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Abstract

We investigate regularity properties of some non-local equations defined on Dirichlet
spaces equipped with sub-gaussian estimates for the heat kernel associated to the gen-
erator. We prove that weak solutions for homogeneous equations involving pure powers
of the generator are actually Hölder continuous and satisfy an Harnack inequality. Our
methods are based on a version of the Caffarelli-Silvestre extension method which is valid
in any Dirichlet space and our results complement the existing literature on solutions of
PDEs on classes of Dirichlet spaces such as fractals.
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1 Introduction

The last two decades have seen an important amount of work whose aim is to realize the
powers of some operators L in terms of a suitable extension, in order to deduce properties of
solutions as a by-product of solutions in the extension. This method is very powerful to deal
with equations involving powers of L but also, in the other direction, to understand properties
of equations in a ”lifted” space of the type X ×R+ using tools of purely non-local nature on
the space X. This approach has been undertaken in a PDE framework in the original seminal
paper of Caffarelli and Silvestre [20]. Since then, a very substantial amount of literature has
been devoted to this type of ”dictionary” between equations satisfied in X × R+ and the
related equation on X.

When the operator L is second-order in divergence-form, for instance, the extension ap-
pears to be a differential operator, and classical tools from PDEs allow to get (or recover)
several results on the operator (−L)s (for 0 < s < 1) such as regularity estimates and fine
properties of solutions of an associated PDE. Functions of L are, of course, multipliers in the
sense of harmonic analysis, and one can then get new proofs of some classical results (see, e.g.
[45, 19, 6] and references therein).

Powers of some suitable L are a subclass of generators of Lévy processes, and some results
which can be proved via probabilistic techniques can be recovered through PDE ones. We
refer the reader to the book [15] for an extensive study of Lévy processes. The idea of using
results in the extension to obtain some on the boundary is already presented in [20]. Since
the extension by Caffarelli and Silvestre involves A2 weights and a rather satisfactory basic
theory for those is available in the literature (see e.g., [34, 32, 33] ), one deduces a wealth
of results such as Harnack principles and regularity of solutions for equations of the type
(−∆)su = 0 with s ∈ (0, 1). Notice that similar results have been obtained for powers of the
heat operator in [8, 7, 50, 5]. In [23, 24, 22], Chen, Kumagai andWang developed a far reaching
theory of parabolic Harnack inequalities for non-local Dirichlet forms. Such Dirichlet forms
are typically associated to generators like (−∆)s for s ∈ (0, 1). Building on many important
works over many years, the authors prove some precise equivalences between some versions
of the parabolic Harnack inequality for the generator and various sharp heat kernel bounds
(among other results). In the current paper, our approach is to use the interplay between
the extended problem (and properties of weak solutions on it) and the trace of its solutions
which are by construction weak solutions of Ls. This allows to prove many results for Ls out
of results on the corresponding extended problem. Of course, as it is now well understood,
such technique works only for pure powers of suitable generators and one cannot deal as in
[23, 24, 22] with general non-local Dirichlet forms.

In [51], Stinga and Torrea develop a framework for powers of a general non-negative self-
adjoint operator L on L2(Ω, dη), with Ω being an open set in Rn and dη a positive measure.
Their approach, based on transference principles, only requires the existence of a heat kernel
and semi-group theory. It covers a much wider class of setups than the approach developed by
Caffarelli and Silvestre in their original paper. Similarly, Kwasnicki and Mucha [44] discussed
the extension problem for complete Bernstein functions of the Laplacian, other than just
fractional powers.

One of the first goals of the current paper is to give a unified framework of the extension
theorem in the context of Dirichlet spaces. Formally, the approach of Stinga and Torrea is
extremely flexible and provides some classical notions on Dirichlet spaces are known, their
proof adapts verbatim. It is also clear that the construction of Kwasnicki and Mucha in
our context (see [44] for the Euclidean case) allows functions of the generator can also be
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performed.
The main contributions of this paper is to investigate Hölder regularity and Harnack

inequalities for weak solutions of (−L)su = 0, 0 < s < 1, on X where X is a Dirichlet space,
with a generator L having sub-gaussian estimates. Examples of such a framework include a
large class of fractals.

We now describe our setup and refer the reader to next section for precise definitions.
Consider a Dirichlet space (X, d, µ, E ,F). Assume that it is strongly local and regular. Let
−L be the associated generator to the form E and assume that the heat kernel pt satisfies
sub-Gaussian estimates, namely

c1

tdH/dW
exp

(
−c2

(
d(x, y)dW

t

) 1
dW−1

)
≤ pt(x, y) ≤

c3

tdH/dW
exp

(
−c4

(
d(x, y)dW

t

) 1
dW−1

)
(1.1)

holds for µ × µ-a.e. (x, y) ∈ X × X and each t ∈ (0,+∞), where c1, c2, c3, c4 > 0 and
dW ∈ (2,+∞) are constants independent of x, y and t.

Our main result is the following theorem on regularity properties of solutions of (−L)su =
0.

Theorem 1.1. Suppose the sub-Gaussian heat kernel estimates (1.1) hold on the space (X, d, µ, E ,F).
Consider a non-negative weak solution f of (−L)sf = 0 where −L is the generator of E and
the parameter range is s ∈ (0, 1). Then the following holds: the function f satisfies a global
Harnack inequality

sup
B(x0,R)

f ≤ C inf
B(x0,R)

f (1.2)

for any x0 ∈ X and R > 0. Moreover, the following Hölder continuity holds,

|f(x)− f(y)| ≤ C

(
d(x, y)2/dW

R

)α

osc
B(x0,R)

f (1.3)

for µ-almost all x, y ∈ B(x0, R).

The previous theorem has been proved in [31] in the case of Cheeger spaces. Our aim here
is to provide the first proof of Hölder regularity and Harnack inequality in a Dirichlet setting
encompassing fractals. We combine several techniques, but the main result, the Harnack
inequality, is not a direct consequence of the extension, as in the more regular space version.
This fact is due to that in our setting the lifted space after the extension does not support
sub-gaussian heat kernel estimates any more. This means that the Harnack inequality cannot
be obtained via standard methods in the extended space since, combined to the volume
doubling property, it would imply Gaussian estimates on X, hence a contradiction with our
standing assumptions. Instead, in the extended space, we derive a partial Harnack inequality
on products of balls with anisotropic scalings for the variables. Passing to the trace it leads
the desired Harnack inequality for the elliptic original PDE. As already alluded, results like
Theorem 1.1 pertain to a theory which has been developed in greater generality in [23, 24, 22].
In this paper, the authors work directly at the level of the non-local Dirichlet form and
make full use of the probabilistic properties of the jump process associated with the Dirichlet
form. This creates very serious difficulties and the results they prove build on many previous
contribution, for instance [10, 11]. On the other hand, our result can be obtained through
simpler and perhaps arguments, at the price of restricting the type of jump process under
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consideration, and sheds some light on the dichotomy between the local Dirichlet form on the
extended space and the non-local on X. In view of this, the inhomogeneous partial Harnack
inequality happens to be the correct object in this setting.

Finally, we would like to mention that, there is other strategies to prove Hölder regularity
and/or Harnack inequalities in the case of our class of jump processes. Indeed, one can
consider directly the non-local equation expressing the operator in integral form so that in
this case we fall into the framework of [23], but using PDE techniques recently developed to
handle directly non-local equations at the global level, i.e. without using the extension and
incorporating the contributions of long range and jump effects of the process. In our general
framework, this approach is somehow more involved to implement. Indeed a straightforward
computation based on the spectral theorem shows that under natural assumptions, one can
show that an integral expression of (−L)s can be obtained as

(−L)sf(x) = P.V.

