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Abstract

Medical imaging is critical to the diagnosis, surveillance, and treatment of many health conditions, including
oncological, neurological, cardiovascular, and musculoskeletal disorders, among others. Radiologists interpret
these complex, unstructured images and articulate their assessments through narrative reports that remain
largely unstructured. This unstructured narrative must be converted into a structured semantic representation to
facilitate secondary applications such as retrospective analyses or clinical decision support. Here, we introduce
the Corpus of Annotated Medical Imaging Reports (CAMIR), which includes 609 annotated radiology reports from
three imaging modality types: Computed Tomography, Magnetic Resonance Imaging, and Positron Emission
Tomography-Computed Tomography. Reports were annotated using an event-based schema that captures clinical
indications, lesions, and medical problems. Each event consists of a trigger and multiple arguments, and a majority
of the argument types, including anatomy, normalize the spans to pre-defined concepts to facilitate secondary use.
CAMIR uniquely combines a granular event structure and concept normalization. To extract CAMIR events, we
explored two BERT (Bi-directional Encoder Representation from Transformers)-based architectures, including an
existing architecture (mSpERT) that jointly extracts all event information and a multi-step approach (PL-Marker++)
that we augmented for the CAMIR schema.

Keywords: Natural Language Processing, Radiology, Information Extraction, Corpus, Clinical Informatics

1. Introduction

Radiology reports document radiologists’ interpre-
tation of medical images through detailed narrative
text. Although some studies have explored struc-
tured reports that utilize common data elements to
express radiologists’ interpretations through pre-
defined medical concepts (Rubin and Kahn Jr,
2017), the majority of radiology reports utilize nar-
rative text (Willemink et al., 2020). Information ex-
traction (IE) techniques can automatically convert
unstructured reports to structured semantic repre-
sentations to allow utilization of the textual infor-
mation in secondary-use applications. Example
applications include cohort discovery (Casey et al.,
2021), epidemiology (Casey et al., 2021), image
retrieval (Gerstmair et al., 2012), automated follow-
up tracking (Mabotuwana et al., 2019), computer-
vision applications (Zech et al., 2018), decision
support (Demner-Fushman et al., 2009), and re-
port summarization (Wiggins et al., 2021).

Although there is a well-established body of radi-
ology IE research, most of this research focuses on
specific clinical tasks (Casey et al., 2021; Donnelly
et al., 2022) or medical conditions, utilizes a sin-
gle imaging modality, or implements an annotation
schema that does not comprehensively capture
the available information. To address these lim-
itations, we introduce a novel annotated corpus,
the Corpus of Annotated Medical Imaging Reports
(CAMIR), that is relevant to a broad set of appli-
cations. CAMIR includes Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and
Positron Emission Tomography-Computed Tomog-
raphy (PET-CT) reports. The reports are anno-
tated using a granular event schema, where clin-
ical indication, lesion, and medical problem find-
ings are characterized through multiple arguments,
including assertion values (present vs. absent),
normalized anatomy using a hierarchical ontology
of 87 SNOMED-CT concepts, and other clinically
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important attributes. CAMIR includes 609 anno-
tated radiology reports with 1,494 indication events,
5,709 lesion events, and 6,255 medical problem
events. CAMIR has a high inter-annotator agree-
ment (>0.805 F1) for event triggers and an overall
inter-annotator agreement of 0.762 F1. We present
initial IE results using two BERT (Bi-directional En-
coder Representation from Transformers)-based
language models trained and evaluated on CAMIR,
including the Multi-label Span-based Entity and Re-
lation Transformer (mSpERT) (Eberts and Ulges,
2020; Lybarger et al., 2023) and an augmented
version of Packed-levitated Markers (Ye et al.,
2022) (referred to as PL-Marker++). Both archi-
tectures achieve performance comparable to the
inter-annotator agreement (IAA), with PL-Marker++
achieving the highest overall performance.

2. Related Work

There is a significant body of research that explores
IE within the radiology domain, including the cre-
ation of annotated corpora and the development of
extraction models (Pons et al., 2016; Casey et al.,
2021; López-Úbeda et al., 2022). In this section, we
discuss existing research in clinical NLP focusing
on radiology corpora and relevant IE techniques.

