for future exploration in this realm. In another interesting
direction, Lacotte et al. [175] delved into a risk-sensitive
Generative Adversarial Imitation Learning (GAIL) ap-
proach aimed to perform as well as or better than the
expert regarding a risk profile.

Focusing on risk-constrained reinforcement learning,
Chow et al. [22] developed algorithms for risk-constrained
MDPs, using chance constraints or CVaR as the risk
representation. Their work represents an important step
towards understanding and implementing risk constraints
in RL and how these can be used for practical applications.
Finally, Kose and Ruszczynski’s work [176] proposed a
novel reinforcement learning methodology employing a
Markov coherent dynamic risk measure. This work pro-
vided new risk-averse counterparts for basic and multistep
methods of temporal differences, paving the way for future
exploration in risk-averse learning methodologies.

Despite the notable strides made in these studies, the
field of risk-aware reinforcement learning remains rela-
tively under-explored, presenting a wide array of oppor-
tunities for further research. Given the complexity of real-
world environments and the myriad ways in which risks
can be quantified and managed, there is ample scope
for the development of innovative, effective risk-aware
reinforcement learning strategies. As such, the integration
of tail risk measures is a promising direction, likely to yield
valuable insights in the years to come.

Risk-Awareness with Nonstationary and
Independent Data
This second area has garnered substantial interest insofar
as it breaks the assumptions in the works discussed in
this survey. Namely, the vast majority of the work dis-
cussed has all centered around risk-aware methodologies
where either 1) the underlying distribution was known
either exactly or in a distributionally robust sense, or 2)
the distribution is queryable in a sample-based fashion,
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where the algorithm receives independent samples. What
happens when either of these assumptions fails to hold?
This is the central question in a new area of work that is
just beginning in the risk-aware space, and for important
reasons as well. Consider a robot ambulating over uneven
terrain. As the robot traverses the space, any recording
of the unevenness of the terrain would correspond to
samples from a nonstationary distribution, and if the
robot’s controller builds a map of the terrain with this
information and chooses actions predicated on this map,
then successive data is necessarily not independent.

When the underlying distribution of the uncertainty
changes during a motion planning task, we would ideally
like to understand the level of this shift, so that we can
account for it in our risk-aware planners. There has been
a push towards identifying out-of-distribution data for
learning-based tasks [177, 178]. In [178], the authors study
task-driven OOD detection using Probably Approximately
Correct (PAC)-Bayes theory for training the robot. The
PAC-Bayes procedure provides a performance bound such
that violating this bound signals that the robot is operating
in an OOD environment.

In addition to detection of OOD scenarios, we would also
like to respond to such scenarios online. Here, distribution-
free prediction schemes like those offered by conformal
prediction are gaining more traction [179]. As these tools
offer ways of generating probabilistically accurate pre-
dictors provided streams of, potentially non-independent
data, these predictors have been used for motion plan-
ning [180–183], confidence regions for learned classi-
fiers [184, 185], and even for risk-aware decision making,
though not in a tail-risk sense [186]. If we can identify and
adapt to distribution shifts in a risk-aware manner, we can
enable robotic systems to react to data drift, unseen data, or
spurious correlations [187]. By dynamically adjusting the
risk level to adapt to the changing uncertainty distribution
and guarantee the desired level of safety for the motion
planning task, robots can operate in a wider array of
unstructured environments while guaranteeing safety, task
completion, and efficiency.
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