∫
X
K(x, y)(f(y)− f(x))dµ(y)

with

K(x, y) =

∫ +∞

0
pt(x, y)

dt

t1+s

and where pt is the heat kernel associated to −L. Under additional assumptions on the heat
kernel pt and using the previous formula for the Kernel K, one would obtain some a priori
bounds (and regularity) on K, which are reminiscent of some ellipticity conditions. This
opens the way to use arguments as in e.g. [49, 29, 30]. A more precise version of the previous
computation can be found in [1] in the context of some Riemannian manifolds . It is however
not completely clear how to derive the formula in [1] in our general set up since it relies on
the Hadamard parametrix, which is a very Riemannian construction. We refrain from using a
purely nonlocal approach since our method via extension offers perspectives on the different
behaviours in the lifted space.

2 Preliminaries on Dirichlet Spaces

2.1 Basic definitions on Dirichlet spaces

Here we provide an introduction to Dirichlet spaces. We refer the reader to [36] for more
details. Let (X, d) be a locally compact metric space equipped with a Radon measure µ with
full support. Let (E ,F = D(E)) be a densely defined, non-negative, symmetric bilinear form
on L2(X, µ). Note that

(u, v)F = (u, v)L2(X,µ) + E(u, v)
is an inner product on F . Then we can define the norm on F by Cauchy-Schwarz inequality,

||u||F =
(
E(u, u) + ||u||2L2(X,µ)

)1/2
.

We say E is closed if F is complete with respect to the norm || · ||F . Given E is closed, we say
it is Markovian if

u ∈ F , v is a normal contraction of u⇒ v ∈ F , E(v, v) ≤ E(u, u).

Here a function v is called a normal contraction of a function u, if

|v(x)− v(y)| ≤ |u(x)− u(y)| , ∀x, y ∈ X, |v(x)| ≤ |u(x)| , ∀x ∈ X.
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Definition 2.1. We say (E ,F = D(E)) is a Dirichlet form on L2(X,µ), if E is a densely
defined, closed, non-negative, symmetric and Markovian bilinear form on L2(X,µ).

By [36, Theorem 1.3.1], we can define the generator for a Dirichlet form.

Definition 2.2. There is a one-to-one correspondence between the family of closed symmet-
ric forms E on L2(X,µ) and the family of non-positive definite self-adjoint operators L on
L2(X,µ). The correspondence is determined by{

D (E) = D
(√

−L
)

E(u, v) = (
√
−Lu,

√
−Lv)

L is called the generator of the Dirichlet form E.

Since L is non-positive self-adjoint, by the spectral theorem, there exists a unique spectral
measure dE(λ), such that

−L =

∫ ∞

0
λdE(λ).

This formula is understood in the following sense: for any functions f, g ∈ D (L), we have

⟨−Lf, g⟩ =
∫ ∞

0
λdEf,g(λ),

where dEf,g is a well-defined Radon measure on X. In particular, for any non-negative
continuous function ϕ on [0,∞), we can define{

ϕ(−L) =
∫∞
0 ϕ(λ)dE(λ),

D (ϕ(−L)) =
{
u ∈ F :

∫∞
0 ϕ(λ)2dEu,u(λ) <∞

}
.

(2.1)

We will in particular, consider fractional powers of the generator L, which are then defined
by

⟨(−L)sf, g⟩ =
∫ ∞

0
λsdEf,g(λ), (2.2)

and the domain of (−L)s is given by

D ((−L)s) =
{
u ∈ F :

∫ ∞

0
λ2sdEu,u(λ) <∞

}
. (2.3)

Similarly, we can define the semigroup associated with L as Pt = etL.
We denote by Cc(X) the space of all continuous functions with compact support in X and

C0(X) its closure with respect to the supremum norm. The following definitions hold:

Definition 2.3. A core of E is a subset C of F ∩ C0(X) such that C is dense in F with the
norm || · ||F and dense in C0(X) with the supremum norm.

1. A Dirichlet form E is called regular if it admits a core.

2. A Dirichlet form E is called local if for any u, v ∈ F with disjoint compact support, then
E(u, v) = 0. E is called non-local if this property does not hold.
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3. A Dirichlet form E is called strongly local if for any u, v ∈ F with compact support, v is
constant on a neighbourhood of the support of u, then E(u, v) = 0.

We now assume throughout the paper that (E ,F) is a strongly local regular Dirichlet form
on L2(X, µ). Since E is regular, the following holds

Definition 2.4. Suppose E is a regular Dirichlet form, for every u, v ∈ F ∩ L∞(X), the
energy measure Γ(u, v) is defined through the formula∫

X
ϕdΓ(u, v) =

1

2
[E(ϕu, v) + E(ϕv, u)− E(ϕ, uv)], ϕ ∈ F ∩ Cc(X).

Note that Γ(u, v) can be extended to all u, v ∈ F by truncation (see [25, Theorem 4.3.11]).
According to Beurling and Deny [16], one has then for u, v ∈ F

E(u, v) =
∫
X
dΓ(u, v)

and Γ(u, v) is a signed Radon measure.

2.2 Weak solutions associated to generators

We introduce the following spaces. For a domain Ω ⊂ X, define

Floc(Ω) =
{
f ∈ L2

loc(Ω), for every relatively compact V ⊂ Ω, ∃f∗ ∈ F , f∗|V = f|V , µ a.e.
}
,

(2.4)

Fc(Ω) = {f ∈ F : The essential support of f is compact in Ω} , (2.5)

F0(Ω) = The closure of Fc(Ω) with respect to the norm ∥f∥F . (2.6)

Remark 2.5. For f, g ∈ Floc(Ω), on can define Γ(f, g) locally by Γ(f, g)|V = Γ(f∗|V , g
∗
|V ).

Definition 2.6. For a domain Ω ⊂ X, a function f ∈ Floc(Ω) is called harmonic in Ω if for
every function h ∈ F whose essential support is included in Ω, one has

E(f, h) = 0.

In particular, f is also called a weak solution for Lf = 0 in Ω, since E(f, h) = ⟨−Lf, h⟩.
Similarly, we have

Definition 2.7. For a domain Ω ⊂ X, a function f ∈ D ((−L)s) is called a weak solution for
(−L)sf = 0, if for every function h ∈ F whose essential support is included in Ω, one has

⟨(−L)sf, h⟩ = 0.

2.3 Sub-Gaussian heat kernel estimate

The following definition is related to the regularity of the measure.

Definition 2.8. Let (X, d, µ) be a metric measure space and V (x,R) = µ(B(x,R)) for R > 0.
We say it satisfies the volume doubling (VD) property if there exists a constant C > 0 such
that for every x ∈ X and R > 0,

µ(B(x, 2R)) ≤ C µ(B(x,R)). (2.7)
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We note the following lemma.

Lemma 2.9. Suppose a metric measure space (X, d, µ) satisfies (VD), then there exists
CV D, γ > 0 such that

V (x,R) ≤ CV DV (y, r)

(
d(x, y) +R

r

)γ

, for all x, y ∈ X, 0 < r ≤ R. (2.8)

We define the following sub-Gaussian heat kernel estimate. We refer to [12] and [37, 39].

Definition 2.10. Let (X, d, µ, E ,F) be a Dirichlet space and L be its generator. Let Pt be
the heat semi-group associated with L. We say the kernel pt(x, y) of Pt satisfies sub-gaussian
heat kernel estimates if

c1

tdH/dW
exp

(
−c2

(
d(x, y)dW

t

) 1
dW−1

)
≤ pt(x, y) ≤

c3

tdH/dW
exp

(
−c4

(
d(x, y)dW

t

) 1
dW−1

)
(2.9)

holds for µ × µ-a.e. (x, y) ∈ X × X and each t ∈ (0,+∞), where c1, c2, c3, c4 > 0 and
dW ∈ [2,+∞) are constants independent of x, y and t.

The parameter dH is the Hausdorff dimension, and dW is called the walk dimension. If
(HKE) holds, then dH is the Hausdorff dimension of the metric space (X, d) and the measure
µ is dH -Ahlfors regular i.e.