2.1. Radiology Corpora
Radiology reports present nuanced and complex
descriptions of medical findings, which existing an-
notated corpora capture with varying degrees of
granularity. Document-level or sentence-level an-
notations map relevant text to normalized values,
targeting diverse label categories such as metas-
tases characteristics (Do et al., 2021) and incidental
findings (Trivedi et al., 2019). Entity annotations
identify phrases of interest, capturing concepts like
anatomical location (Wang et al., 2019) or tumor at-
tributes (Yim et al., 2016). Relation and event anno-
tations enable more nuanced representations, like
the multi-attribute characterization of medical prob-
lems (Lau et al., 2022). Selected studies have inte-
grated the normalization of radiological concepts
related to anatomy (Lybarger et al., 2022; Datta and
Roberts, 2022; Nishigaki et al., 2023) and other ra-
diology terminology (Datta et al., 2020a).

Existing corpora often exhibit limitations in var-
ious dimensions, such as the diversity of the pa-
tient populations represented, the range of imaging
modalities included, the scale of the datasets, or the
granularity and comprehensiveness of the annota-
tion schemas employed. Some studies concentrate
on specific diseases or conditions like hepatocel-
lular carcinoma (Yim et al., 2016) or appendicitis
(Rink et al., 2013), limiting the represented patient
populations. Others are limited to single imag-

ing modalities (Lau et al., 2022; Sugimoto et al.,
2021) or small corpora (n<200) (Hassanpour and
Langlotz, 2016). Other relevant relation extraction
work does not include the normalization of extracted
spans to key concepts (Jain et al., 2021). More re-
cent work (Lybarger et al., 2022) extracts findings
with the associated normalized anatomy values;
however, the findings are not fully characterized
through granular attributes.

To our knowledge, CAMIR is the first annotated
corpus to uniquely combine clinical concept normal-
ization with granular event annotations to compre-
hensively capture important clinical findings. Ad-
ditionally, CAMIR includes a diverse set of reports
from three imaging modalities that were sampled
from all patients at the University of Washington
(UW). CAMIR’s fine-grained annotation schema
with concept normalization and heterogeneous set
of reports can support a wide range of secondary-
use applications.

2.2. IE Methods in Radiology

Early radiology IE research employed discrete ma-
chine learning models with engineered features.
For instance, Support Vector Machines were used
to detect appendicitis findings (Rink et al., 2013)
and Conditional Random Fields were utilized to ex-
tract anatomy and findings (Hassanpour and Lan-
glotz, 2016). These discrete modeling approaches
were supplanted by neural network architectures,
such as Convolutional Neural Network and Recur-
rent Neural Networks. These neural architectures
outperform their predecessors in many radiology IE
tasks, including but not limited to recommendation
extraction (Carrodeguas et al., 2019; Steinkamp
et al., 2021), clinical concept identification (Zhu
et al., 2018), and spatial information extraction
(Datta et al., 2020b). Currently, pre-trained Lan-
guage Models dominate the IE landscape in radiol-
ogy, similar to other domains. BERT (Devlin et al.,
2019) models have been extensively implemented
for tasks ranging from observation detection (Irvin
et al., 2019) to anatomy classification (Nishigaki
et al., 2023) and relation-based finding extraction
(Lybarger et al., 2022). Most recently, Generative
Pre-trained Transformers (GPT) models are being
leveraged to extract structured information from ra-
diology reports (Fink et al., 2023; Mukherjee et al.,
2023; Adams et al., 2023). In this paper, we present
the extraction results of two high-performing BERT-
based models, which were tailored to reflect the
granularity of our annotation schema and serve as
a foundation upon which future work can build.



Figure 1: Examples of sentences annotated with event schema

3. Methods

3.1. Corpus Creation
We used an existing clinical database of 1,417,586
CT, 541,388 MRI, and 39,150 PET-CT reports from
2007-2020 which includes the general patient popu-
lation from four UW Medical System hospitals. We
randomly sampled reports from each modality: 203
CT, 202 MRI, and 204 PET-CT. The reports were au-
tomatically de-identified using a neural de-identifier
(Lee et al., 2021). The study was approved by the
UW Institutional Review Board (IRB).