µ(B(x, r)) ≍ CrdH (2.10)

where B(x, r) is the open metric ball with center x and radius r in (X, d). A notable conse-
quence of the Ahlfors regularity property is the volume doubling property:

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

There are many examples of Dirichlet spaces where the heat kernel satisfies the estimates
(2.10). In particular a large family of examples of Dirichlet spaces for which sub-Gaussian
estimates hold are the p.c.f. fractals like the unbounded Vicsek set (see 1), the unbounded
Sierpiński gasket (see 2) or the infinite Sierpiński carpet (see 3). We refer to the lecture notes
[9] by M. Barlow where those examples are discussed in details.

Figure 1: A part of an infinite, or unbounded, Vicsek set.
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Figure 2.2. A part of an infinite Sierpiński gasket.

0

3

5

6

-

6

Figure 2.3. An illustration to the computation of the spectrum on the infi-
nite Sierpiński gasket. The curved lines show the graph of the function R(·),
the vertical axis contains the spectrum of σ(−∆Γ0) and the horizontal axis
contains the spectrum σ(−∆).

the preimages of 5 and 3 under the inverse iterations of R. In this case formula (2.14) is
the same as the formulas for eigenprojections in [41]. The illustration to the computation
of the spectrum in Theorem 2.3 is shown in Figure 2.3, where the graph of the function
R is shown schematically and the location of eigenvalues is denoted by small crosses. The
spectrum σ(−∆) is shown on the horizontal axis and the set of eigenvalues Σ0 of −∆Γ0 is
shown on the vertical axis.
A different infinite Sierpiński gasket fractafold can be constructed using two copies of an

infinite Sierpiński gasket with a boundary point, and joining these copies at the boundary.
This fractal first was considered in [2], and has a natural axis of symmetry between left and
right copies. Therefore we can consider symmetric and anti-symmetric functions with respect
to these symmetries. It was proved in [41] that the spectrum of the Laplacian restricted to
the symmetric part is pure point with a complete set of eigenfunctions with compact support.
For the anti-symmetric part the compactly supported eigenfunctions are not complete, and
it was proved in [31] that the Laplacian on Γ0 has a singularly continuous component in
the spectrum, supported on JR, of spectral multiplicity one. As a corollary of these and our
results we have the following proposition.

Figure 2: A part of an infinite, or unbounded, Sierpinski gasket.

Figure 3: A part of an infinite, or unbounded, Sierpinski carpet.

2.4 Caloric functions

We need to define what it means that a function u(t, x) is a caloric function in a cylinder
I × Ω, where I is an interval in R and Ω is an open subset of X. We start by the weak
differentiability.

Definition 2.11. Let I be an interval in R. We say that a function u : I → L2(Ω) is weakly
differentiable at t0 ∈ I if for any f ∈ L2(Ω), the function (u(t), f) is differentiable at t0,
(where the brackets stand for the inner product in L2(Ω)). That is, the following limit exists.

lim
t→t0

(
u(t)− u(t0)

t− t0
, f

)
(2.11)

And then,

Definition 2.12. Let (X, d, µ, E ,F) be a Dirichlet space. Consider a function u : I → F ,
and let Ω be an open subset of X. We say that u is a subcaloric function in I × Ω if u is
weakly differentiable in the space L2(Ω) at any t ∈ I and for any non-negative f ∈ Floc(Ω)
and for any t ∈ I,

(u′, f) + E(u, f) ≤ 0. (2.12)

Similarly, one defines the notions of supercaloric functions and caloric functions. For the
later, the inequality in (2.12) becomes equality for all f ∈ Floc(Ω).

We have the super-mean value inequality for caloric functions, and the proof can be found
in [12, Corollary 2.3].

Corollary 2.13 (Super-mean value inequality). Let f ∈ L2
+(Ω) and u be a non-negative

suprecaloric function in (0, T )×Ω such that u(t, ·) L2(Ω)−−−−→ f as t→ 0. Then for any t ∈ (0, T ),

u(t, ·) ≥ PΩ
t f in Ω. (2.13)

In particular, for all 0 < s < t < T ,

u(t, ·) ≥ PΩ
t−su(s, ·) in Ω (2.14)
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3 Extension Theorem on Dirichlet Spaces

3.1 Pure Fractional powers

In this section, we establish an extension theorem for the fractional power (−L)s of the
generator of any Dirichlet form. This theorem is a direct generalization of the extension
theorem in [51]. Here the fractional power (−L)s and its domain D((−L)s) are defined by the
spectral theorem for 0 < s < 1 as introduced in Section 2.

We introduce some notations that will appear in the theorem. For any −1 < a < 1, we
consider the space R endowed with the measure dνa = |y|a dy. The Bessel operator is defined
on (R, dνa) as

Ba =
∂2

∂y2
+
a

y

∂

∂y
. (3.1)

Notice that the space (R, dνa) is in an homogeneous space since the measure dνa is a doubling
measure. The function y → |y|a (and its inverse), which is L1

loc, is even an A2 weight.
Let Xa denote the space X ×R endowed with the product measure dµa = dµdνa. We will

also use X+
a to denote the space X × (0,+∞) with the measure dµa. The following theorem

describes the extension properties of (−L)s.

Theorem 3.1. Let f ∈ D((−L)s) and let Pt = etL denote the semigroup generated by L.
Consider the boundary value problem{

LaU = (L+ Ba)U = 0 in X+
a ,

U(·, 0) = f,
(3.2)

where a = 1− 2s, we have

(i) The function

U(·, y) = 1

Γ(s)

∫ +∞

0
(Pt(−L)sf) · e−

y2

4t
dt

t1−s
. (3.3)

is a weak solution of (3.2).

(ii) The following Poisson formula holds in the weak sense

U(·, y) = y2s

22sΓ(s)

∫ +∞

0
(Ptf) · e−

y2

4t
dt

t1+s
. (3.4)

(iii) The Dirichlet-to-Neumann condition holds, i.e. the following equation holds weakly

(−L)sf = −22s−1Γ(s)

Γ(1− s)
lim

y→0+
ya
∂U

∂y
(·, y) (3.5)

The solution U is called the s-harmonic extension of f .

The proof is almost the same as in [51] and we provide a sketch of it below. Our goal
here is to provide the most general framework available to deal with equations seen in the
extension. The previous result covers in particular the following examples, some of which
were previously considered in the literature:

9



• Complete Riemannian manifolds with non-negative Ricci curvature or more generally
RCD(0,∞) spaces in the sense of Ambrosio-Gigli-Savaré [3],

• Carnot groups and other complete sub-Riemannian manifolds satisfying a generalized
curvature dimension inequality (see [13, 14]). The case of Heisenberg groups was con-
sidered in [35].

• Doubling metric measure spaces that support a 2-Poincaré inequality with respect to
the upper gradient structure of Heinonen and Koskela (see [41, 42, 43]).

• Metric graphs with bounded geometry (see [40]).

• Abstract Wiener spaces (see e.g. [17] for a general introduction to Gaussian spaces ).
The extension theorem was introduced in [47, 48]

Remark 3.2. In the paper by Stinga and Torrea [51], the previous theorem was proved on
the Euclidean case with positive measure [20, 51], Gauss spaces and some variations of them
on bounded domains.

3.1.1 Sketch of the argument for Theorem 3.1

1. First, we check the following integral is convergent

⟨U(· , y), g(·)⟩L2(X; µ) =
1

Γ(s)

∫ ∞

0
⟨Pt(−L)sf, g⟩L2(X;µ) e

− y2

4t
dt

t1−s
, (3.6)

for almost all y > 0 and for all g ∈ L2(X;µ). From now on, we will use L2(X) to denote
L2(X;µ) for simplicity whenever there is no confusion. For each R > 0, we can define almost
everywhere that

UR(x, y) =
1

Γ(s)

∫ R

0
(Pt(−L)sf)(x)e−

y2

4t
dt

t1−s
.