3.1.1. Annotation Schema

In CAMIR’s event schema, each event includes a
trigger that identifies the event and arguments that
characterize the event. Table 1 summarizes the
schema, and Figure 1 presents annotation exam-
ples from the BRAT rapid annotation tool (Stene-
torp et al., 2012), which was used throughout the
annotation process. CAMIR includes three event
types: (1) Indication - reason for the imaging (e.g.,
“cancer” in line 1 of Figure 1), (2) Lesion – mass-
occupying pathological structures (e.g., “metasta-
sis” in line 3 of Figure 1); and (3) Medical Problem
- non-mass-like abnormalities, defined as a find-
ing that is not a potential mass (e.g., “scarring” in
line 1 of Figure 1). There are two argument types:
(1) span-only arguments assign text spans an ar-
gument label (e.g., “focal” assigned Characteristic
argument in line 2 of Figure 1) and (2) span-with-
value arguments assign text spans both an argu-
ment label and argument subtype label (e.g., “New”
assigned Size Trend argument with subtype value
new in line 2 of Figure 1). To improve the granular-
ity of our annotation schema, anatomy arguments
are normalized to a set of hierarchical anatomical
SNOMED-CT concepts, including 16 Anatomy Par-
ent and 71 Anatomy Child labels listed in Table
2 (e.g., “Bilateral apical lung” assigned Anatomy
Parent - Respiratory and Anatomy Child - Lung in
line 1 of Figure 1).

3.1.2. Annotation Process

Four medical students annotated CAMIR. A se-
nior radiology resident and an experienced board-
certified attending radiologist provided domain ex-
pertise in creating the annotation guidelines and
resolving the ambiguities during annotation. The
annotation guidelines were designed with the ef-
forts of a medical resident and a board-certified
radiologist with 20+ years of experience and pro-
found knowledge of clinical NLP. After a series of
meetings, we updated the annotation guidelines
multiple times to ensure the guidelines accurately
and comprehensively capture the indication, find-
ing, and lesion information relevant to a wide range
of clinical research, including our current explo-
ration of cancer and incidental findings. The hier-
archical anatomy normalization schema was de-
veloped with the help of a board-certified radiol-
ogist by reflecting the widely used SNOMED-CT
concepts. Two pairs of two medical students dou-
bly annotated 357 reports, and 252 reports were
single-annotated by the same annotators. Annota-
tors reached a consistent level of IAA after 5 rounds
of double annotation. Disagreements were adju-
dicated with the help of domain experts who cre-
ated and revised the annotation guidelines when
needed. We then transitioned to single annotation
for the next four rounds to expedite the annotation
process. CAMIR includes training, validation, and
test set splits (70%:10%:20%). The training set is
41% doubly annotated, and the entire validation
and test sets are doubly annotated to ensure eval-
uation reliability.

We singly annotated the training set to create
a larger and more diverse training set, while pro-
viding the most robust data set for the validation
and test sets using double-annotation. The con-
sistency of annotations between singly annotated
and doubly annotated reports was evaluated by
analyzing the average frequency of labels per re-
port. The doubly annotated reports have an aver-
age of 2.65±0.48 Indication, 10.15±1.31 Medical
Problem, and 9.77±0.99 Lesion triggers per report,



Event Trigger/
Argument Argument subtypes Span examples

Indication
Trigger* – “hemorrhage," “sepsis"

Type* {trauma, symptom, neoplastic diagnosis, non-neoplastic
diagnosis} “seminoma," “sarcoid"

Assertion* {present, absent, possible} “r/o," “concern"
Anatomy Anatomy Parent and Child labels+ “abdominal," “alveolar"

Lesion

Trigger* – “‘lymhpadenopathy"

Assertion* {present, absent, possible} “most likely,"
Anatomy Anatomy Parent and Child labels+ “lower back"
Size {current, past} “up to 5mm"
Size Trend {new, disappear, increasing, decreasing, no-change} “increasing in size"
Count – “multiple," “numerous"
Characteristic – “peripheral," “enlarged"

Medical
Problem

Trigger* – “dilation," “calcification"

Assertion* {present, absent, possible} “possibly"
Anatomy Anatomy Parent and Child labels+ “mucosal," “supraagger"

Table 1: Summary of the event schema. * indicates the argument is required. + Anatomy Parent and
Anatomy Child are list in Table 2. “Dx" refers to diagnosis.

Anatomy Parent Anatomy Children
Abdomen Abdominal Wall, Adrenal Gland, Mesentery, Peritoneal Sac, Retroperitoneal, & Spleen
Body Regions Entire Body, Lower Limb, Pelvis, & Upper Limb
Cardiovascular Arterial, Coronary Artery, Heart, Pericardial Sac, Pulmonary Artery, & Venous
Digestive Esophagus, Intestine, Large Intestine, Small Intestine, & Stomach
Female Reproductive
& Obstetric

Adnexal, Breast, Extra-embryonic, Female Genital Structure, Fetus, Ovary, Placenta,
Umbilical Cord, & Uterus

Head & Neck Ear, Eye, Laryngeal, Mouth, Nasal Sinus, Neck, Pharynx, & Thyroid
Hepato-Biliary Bile Duct, Gallblader, Liver, & Pancreas
Lymphatic –
Male Reproductive Epididymis, Prostate, & Testis
Musculo-Skeletal Bone/Joint, & Skeletal and/or Smooth Muscle

Neurological Brain, Cerebrospinal Fluid Pathway, Cerebrovascular System, Extraaxial, Nerve, Pitu-
itary, & Spine - Cervical, Cord, Lumbar, Sacral, Thoracic, or Unspecified

Respiratory Lung, Pleural Membrane, & Tracheobronchial
Skin Skin and or Mucous Membrane, & Subcutaneous
Thoracic Mediastinal
Urinary Kidney, Ureter, & Urinary Bladder
Miscellaneous Adipose Tissue, Biomedical Device, & Connective Tissue

Table 2: Anatomy Parent-Child Hierarchy. All 16 Parent and 71 Child labels map to SNOMED-CT concepts,
but label names are shortened for space. All Parent labels include an Undetermined child label.

and the singly annotated reports include an aver-
age of 2.14±0.26 Indication, 9.91±2.58 Medical
Problem, and 8.78±1.06 Lesion triggers per report.
The frequency of triggers is slightly lower in the
singly annotated reports, suggesting there is some
reduced annotation recall for the singly annotated

reports; however, the evaluation was performed on
the doubly annotated test set, and any annotation
noise associated with the singly training examples
is captured by this evaluation.



3.2. Extraction Architectures
To extract the CAMIR events, we explored two state-
of-the-art BERT (Devlin et al., 2019)-based Lan-
guage Models: (1) mSpERT (Eberts and Ulges,
2020; Lybarger et al., 2023) and (2) an augmented
version of PL-Marker (Ye et al., 2022) referred to as
PL-Marker++. For both systems, we decomposed
events into a set of entities and relations, where
the relation head is a trigger and the relation tail is
an argument.

3.2.1. mSpERT

SpERT (Eberts and Ulges, 2020) jointly extracts en-
tities and relations using BERT (Devlin et al., 2019)
with output layers that classify spans and predict
relations. mSpERT (Lybarger et al., 2023) includes
additional output layers to allow multi-label span
predictions, which we use to predict subtype labels.
Figure 2 shows the mSpERT architecture, which
includes Entity Type, Entity Subtype, and Relation
output layers. The Entity Type and Relation layers
of mSpERT are identical to the original SpERT im-
plementation, and the Entity Subtype layer allows
multi-label span predictions. The Entity Type clas-
sifier (ϕe) is a linear layer that operates on the sen-
tence representation (eCLS), max-pooled span hid-
den states (e(si)), and learned span width embed-
dings (wk+1). The Entity Subtype classifiers (ϕS)
are separate linear layers for each span-with-value
argument that operate on the same input as the
Entity Type classifier but also incorporate the Entity
Type logits. The Relation classifier (ψr) predicts
links between entity spans using a linear layer that
operates on max-pooled spans (e(si) and (e(sl)),
span width embeddings (wk+1), and max-pooled
hidden states between the entity spans (c(si, sj)).
The mSpERT predictions can generate the CAMIR
event structure.

3.2.2. PL-Marker++

PL-Marker (Ye et al., 2022) is a multi-stage extrac-
tion framework, where the first stage identifies en-
tities and second stage resolves relations. To ex-
tract CAMIR events, we introduced an augmented
version of PL-Marker, referred to as PL-Marker++,
which includes a third classification stage for the
span-with-value subtype labels. Figure 3 presents
the PL-Marker++ architecture, where the Entity
Type and Relation stages are identical to the origi-
nal PL-Marker model. The Entity Type stage uses
a group packing approach to process many spans
concurrently while considering their interdependen-
cies. The Relation stage uses a subject-oriented
packing strategy to pack each relation head and
all associated relation tails into an instance, allow-
ing the dependencies between span pairs to be

modeled. The Entity Subtype classification gener-
ates a new input sentence for each extracted entity,
where typed markers identify the target entity. This
entity-specific version of the sentence feeds into
BERT, and the CLS token hidden state feeds into
a multi-label classifier consisting of separate linear
layers for each span-with-value argument.