Since f ∈ D((−L)s), we have Pt(−L)sf ∈ L2(X) and hence UR is well-defined. Moreover,

⟨UR(· , y), g(·)⟩L2(X) =
1

Γ(s)

∫ R

0
⟨Pt(−L)sf, g⟩L2(X) e

− y2

4t
dt

t1−s

=
1

Γ(s)

∫ ∞

0

∫ R

0
e−tλ(tλ)se−

y2

4t
dt

t
dEf,g(λ).

We change the order of integration because of the integrability. By the change of variable
r = tλ, we have∣∣∣⟨UR(·, y), g(·)⟩L2(X)

∣∣∣ ≤ 1

Γ(s)

∫ ∞

0

∫ ∞

0
e−rrs

dr

r
d |Ef,g(λ)| ≤ ||f ||L2(X)||g||L2(X).

Therefore, for each fixed y > 0, UR(·, y) is in L2(X) and

||UR(·, y)||L2(X) ≤ ||f ||L2(X).

By the similar computation, for some R2 > R1 > 0,

|⟨UR1(·, y), g⟩ − ⟨UR2(·, y), g⟩| ≤
1

Γ(s)

∫ ∞

0
e−rrs

dr

r

∫ R2

R1

d |Ef,g(λ)| → 0
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as R1, R2 → ∞. There exist a Cauchy sequence of bounded operators {URj (·, y)}j∈N con-

verging in L2(X) for almost all y ∈ R. By the dominated convergence theorem, we can pass
the limit and have

⟨U(· , y), g(·)⟩L2(X) = lim
Rj→∞

⟨URj (· , y), g(·)⟩L2(X) =
1

Γ(s)

∫ ∞

0
⟨Pt(−L)sf, g⟩L2(X) e

− y2

4t
dt

t1−s
.

2. By a similar limit argument, one can check that U(·, y) ∈ D(L) and the boundary condition
in (3.2) holds. The partial derivative of U can be passed inside the integral based on the
convergence of the integral. The equation (3.4) and (3.5) follow from similar computation.

3.2 Properties of the extended space

In this section, we derive some properties of Xa seen as a Dirichlet space. It will be important
for further analysis since, as in [20], the idea is to derive properties of solutions of an equation
on Xa = X×R out of the properties of the Dirichlet space X and vice versa. In this subsection
we assume that the Dirichlet form is regular and strongly local.

For a point z ∈ Xa, we denote z = (zx, zy) where zx ∈ X and zy ∈ R. We define the
natural product metric by

da(z, w)
2 = d(zx, wx)

2 + |zy − wy|2, (3.7)

where z, w ∈ Xa, d is the metric in X and | · | is the Euclidean metric in R. Associated to E ,
we can define the bilinear form Ea on the space Xa = X × R with domain Fa,

Ea(u, v) =
∫
Xa

(
E(u, v)dµa + uy · vy dµa

)
,

Fa =
{
u ∈ L2(Xa, µa), Ea(u, u) <∞

}
As before, we define the norm and the energy measure

||u||2Ea = ||u||L2(Xa, µa) + Ea(u, u). (3.8)

dΓa(u, u) = dΓ(u, u)dµa +

∣∣∣∣∂u(., .)∂y

∣∣∣∣2 dµa, (3.9)

Theorem 3.3. (Xa, da, µa, Ea) is a strongly local regular Dirichlet space, where −1 < a < 1.

Proof. One can easily derive the Markovian property and the strong local property. And the
density of Fa follows from the regularity. We are left to show that Ea is closed and regular.

For the closedness, given a Cauchy sequence {un} in Fa, we want to show that there exists
u ∈ Fa such that un → u in Fa. Notice that

||un − um||2Fa
=

∫
R

∫
X
|un − um|2dµdνa +

∫
X

∫
R
E(un − um, un − um)dµa+∫

X

∫
R
|∂yun − ∂yum|2dνadµ =

∫
R
||un − um||2Edνa +

∫
X

∫
R
|∂yun − ∂yum|2dνadµ.

Since F is a Banach space, un(·, y) can be viewed as a function maps from R to Fa. In
particular, {un(·, y)} is a Cauchy sequence in L2(R,F ; νa). There exists u in L2(R,F ; νa),
such that un → u. Notice that we also have un → u in L2(Xa). And {∂yun} being a Cauchy
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sequence in L2(Xa) implies there exists uy ∈ L2(Xa) such that ∂yun → uy. Now we are left
to show that ∂yu = uy. We recall that the weak derivative for a Bochner integrable function
h ∈ L2(R, L2(X); νa) is ∂yh, if for any ϕ ∈ C∞

c (R),∫
R
hϕ′dνa = −

∫
R
∂yhϕdνa

The equality holds in the sense of L2(X). Then for any ϕ(y) ∈ C∞
c (R) and ξ(x) ∈ Cc(X),

notice that ξ(x)ϕ(y) ∈ L2(Xa),∫
X

∫
R
u(x, y)ξ(x)ϕ′(y)dνadµ = lim

n→∞

∫
X

∫
R
un(x, y)ξ(x)ϕ

′(y)dνadµ

= lim
n→∞

∫
X

∫
R
∂yun(x, y)ξ(x)ϕ(y)dνadµ

=

∫
X

∫
R
uy(x, y)ξ(x)ϕ(y)dνadµ

The limits result from un → u and ∂yun → uy in L2(Xa). Since u(x, y), uy(x, y) ∈ L2(Xa),
we have ∫

R
u(x, y)ϕ′(y)dνa =

∫
R
uy(x, y)ϕ(y)dνa a.e. in X.

Then by definition, ∂yu(x, y) = uy(x, y).
To show Ea is regular, we claim that Ca = C ⊗H1(R) ⊂ Fa is a core of Ea, where C is the

core of E and H1(R) is the Sobolev space over R. Given a function f(x, y) ∈ Fa, suppose for
any φ(x) ∈ C and ψ(y) ∈ H1(R),

(f(x, y), φ(x)ψ(y))Fa = 0

Notice that

(f(x, y), φ(x)ψ(y))Fa =

∫
Xa

f(x, y)φ(x)ψ(y)dνadµ+

∫
R
E(f(x, y)φ(x))ψ(y)dνa

+

∫
Xa

φ(x)∂yf(x, y)ψ
′(y)dνadµ

= ⟨⟨f(x, y), φ(x)⟩F , ψ(y)⟩H1(R) .

Then by the density of C, we have f ≡ 0 a.e. with respect to µa on Xa. Hence Ca is a core of
Ea.

Remark 3.4. It is clear that the arguments in [44] can be extended to a large class of Dirichlet
spaces, in exactly the same way it can be done for pure powers as described above.

3.3 Existence of weak solutions for the extended problem

As a step towards fine properties of weak solutions for (−L)su on X, we use the results in the
previous two sections to derive an existence result related to a localized version of (3.2). The
proof of the following result is a straightforward adaptation of Theorem 5.2 in [31], given our
Theorem 3.3.

Theorem 3.5. Let Ω ⊂ X be a bounded domain and let us denote UΩ = Xa ∪ (Ω × {0}).
Assume that µ(X\Ω) > 0. For f ∈ X, the function U in Theorem 3.1 is the unique minimizer
of the functional Ea in the natural Sobolev space Fa associated to the Dirichlet form. Further-
more, the function U is even with respect to y ∈ R and takes the trace f on (X\Ω)× {0} .
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4 Sub-Gaussian estimates and the existence of weak solutions

In this section, we will prove the existence of weak solutions to (−L)su = 0 in a restricted class
of Dirichlet spaces whose heat kernel satisfies sub-Saussian estimates (HKE) as in (2.9). So,
throughout the section we assume that (2.9) is satisfied and we denote by E(s) the Dirichlet
form with generator (−∆)s.