3.3. Evaluation

Model hyperparameters were tuned using the
CAMIR training and validation sets, and the final
performance is reported for the withheld CAMIR
test set. Performance is presented using the over-
lap span equivalence criterion, where two spans
are considered equivalent if they overlap. For in-
stance, when extracting anatomy spans in line 2 of
Figure 1, the anatomy span, “right pedicle” would be
considered equivalent to “T12 right pedicle" since
there is an overlap between the spans. Triggers are
considered equivalent if the event types are identi-
cal and spans overlap. Span-only arguments are
considered equivalent if the argument types match,
argument spans overlap, and connected triggers
are equivalent. Span-with-value argument equiv-
alence is similar to the equivalence of span-only
arguments, except that the subtype labels must
also match. Overlap span equivalence is relevant
to the CAMIR annotation schema and extraction
task as most arguments are normalized to prede-
fined concepts. This overlap criterion is also suited
for downstream secondary-use applications, and
we performed extensive error analyses to validate
this criterion (see Section 5.3). Performance is eval-
uated using precision, recall, and F1, and statistical
significance is calculated using a non-parametric
(bootstrap) test (Berg-Kirkpatrick et al., 2012).

4. Results

4.1. Corpus

This section summarizes CAMIR, including the IAA
and distribution of annotations. Table 3 presents
IAA for the doubly annotated reports. The overall
IAA for all the triggers and arguments in the doubly-
annotated reports was 0.762 F1 using the criteria
defined in Section 3.3. Consensus regarding the
trigger annotation was higher at 0.856, 0.805, and
0.854 F1 for Indication, Lesion, and Medical Prob-
lem triggers, respectively. Size, Size Trend, and
Count occur much less frequently than the other
arguments, contributing to the lower IAA for these
arguments. Characteristic spans are very linguisti-
cally diverse, resulting in frequent false negatives.
The double annotation and adjudication of the val-
idation and test sets mitigates the impact of this
lower IAA on the evaluation.



Figure 2: mSpERT framework

Figure 3: PL-Marker++ framework

Table 4 summarizes the distribution of the an-
notated phenomena in CAMIR. While the focus of
the imaging modality may differ, the distribution of
annotations is similar across modalities for most
argument types. In each report, 2.4-2.5 Indication
triggers were identified and the reason for the imag-

ing test was mostly neoplastic diagnosis, which
refers to the abnormal growth of certain tumors.
The number of Lesion and Medical Problem was
similar in all three modality types, where most trig-
gers for both events were assigned Assertion value
present. Approximately 9.2-9.7 Lesion and 10.2-



Event type Argument type F1

Indication
Trigger 0.856
Assertion 0.820
Anatomy 0.797
Indication Type 0.804

Lesion

Trigger 0.805
Assertion 0.762
Anatomy 0.710
Size 0.715
Size Trend 0.560
Count 0.564
Characteristic 0.481

Medical Problem
Trigger 0.854
Assertion 0.815
Anatomy 0.751

Overall 0.762

Table 3: Inter-annotator agreement (IAA) for doubly
annotated radiology reports (n=357)

10.4 Medical Problem events were identified on
average in each radiology report.

Lesion-specific attributes such as Characteristic,
Size, Size Trend, Count add supplementary clinical
information that might be crucial for interpreting the
result of the imaging tests. In addition, we provide
Assertion values to each event to clearly indicate
the absence, possibility, or presence of each find-
ing. These Assertion labels are very important for
creating accurate and comprehensive representa-
tions and are relevant to wide range of secondary
use cases. The granularity of CAMIR also provides
the opportunity for more advanced multi-modal re-
search by combining text and relevant images.

4.2. Information Extraction
Table 5 summarizes the extraction performance
on the held-out CAMIR test set. PL-Marker++
achieved significantly higher overall performance
than mSpERT (0.759 F1 vs 0.736 F1). While the
performance of mSpERT and PL-Marker++ mod-
els were similar for extracting Indication and Medi-
cal Problem triggers and arguments, PL-Marker++
performed significantly better in extracting Lesion
triggers and all but one argument type. The PL-
Marker++ model achieved gains of +∆0.05 F1 in
extracting Characteristic, Size, and Size Trend ar-
guments for Lesion events. The overall improved
performance of PL-Marker++ can be attributed to
the infusion of the trigger and argument location
information through all layers of the BERT model.