To proceed, we first define Sobolev-Besov spaces in terms of the heat semi-group. This
approach was undertaken for instance in [2] and in [37]. For f ∈ L2(X,µ) and r > 0, denote

D(f, r) :=

∫∫
∆r

|f(x)− f(y)|2 dµ(x)dµ(y) (4.1)

and for some α, β > 0,

Nα,β(f) := sup
r∈(0,1]

D(f, r)

rα+β
(4.2)

where
∆r = {(x, y) ∈ X ×X : d(x, y) < r} . (4.3)

Then we define the Besov space Bα,β
2 (X) as

Bα,β
2 (X) :=

{
f ∈ L2(X,µ) : Nα,β(f) <∞

}
. (4.4)

We define the following weak solution to the fractional operator (−L)su = 0 with boundary
condition by means of a Dirichlet principle.

Definition 4.1. Let α = dH and consider a bounded domain Ω ⊂ X such that µ(X\Ω) > 0

and a function f ∈ BdH ,sdW
2 (X). Then we call a function u ∈ BdH ,sdW

2 (X) a weak solution
to the Dirichlet problem (−L)su = 0 on Ω with boundary data f if u satisfies

1. u = f almost everywhere on X\Ω, and

2. for all h ∈ BdH ,sdW
2 (X) satisfying h = f almost everywhere in X\Ω, we have

E(s)(u, u) ≤ E(s)(h, h). (4.5)

We are ready to present the following existence result.

Theorem 4.2. Let f ∈ BdH ,sdW
2 (X) and Ω be a bounded domain in X with µ(X\Ω) >

0. Then there is a unique u ∈ BdH ,sdW
2 (X) with u = f ∈ X\Ω such that whenever h ∈

BdH ,sdW
2 (X) with h = f in X\Ω, we have

E(s)(u, u) ≤ E(s)(h, h). (4.6)

Equivalently, we have
E(s)(u, h) = 0, (4.7)

whenever h ∈ BdH ,sdW
2 (X) such that h has compact support in Ω.

The previous result is a straightened version of Theorem 3.5. More precisely, the statement
follows from a combination of Theorem 3.1 and Theorem 3.5, arguing as in [31]. The only
point to check is that in our framework of sub-Gaussian estimates, the norm on the Besov
space Bα,β

2 (X) is equivalent to E(f, f) for any admissible f . This is the object of the following
proposition.
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Proposition 4.3. Let f ∈ BdH ,sdW
2 (X). Then the following holds

E(s)(f, f) ≃ NdH ,sdW (f) (4.8)

Proof. The proof follows mainly the reasoning in [37]. We first apply [37, Lemma 5.4] and
proof of [37, Corollary 5.5] so that we have an estimation of the heat kernel qt(x, y) of (−L)s,
namely

qt(x, y) ≃
1

tdH/sdW
Φ

(
d(x, y)

tdH/sdW

)
, (4.9)

where

Φ(x) =
1

(1 + x)dH+sdW
.

Then the Dirichlet form satisfies the condition of [37, Theorem 5.1], with α = dH and β = sdW
and the results follows.

Proof of Theorem 4.2. Let BdH ,sdW
2 (X) and assuming that E(s)(f, f) is finite and let Kf de-

note a subset of BdH ,sdW
2 (X) with functions h such that h = f µ-a.e. ∈ X\Ω. Let

I := inf{E(s)(h, h) : h ∈ Kf} (4.10)

If I = 0, we have f being a constant on X\Ω; therefore, extending the constant on X yields
the desired solution. Without loss of generality, we assume that I > 0. From the selection of
f , I is finite. We choose a minimizing sequence {hk} ⊂ Kf with E(s)(hk, hk) ≤ 2I. Then we
have

NdH ,sdW (hk − f) ≲ E(s)(hk − f, hk − f) ≤ 6I + E(s)(f, f) <∞. (4.11)

Since f ∈ BdH ,sdW
2 (X), we have

NdH ,sdW (hk) ≲ E(s)(hk − f, hk − f) ≤ 6I + E(s)(f, f) +NdH ,sdW (f) := C. (4.12)

Fix any r ∈ (0, 1], we consider the measure dνr(x, y) = 1∆rdµ(x)dµ(y). For each k, we
denote the function vk(x, y) = hk(x)−hk(y). We see that {vk} is a sequence in L2(X×X, dνr)
and

||vk||2L2(νr)
= D(hk, r) ≤ NdH ,sdW (hk)r

dH+sdW ≤ CrdH+sdW

By taking convex combinations and passing the limit to a subsequence, we have vk → v∞
νr-a.e.. If both x, y ∈ X\Ω, then v∞(x, y) = f(x) − f(y). If x ∈ Ω and y ∈ X\Ω such that
v∞(x, y) = limk→∞ vk(x, y) = limk→∞ hk(x) − f(y). Here we define the function h∞(x) =
v∞(x, y) + f(y) with y ∈ X\Ω as chosen above. Note that by Fubini Theorem, h − ∞ is
well-defined. Moreover, v∞(x, y) also equals to h∞(x)− h∞(y), therefore

D(h∞, r) = ||v∞||2L2(νr)
≤ CrdH+sdW . (4.13)

Hence NdH ,sdW ≤ C and h∞ ∈ BdH ,sdW
2 (X). By the lower semicontinuity of E(s),

I ≤ E(s)(h∞, h∞) ≤ lim inf
k

E(s)(hk, hk) = I (4.14)

and h∞ is the desired solution.
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5 Regularity of weak solutions and Harnack inequalities

Assuming the underlying Dirichlet space (X, d, µ, E ,F) has the sub-Gaussian heat kernel
estimate (HKE) as in (2.9). It is clear that the heat kernel qt in the extended Dirichlet space
(Ea,Fa) satisfies the following estimates

Lemma 5.1. Suppose the (HKE) holds on the Dirichlet space (X, d, µ, E ,F). Then the heat
kernel qt associated to the heat semigroup Qt of the extension space (Xa, Ea,Fa, µa, da) satisfies
the following estimate (HKE-a).

qt(z, z
′) ≤ c1

νa(B(zy,
√
t))tdH/dW

exp

(
−c2

(
d(zx, z

′
x)

dW

t

) 1
dW−1

− c3
|zy − z′y|2

t

)
,

qt(z, z
′) ≥ c4

νa(B(zy,
√
t))tdH/dW

exp

(
−c5

(
d(zx, z

′
x)

dW

t

) 1
dW−1

− c6
|zy − z′y|2

t

)
. (5.1)

for µ×µ-a.e. (x, y) ∈ X×X and each t ∈ (0,+∞), where c1, c2, c3, c4, c5, c6 > 0 are constants
independent of z, w and t.

Notice that this is not a classical sub-Gaussian heat kernel estimate, since the speed of
heat propagation (i.e. the space-time scaling) in Xa = X × R is different in X and R. In
the following discussion, we use the notation B(x,R) with x ∈ X to denote a ball in X with
radius R, and B(y,R) with y ∈ R to denote a ball in R with radius in R. Note the ambient
space of the ball is determined by the center for simplicity. We denote the product of balls as

D = D(z0, R) = B(x0, R
2/dW )×B(y0, R) (5.2)

where z0 = (x0, y0).
We first derive a special and inhomogeneous version of Parabolic Harnack inequality for

the weak solution U , from the heat kernel estimate (5.1), for which the underlying domain
is substituted to D cross the time interval. Notice that U is an extension of f , satisfying
U(·, 0) = f(·). Then we take the trace operator to U . Since the direction in R is projected, we
are left with the classical elliptic Harnack inequality for f . We emphasize that the classical
parabolic Harnack inequality for U , which is equivalent to the classical sub-Gaussian heat
kernel estimate on Xa, cannot be achieved, because of the difference of propagation speed in
X and R as we mentioned above.