5. Discussion

5.1. Annotation Quality
The IAA for CAMIR exceeds 0.70 F1 for most
arguments. Exceptions are Size Trend, Count,

and Characteristic. We observed that Size Trend
and Count are relatively infrequent in our data set
and are therefore easy to overlook during anno-
tation. Characteristic was introduced as an inclu-
sive catchall category, resulting in diverse lexical
phrasing and semantics, consequently yielding a
comparatively low IAA.

The IAA for Lesion and Medical Problem triggers
was above 0.80 F1. Majority of the remaining dis-
agreements resulted from ambiguity between event
types. For example, generic words such as “dis-
ease" can refer to a Lesion trigger in the context
of “residual disease," indicating a small number of
cancer cells. At the same time, “disease" can refer
to a Medical Problem in the context of “small vessel
disease". Similarly, “recurrence" can be either Le-
sion or Medical Problem depending on the finding
that is recurring.

5.2. Model Performance

Table 5 shows the BERT models achieved the high-
est performance for the extraction of triggers and
some of the more regularly-expressed arguments
such as Count. Anatomy is a crucial argument
for capturing the meaning of the radiology reports
and has an extraction performance of 0.628-0.718
F1, indicating further study is needed to improve
extraction performance.

5.3. Strict vs Overlap Evaluation

To validate the span overlap criterion, we evaluated
the performance of PL-Marker++ on event triggers
using a strict, exact match span criterion. This eval-
uation resulted in test set performance of 0.749 F1
for Indication, 0.681 F1 for Lesion, and 0.765 F1 for
Medical Problem triggers. There were 279 triggers
that were equivalent using the overlap criterion but
not equivalent using exact match. We manually
reviewed these trigger predictions to assess their
clinical meaning relative to the reference triggers.
For all 279 of these discrepancies between the
overlap and strict criterion, the predicted triggers
still captured all information important to identifying
clinical findings. We found that 203 of these trigger
predictions were shorter than the reference, often
omitting modifiers (e.g. reference - “Mild FDG ac-
tivity” vs. predicted - “FDG activity” or reference -
“hypodense lesions” vs. predicted - “lesions”) and
76 trigger predictions were longer than the refer-
ence, often including modifiers (e.g. reference -
“lesion” vs. predicted “mass lesion” or reference
“carcinoma” vs. predicted “renal cell carcinoma”).



Event Type Argument Type Argument Subtype Frequency (avg. per report)
CT MR PET-CT

Indication

Trigger - 507 (2.5) 496 (2.4) 491 (2.4)

Assertion
present 449 435 436
absent 11 1 5
possible 47 60 50

Type
neoplastic dx 184 181 193
non-neoplastic dx 112 102 91
symptom 149 150 134
trauma 23 32 21

Anatomy all 276 263 278

Lesion

Trigger - 1855 (9.2) 1967 (9.7) 1887 (9.3)

Assertion
present 1190 1302 1222
absent 547 531 539
possible 118 134 126

Anatomy all 2321 2536 2378

Size current 303 364 349
past 46 63 36

Size Trend

decreasing 26 38 36
disappear 22 18 26
increasing 35 61 32
new 64 58 46
no change 109 142 130

Count - 119 112 132
Characteristic - 762 841 921

Medical
Problem

Trigger - 2063 (10.2) 2111 (10.4) 2080 (10.2)

Assertion
present 1217 1294 1189
absent 607 592 631
possible 239 225 260

Anatomy all 2197 2316 2083
Total number of reports (N) 203 202 204

Table 4: Distribution of the annotated event types and arguments in CAMIR by modality. Numbers in
parentheses indicate the average number of triggers per report.

5.4. Generalizability of the Annotation
and Extraction Performance

Our annotation guidelines are designed to be com-
prehensive and foundational to derive overall clini-
cal findings from radiology reports. The guidelines
do not rely on specific templates or formats used
in our institution. Even though the structure of the
medical imaging reports may differ across modal-
ities or institutions, we expect the description of
the main clinical findings in the reports to be com-
patible with our annotation guidelines. Moreover,
although our annotation focused on three imaging
modalities, the annotation schema is not specific
to particular modalities. Therefore, we anticipate
that minimal modifications will be required to the
annotation schema to create annotated datasets
at different institutions or for other modality types,
if any. However, since the content and linguistics
may vary among institutions and modality types,
directly using information extraction models trained
on CAMIR may achieve lower performance on the

reports at other institutions or for other modalities.
Domain adaptation of the CAMIR-trained models
may be required, to maintain high performance.

6. Conclusion

We introduce a novel annotated corpus, CAMIR,
consisting of CT, MRI, and PET-CT reports from
a large hospital system. CAMIR has been anno-
tated using a granular event schema, where clin-
ical indication, lesion, and medical problem find-
ings are captured through multiple arguments and
most arguments are normalized to predefined radi-
ological concepts. Using CAMIR, we explored two
BERT-based architectures (1) mSpERT, an existing
system which jointly extracts all event information,
and (2) PL-Marker++, a system that extracts the
event information through multiple stages, which
we augmented before applying to CAMIR. These
systems performed comparable to IAA. Our PL-
Marker++ achieved significantly higher overall per-



Event Argument Count mSpERT PL-Marker++
P R F1 P R F1

Indication

Trigger 285 0.818 0.758 0.787 0.878 0.705 0.782
Assertion 285 0.816 0.730 0.770 0.852 0.684 0.759

Anatomy Parent 157 0.696 0.554 0.617 0.711 0.580 0.639
Anatomy Child 157 0.675 0.529 0.593 0.711 0.580 0.639

Type 262 0.783 0.687 0.732 0.782 0.683 0.729

Lesion

Trigger 1169 0.859 0.846 0.853 0.880 0.888 0.884†

Assertion 1169 0.840 0.810 0.825 0.863 0.870 0.866†

Anatomy Parent 1448 0.753 0.620 0.680 0.769 0.673 0.718†

Anatomy Child 1448 0.720 0.586 0.646 0.733 0.642 0.684†

Characteristic 652 0.654 0.420 0.512 0.776 0.477 0.591†

Count 75 0.833 0.800 0.816 0.902 0.733 0.809
Size 294 0.761 0.670 0.713 0.890 0.691 0.778†

Size Trend 206 0.720 0.587 0.647 0.795 0.714 0.752†

Medical Problem
Trigger 1271 0.897 0.832 0.863 0.886 0.866 0.875

Assertion 1271 0.878 0.802 0.839 0.854 0.834 0.844
Anatomy Parent 1349 0.792 0.623 0.697 0.752 0.633 0.688

Anatomy Child 1349 0.725 0.563 0.633 0.687 0.578 0.628
OVERALL 12847 0.798 0.684 0.736 0.805 0.718 0.759†

Table 5: Event extraction performance for mSpERT and PL-Marker++ evaluated using overlap criteria on
the held-out test set. Higher F1-scores are bolded. † indicates statistical significance (p < 0.05)

formance than mSpERT (0.759 F1 vs 0.736 F1).
These systems show that the fine-grained informa-
tion in CAMIR can be reliably extracted by auto-
matic methods. While these systems perform well
overall, triggers and their assertion arguments are
more reliably extracted than other arguments such
as anatomy. The annotation guidelines for CAMIR
and the source code for the IE models presented
in this paper are available on our GitHub reposi-
tory∗. CAMIR is unique in that it combines clinical
concept normalization with the granularity of rela-
tion/event annotations to produce comprehensive
semantic representations that can easily be incor-
porated into secondary-use applications, including
clinical decision support (Demner-Fushman et al.,
2009), surveillance (Haas et al., 2005), follow-up
tracking (Mabotuwana et al., 2019), report simpli-
fication (Qenam et al., 2017), cross-specialty di-
agnosis correlation (Filice, 2019), and automated
impression generation (Wiggins et al., 2021).

7. Limitations

This study is limited to data from a single urban hos-
pital system and focuses on three imaging modali-
ties. While CAMIR includes more than 13,000 clini-
cal events, it only consists of 609 reports. There-
fore, the generalizability of the annotated corpus
and extraction architectures to other hospital sys-
tems and other imaging modalities needs further
exploration. In future work, we will incorporate ad-
ditional modalities such as radiographs, ultrasound,
and mammography. Additionally, we will evaluate

∗https://github.com/uw-bionlp/CAMIR

the performance of larger generative Large Lan-
guage Models (e.g. GPT4) in fine-tuning and in-
context learning settings.

8. Acknowledgements

This work was supported by the National Institutes
of Health (NIH) - National Cancer Institute (Grant
Nr. 1R01CA248422-01A1) and National Library of
Medicine (NLM) Biomedical and Health Informatics
Training Program at the University of Washington
(Grant Nr. T15LM007442). The content is solely
the responsibility of the authors and does not nec-
essarily represent the official views of the NIH.