This section goes as follows. First, we prove that the weak local lower estimate (LLE)
holds on Xa (Theorem 5.4). Next, we prove that (LLE) implies the oscillation inequality
(Proposition 5.5) and an inhomogeneous Hölder continuity for the caloric functions in Xa

(Definition 2.6, Corollary 5.6). Then we prove the inhomogeneous parabolic Harnack inequal-
ity for the caloric functions in Xa (Theorem 5.7). At last, we prove the elliptic Harnack
inequality and Hölder continuity for the weak solutions of (−L)sf = 0 (Theorem 1.1).

5.1 Weak local lower estimate

Define the following weak local lower estimate (LLE).

Definition 5.2. (Weak Local Lower Estimate) We say the extended Dirichlet space (Xa, da, µa, Ea,Fa)
satisfies the weak local lower estimate (LLE), if there exists ε ∈ (0, 1) such that for all
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z0 = (x0, y0) ∈ Xa with x0 ∈ X, y0 ∈ R and R > 0, there exists a heat kernel q
D(z0,R)
t

of the semigroup
{
Q

D(z0,R)
t

}
that satisfies the estimate

q
D(z0,R)
t (z, z′) ≥ c

νa(B(y0,
√
t))tdH/dW

(5.3)

for µa × µa-almost z, z′ ∈ D(z0, ε
√
t) = B(x0, (ε

√
t)2/dW )×B(y0, ε

√
t) and all 0 < t ≤ (εR)2,

with some positive constant c.

Remark 5.3. Notice that by the assumption on the volume of balls in X as in (2.10),

tdH/dW ≍ µ(B(x, t1/dW )). (5.4)

We now prove that the estimate (HKE-a) of qt(z, z
′) in (5.1) implies the weak local lower

estimate (LLE).

Theorem 5.4 (HKE-a ⇒ LLE). Suppose (HKE-a) (5.1) holds on Xa. Then (LLE) (5.3)
holds on Xa.

Proof. First, we prove that the semigroup QD
t possesses a heat kernel qt(z, z

′)D. By the heat
kernel estimate,

ess sup
z,z′∈D

qt(z, z
′) ≤ sup

z∈D

c3

νa(B(zy,
√
t))tdH/dW

(5.5)

When 0 <
√
t ≤ R, we have by the volume doubling property of the measure νa and Lemma

2.9, for all z ∈ D,

1

νa(B(zy,
√
t)

≤ CV D

νa(B(y0, R))

(
d(zy, y0) +R√

t

)γ

≤ CV D

νa(B(y0, R))

(
2R√
t

)γ

. (5.6)

When
√
t > R, notice that B(y0, R) ⊂ B(zy, 2

√
t). By the volume doubling property directly,

1

νa(B(zy,
√
t))

≤ CV D

νa(B(zy, 2
√
t))

≤ CV D

νa(B(y0, R))
. (5.7)

Now we have
ess sup
z,z′∈D

qt(z, z
′) ≤ F (t), (5.8)

where

F (t) =


CV D

νa(B(y0,R))tdH/dW

(
2R√
t

)γ
, 0 ≤ t ≤ R2

CV D

νa(B(y0,R))tdH/dW
, t > R2

(5.9)

and F (t) is a function independent of z and w. Therefore, for any non-negative function
f ∈ L1(D) and µa-almost all z ∈ D,

QD
t f(z) ≤ Qtf(z) =

∫
D
qt(z, z

′)f(z′)dµ(z′) ≤ F (t)||f ||L1 . (5.10)

Hence the semigroup QD
t is L1 → L∞ ultracontractive, which implies the existence of the

heat kernel qDt (z, z′).
For the following discussion, we first fix t ≤ (εR)2 with 0 < ε < 1/2 to be specified later.

By [38, Lemma 4.18], for any open set U ⊂ Xa and any compact K ⊂ U , for any non-negative
function f ∈ L2(Xa, µa) and any t > 0, the following holds.
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Qtf(z) ≤ QU
t f(z) + sup

s∈[0,t]
ess sup

Kc
Qsf. (5.11)

for µa-almost z ∈ Xa. We take U = D = D(z0, R), and

K = D(z0, R/2) = B(x0, (R/2)2/dW )×B

(
y0,

R

2

)
, (5.12)

A = D(z0, ε
√
t) = B(x0, (ε

√
t)2/dW )×B

(
y0, ε

√
t
)

(5.13)

Let f be a non-negative function from L1(A), we have

sup
s∈[0,t]

ess sup
z∈Kc

Qsf(z) = sup
s∈(0,t]

ess sup
z∈Kc

∫
A
qs(z, z

′)f(z′)dµ(z′) ≤M ||f ||L1 , (5.14)

where
M := sup

s∈(0,t]
ess sup

z∈Kc,z′∈A
qs(z, z

′). (5.15)

Notice that the value s = 0 can be dropped from sups∈[0,t] becauseQ0f = f and ess supz∈Kc f(z) =
0.

Multiplying (5.11) by a non-negative function g ∈ L1(A) and integrating, we have∫
A
(Qtf)gdµ ≤

∫
A
(QD

t f)gdµ+M ||f ||L1 ||g||L1 . (5.16)

It is equivalent to∫
A

∫
A
qt(z, z

′)f(z)g(z′)dµ(z)dµ(z′) ≤
∫
A

∫
A
qDs (z, z′)f(z)g(z′)dµ(z)dµ(z′) +M ||f ||L1 ||g||L1 .

(5.17)
Dividing by ||f ||L1 ||g||L1 and taking inf in all test functions f, g, we obtain

ess inf
z,z′∈A

qt(z, z
′) ≤ ess inf

z,z′∈A
qDt (z, z′) +M. (5.18)

By the definition of (LLE) as in Definition 5.2, we need to estimate ess infz,z′∈A qt(z, z
′)

from below and M from above, with ε to be chosen later.
For the first estimation, we refer to the lower heat kernel bound as in (5.1).

ess inf
z,z′∈A

qz(z, z
′) ≥ c3

νa(B(zy,
√
t))tdH/dW

exp

(
−c4

(
d(zx, z

′
x)

dW

t

) 1
dW−1

− c5
|zy − z′y|2

t

)
(5.19)

from the definition of A, we have

d(zx, z
′
x)

dW ≤
(
d(zx, x0) + d(z′x, x0)

)dW ≤ (2dW ε2)t ≤ t, (5.20)∣∣zy − z′y
∣∣2 ≤ (|zy − y0|+

∣∣z′y − y0
∣∣)2 ≤ (2ε)2 t ≤ t, (5.21)

provided ε ≤ 2−dW /2. Hence we have the lower bound,

ess inf
z,z′∈A

qt(z, z
′) ≥ c

νa(B(zy,
√
t))tdH/dW

(5.22)
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for some constant c depends on the constants in (5.1).
For the estimation of M , we take z ∈ Kc and z′ ∈ A. Since we assume that t ≤ (εR)2, we

have

d(zx, z
′
x)

dW ≥
(
d(zx, x0)− d(z′x, x0)

)dW ≥
(
(R/2)2/dW − (ε

√
t)2/dW

)dW
≥
(
(1/2)2/dW − (ε2)2/dW

)dW
R2 ≥ c̃1R

2.

Such c̃1 exists since we assume that ε ≤ 2−dW /2. Similarly, there exists a constant c̃2 such
that,∣∣zy − z′y

∣∣2 ≥ (|zy − y0| −
∣∣z′y − y0

∣∣)2 ≥ (R/2− ε
√
t
)2

≥
(
1/2− ε2

)2
R2 ≥ c̃2R

2, (5.23)

We take c̃ = min(c̃1, c̃2). Then for all 0 < s ≤ t and z ∈ Kc, z′ ∈ A, we have

qs(z, z
′) ≤ c3

νa(B(z′y,
√
s))sdH/dW

exp−c4
(
c̃R2

s

) 1
dW−1

− c5
c̃R2

s
(5.24)

≤ c3

νa(B(y0,
√
t))tdH/dW

νa(B(y0,
√
t))tdH/dW

νa(B(z′y,
√
s))sdH/dW

exp−c4
(
c̃R2

s

) 1
dW−1

− c5
c̃R2

s
(5.25)

≤ c3

νa(B(y0,
√
t))tdH/dW

(∣∣z′y − y0
∣∣+√

t√
s

)γ

exp−c4
(
c̃R2

s

) 1
dW−1

− c5
c̃R2

s
(5.26)

≤ c3

νa(B(y0,
√
t))tdH/dW

(
R√
s

)γ

exp−c5
c̃R2

s
, (5.27)

where the third inequality follows from the Lemma 2.9 and the last one is because
∣∣z′y − y0

∣∣+√
t ≤ (ε2 + ε)R ≤ R since we assume ε ≤ 1/2.
Note that 0 < s ≤ t and 0 < t < (εR)2, hence

R√
s
≥ ε−1. (5.28)

Using the fact that, for positive a, b, and c,

ξa exp(−c ξb) → 0 as ξ → ∞. (5.29)

we can conclude that if ε is small enough, then

M ≤ qs(z, z
′) ≤ c/2

νa(B(y0,
√
t))tdH/dW

(5.30)

where c is the constant as in (5.22). Then combine (5.18) and (5.22), we get

ess inf
z,z′∈A

qDt (z, z′) ≥ c̃/2

νa(B(y0,
√
t))tdH/dW

(5.31)
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5.2 Oscillation inequality and Hölder continuity

We notice that (LLE) implies

q
D(z0,R)
t (z, z′) ≥ c

νa(B(y0, R))R2dH/dW
, (5.32)

for µa×µa-almost all z, z′ ∈ D(z0, εr) = B(x0, (εr)
2/dW )×B (y0, εr) provided r and t satisfies

the conditions
r ≤

√
t ≤ εR (5.33)

Indeed, when r ≤
√
t, D(z0, εr) ⊂ D(z0, ε

√
t), and also

√
t ≤ εR ≤ R, hence (5.32) holds.

5.2.1 Oscillation inequality

For all s ∈ R and z ∈ Xa, define the cylinder

C((s, z), r) := (s− r2, s)×D(z, r) (5.34)

For any set A ⊂ R×Xa and a function f on A, define

ess sup
A

f = sup
t

ess sup
x:(x,t)∈A

f(t, x), (5.35)

and define ess infA f analogously. Define

osc
A
f := ess sup

A
f − ess inf

A
f. (5.36)

Proposition 5.5. Assume that (VD) and (LLE) hold. Then, for any bounded caloric function
u in a cylinder C((s, z0), R), the following inequality holds

osc
C((s,z0),δR)

u ≤ θ osc
C((s,z0),R)

u (5.37)

with constants δ, θ ∈ (0, 1) that depends only on the constants in the hypothesis.

Proof. Let m(R) and M(R) denote the essential infimum and essential supremum of u on
C((s, z0), R) respectively. Since u+ const is also a caloric function, by the super mean value
inequality as in Corollary 2.13, we have

u(t, w)−m(R) ≥
∫
D(z0,R)

q
D(z0,R)
t−ξ (w, z)(u(ξ, z)−m(R))µa(dz) (5.38)

for all s−R2 < ξ < t < s and µ-almost all w ∈ D(z0, R).

Take ξ = s − (εR)2, for any t ∈ (s − (εR)2

2 , s), we have
√
t− ξ ∈ ( εR√

2
, εR). Follows from

(5.32), take r = εR√
2
, we have

q
D(z0,R)
t−ξ (w, z) ≥ c

νa(B(y0, R))R2dH/dW
for all µa-a.a. w, z ∈ D(z, εr). (5.39)

Take δ = ε2√
2
, notice that the set C((s, z0), δR) satisfies the condition for both (5.38) and

(5.39). We could restrict the integration in (5.38) to D(z0, δR), use equation (5.39) and take
the essential infimum in (t, w) ∈ D(z0, δR), and then

m(δR)−m(R) ≥ c

νa(B(y0, R))R2dH/dW

∫
D(z0,δR)

(u(ξ, z)−m(R))µa(dz). (5.40)
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Similarly, for the maximum,

M(R)−M(δR) ≥ c

νa(B(y0, R))R2dH/dW

∫
D(z0,δR)

(M(R)− u(ξ, z))µa(dz). (5.41)

Taking the difference between the above two equations, because of the volume doubling prop-
erty, we could find a small enough c2 < 1 such that,

M(R)−m(R)− (M(δR)−m(δR)) ≥ c
µa(D(z0, δR))

νa(B(y0, R))R2dH/dW
(M(R)−m(R))

≥ c(M(R)−m(R))
νa(B(y0, δR))(δR)

2dH/dW

νa(B(y0, R))R2dH/dW

≥ c2(M(R)−m(R)),

where the second inequality follows from (2.10) and the last one from the doubling property
of νa. Take θ = 1− c2, we have

θ(M(R)−m(R)) ≥M(δR)−m(δR), (5.42)

which proves (5.37).

5.2.2 Inhomogeneous Hölder continuity

From the oscillation inequality, we could prove the Hölder continuity of caloric functions.

Corollary 5.6. Assume that (VD) and (LLE) hold. Then for any bounded caloric function
u in a cylinder C((t0, z0), R), the following inequality holds

∣∣u(s′, z′)− u(s′′, z′′)
∣∣ ≤ C

(√
s′ − s′′ + d(z′x, z

′′
x)

2/dW +
∣∣z′y − z′′y

∣∣
R

)α

osc
C((t0,z0),R)

u, (5.43)

for dt × µa almost all (s′, z′), (s′′, z′′) ∈ C((t0, z0), δR), where α, δ ∈ (0, 1) and C > 0 are
constants only depend on the constants in the hypotheses VD and LLE.

Proof. We prove the following equivalent form: for any r > 0 and dt×µa-almost all (s′, z′), (s′′, z′′) ∈
C((t0, z0), δR) such that

√
s′ − s′′ + d(z′x, z

′′
x)

2/dW +
∣∣z′y − z′′y

∣∣ < r (5.44)

the following inequality holds:∣∣u(s′, z′)− u(s′′, z′′)
∣∣ ≤ C

( r
R

)α
osc

C((t0,z0),R)
u. (5.45)

It is sufficient to show that any two points (s′, z′), (s′′, z′′) ∈ C((t0, z0), δR) with condition
(5.44) are contained in an open subset Ω ⊂ C((t0, z0), R) such that

osc
Ω
u ≤ C

( r
R

)α
osc

C((t0,z0),R)
u. (5.46)

Now we construct the set Ω as follows. First, we assume that the equation (5.44) holds.
Suppose s′ ≥ s′′. Let w = z′ and we wish to choose t so that

√
t− s+ d(wx, zx)

2/dW + |wy − zy| < r (5.47)
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for both (s, z) = (s′, z′) and (s, z) = (s′′, z′′). For (s, z) = (s′, z′),

√
t− s′ + d(wx, z

′
x)

2/dW +
∣∣wy − z′y

∣∣ = √
t− s′ (5.48)

And for (s, z) = (s′′, z′′),

√
t− s′′ + d(wx, z

′′
x)

2/dW +
∣∣wy − z′′y

∣∣ = √
t− s′′ + d(z′x, z

′′
x)

2/dW +
∣∣z′y − z′′y

∣∣ (5.49)

Because of the strict inequality in (5.44), we can choose t strictly larger than s′, so that
s′′ ≤ s′ < t < t0. Through this construction, for both (s, z) = (s′, z′) and (s, z) = (s′′, z′′),

√
t− s < r =⇒ s ∈ (t− r2, t), (5.50)

d(wx, zx)
2/dW < r =⇒ zx ∈ B(wx, r

2/dW ), (5.51)

|wy, zy| ≤ r =⇒ zy ∈ B(wy, r). (5.52)

Hence both (s′, z′) and (s′′, z′′) are in C((t, w), r) once they satisfies (5.44). Since (s′, z′), (s′′, z′′) ∈
C((t0, z0), δR), we also have (s′, z′), (s′′, z′′) ∈ C((t0, z0), R). Then we can define the set

Ω = C((t, w), r) ∩ C((t0, z0), R).