9. Ethics

We obtained the necessary approvals from our in-
stitution’s IRB, with a waiver of patient consent to
use their clinical notes. Radiology reports may
contain patient Protected Health Information (PHI),
like names, contact information, and other identi-
fiers. Each report was automatically de-identified
using a neural de-identification model and then
subsequently manually de-identified by medical
student annotators, to ensure no remaining PHI.
All radiology reports, including the original and de-
identified versions, were stored on a Health Insur-
ance Portability and Accountability Act (HIPAA)-
compliant server, to ensure patient privacy. All re-
searchers and annotators received the necessary
human subjects training to interact with patient data,
including PHI.

The annotated reports in our corpus were ran-



domly sampled from the general population of pa-
tients with medical imaging from a single institution.
The demographics of the patients were not consid-
ered during data collection, and the patient pop-
ulations in our corpus may not be representative
of populations at other institutions or the broader
population, which may inadvertently bias the dis-
tribution of annotated medical conditions. Addi-
tionally, radiology reports of other institutions may
differ in format and language. These factors may
impact the generalizability of the extraction models
developed using the corpus.
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Appendix A. SNOMED-CT Concepts for Anatomy Normalization

Anatomy Parent Anatomy Children Count

Abdomen (113345001)
Abdominal Wall (83908009), Adrenal Gland (23451007), Mesen-
tery (89679009), Peritoneal Sac (118762006), Retroperitoneal
(699600004), Spleen (78961009), Undetermined

512

Cardiovascular System
(59820001)

Arterial (51114001), Coronary Artery (41801008), Heart
(80891009), Pericardial Sac (76848001), Pulmonary Artery
(81040000), Venous (119553000), Undetermined

770

Digestive System
(49596003)

Esophagus (32849002), Intestine (113276009), Large Intestine
(14742008), Small Intestine (30315005), Stomach (69695003),
Undetermined

425

Female Reproductive
System (27436002) &
Obstetric (308762002)

Adnexal (23043003), Breast (76752008), Extra-embryonic
(314908006), Female Genital Structure (53065001), Fetus
(55460000), Ovary (15497006), Placenta (78067005), Umbilical
Cord (29870000), Uterus (35039007), Undetermined

272

Head & Neck (774007)
Ear (117590005), Eye (371398005), Laryngeal (4596009), Mouth
(385294005), Nasal Sinus (2095001), Neck (45048000), Pharynx
(54066008), Thyroid (69748006), Undetermined

1096

Hepato-Biliary System
(34707002, 122489005)

Bile Duct (28273000), Gallbladder (28231008), Liver (10200004),
Pancreas (15776009), Undetermined

609

Lymphatic (91688001) Undetermined 559
Male Reproductive
System (90264002)

Epididymis (87644002), Prostate (119231001), Testis (40689003),
Undetermined

49

Miscellaneous Adipose Tissue (55603005), Biomedical Device (63653004), Con-
nective Tissue (21793004), Undetermined

59

Musculoskeletal
(312717002)

Bone/Joint, Skeletal and or Muscle (71616004), Undetermined 1811

Neurological System
(25087005)

Brain (12738006), Cerebrospinal Fluid Pathway (280371009),
Cerebrovascular System (28661005), Extraaxial (1231004), Nerve
(3057000), Pituitary (56329008), Spine Cervical (122494005),
Spine Cord (2748008), Spine Lumbar (122496007), Spine Sacral
(699698002), Spine Thoracic (122495006), Spine Unspecified
(421060004), Undetermined

3235

Other Body Regions
(272625005)

Entire Body (38266002), Lower Limb (61685007), Pelvis
(12921003), Upper Limb (53120007), Undetermined

887

Respiratory System
(714323000)

Lung (39607008), Pleural Membrane (3120008), Tracheobronchial
(91724006), Undetermined

1200

Skin (400199006) Skin and or Mucous Membrane (707861009), Subcutaneous
(71966008), Undetermined

58

Thoracic (51185008) Mediastinum (72410000), Undetermined 772
Urinary System
(122489005)

Kidney (64033007), Ureter (119220009), Urinary Bladder
(89837001), Undetermined

378

Table A1: Anatomy Parent-Child SNOMED Hierarchy. SNOMED concept names are shortened due to lack
of space. There are 16 Parent and 71 Child labels. Undetermined Child labels are catch-all categories.
Count represents the number of annotations for Parent labels.
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