Note that by construction, we have (t, w) ∈ C((t0, z0), δR), i.e.

t0 − (δR)2 < t < t0, d(wx, x0) ≤ (δR)2/dW , and |wy − y0| ≤ δR. (5.53)

Next, we find δ, such that δ−kr ≤ δR implies C((t, w), δ−kr) ⊂ C((t0, z0), R) for any
integer k ≥ 1. This condition means

t0 −R2 < t− (δ−kr)2, d(wx, x0) + (δ−kr)2/dW ≤ R2/dW , and |wy − y0|+ δ−kr ≤ R (5.54)

Because of (5.53), it suffices to require that

(δR)2 + (δ−kr)2 ≤ R2, (δ−kr)2/dW + (δR)2/dW ≤ R2/dW , and δR+ δ−kr ≤ R. (5.55)

If we require the above equation hold when δ−kr ≤ δR, we need to have

2(δR)2 ≤ R2, 2(δR)2/dW ≤ R2/dW , and 2δR ≤ R. (5.56)

which requires δ ≤ 1√
2
.

Given this δ, we first consider the case that r is small, such that δ−kr ≤ δR for some
integer k ≥ 1. By the previous argument, we have C((t, w), δ−kr) ⊂ C((t0, z0), R) for some
k ≥ 1, we have

Ω = C((t, w), r) ⊂ C((t, w), δ−kr) ⊂ C((t0, z0), R).

Hence by oscillation inequality (5.37),

osc
Ω
u ≤ θk osc

C((t,w),δ−kr)
u ≤ θk osc

C((t0,z0),R)
u. (5.57)

Note that δ might not be the same constant as in (5.37). But the oscillation inequality still
holds by taking small enough δ. Now δ−kr ≤ δR implies

k ≥ ⌊ log
r
R

log δ
⌋ − 1 ≥ log r

R

log δ
− 2. (5.58)
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Hence

θk ≤ e
log r

R
log δ

log θ
θ−2 = C

( r
R

)α
,

where C = θ−2 and δ < θ such that α = log θ
log δ < 1 (again by taking small enough δ). And then

osc
Ω
u ≤ C

( r
R

)α
osc

C((t0,z0),R)
u (5.59)

Then we consider large r such that r > δ2R. Notice that δ ≤ 1√
2
and Ω ⊂ C((t0, z0), R),

we have
osc
Ω
u ≤ osc

C((t0,z0),R)
u = C

( r
R

)α
osc

C((t0,z0),R)
u (5.60)

for any constant C ≥
(
R
r

)α
> δ−2α. By taking the constant C = max(δ−2α, θ−2), we finished

the proof.

5.3 Proof of the inhomogeneous Harnack inequality

We will prove inhomogeneous Parabolic Harnack inequality.

Theorem 5.7 (Inhomogeneous Parabolic Harnack inequality). Suppose the space Xa has the
(LLE) property. Let u be a bounded non-negative caloric function in the cylinder

Q = (0, (εR)2)×D(z0, R) = (0, (εR)2)×B(x0, R
2/dW )×B(y0, R)

where z0 = (x0, y0) and z0 ∈ X, y0 ∈ R, with arbitrary R > 0. Here ε is the parameter from
Definition 5.2, l = 1√

2
, and then

inf
Q+

u ≤ 1 =⇒ sup
Q−

u ≤ C

where

Q− = ((l3εR)2, (l2εR)2)×D(z0, ηR) = ((l3εR)2, (l2εR)2)×B(x0, (ηR)
2/dw)×B(y0, ηR),

(5.61)

Q+ = ((lεR)2, (εR)2)×D(z0, ηR) = ((lεR)2, (εR)2)×B(x0, (ηR)
2/dw)×B(y0, ηR), (5.62)

and the constant η ∈ (0, 1), C > 1 depend only on the constants in the hypothesis.

The essential part of the proof is the following lemma.

Lemma 5.8. There exists a constant σ with η < σ < 1, K > 1, and C > 0, depending only
on the constants in the hypothesis, such that the following holds. For every (t, z) ∈ Q and
r > 0 be such that

C((t, z), r) ⊂ Q̃ := (0, (l2εR)2)×D(z0, σR). (5.63)

Suppose infQ+ u ≤ 1 and u(t, z) ≥ λ with

λ ≥ C

(
R

r

)γ

, (5.64)

where γ is the constant in the equation (2.8), then

sup
C((t,z),r)

u ≥ Kλ.

22



Proof. By the super-mean-value inequality (2.14), for all t < T < (εR)2 and µa-almost all
z ∈ D(z0, R), we have

u(T,w) ≥
∫
D(z0,R)

q
D(z0,R)
T−t (w,w′)u(t, w′)µ(dw′). (5.65)

Restrict T to the interval (lεR)2 < T < (εR)2. For any 0 < t < (l2εR)2, it follows that

(κR)2 < T − t < (εR)2, (5.66)

where κ = l2ε, which is true since 1 = 1/
√
2. Applying the equivalent form of the LLE as in

(5.32) with r = κR, we obtain

q
D(z0,R)
T−t (w,w′) ≥ c1

νa(B(y0, R))R2dH/dW
(5.67)

for almost all w,w′ ∈ D(z0, εκR). Assume that σ is so small, such that

σ ≤ εκ, (5.68)

then (5.67) holds for almost all w,w′ ∈ D(z0, σR).
Then notice that D(z, r) ⊂ D(z0, σR) ⊂ D(z0, R) by the assumption C((t, z), r) ⊂ Q̃, we

restrict the integration of (5.65) to D(z, r), so that

u(T,w) ≥
∫
D(z,δr)

q
D(z0,R)
T−t (w,w′)u(t, w′)µ(dw′) (5.69)

≥ c1

νa(B(y0, R))R2dH/dW

∫
D(z,δr)

u(t, w′)µ(dw′) (5.70)

where in the second inequality we applied (5.67). In particular, this inequality holds for all
(T, z) ∈ Q+ since we assumed η < σ. Taking the infimum in (T, z) ∈ Q+ and using that
infQ+ u ≤ 1, we obtain,

1 ≥ c1

νa(B(y0, R))R2dH/dW

∫
D(z,δr)

u(t, w′)µ(dw′) (5.71)

And using the assumptions of the volume of the balls in X as in (2.10),

inf
w′∈D(z,δr)

u(t, w′) ≤ Λ :=
νa(B(y0, R))R

2dH/dW

c1νa(B(zy, δr))(δr)2dH/dW
, (5.72)

for all t ∈ (0, (l2εR)2). Combining with the hypothesis that u(t, z) ≥ λ, we see that

osc
C((t,z),δr)

u ≥ λ− Λ,

Whence by Proposition 5.5,

sup
C((t,z),r)

≥ osc
C((t,z),r)

≥ θ−1(λ− Λ).

where θ ∈ (0, 1) is the constant from Proposition 5.5. We are left to check that

θ−1(λ− Λ) ≥ Kλ, (5.73)
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with a constant K > 1. By the Lemma 2.9, we have

Λ ≤ CV D

c1

( |y0 − zy|+R

r

)γ (R
δr

)2dH/dW

≤ C1

(
R

r

)γ+2dH/dW

, (5.74)

where C1 = C1(c1, CV D, γ, δ). If we let

λ ≥ 2C1

1− θ

(
R

r

)γ+2dH/dW

, (5.75)

Then we have Λ ≤ λ((1− θ)/2), hence

θ−1(λ− Λ) ≥ θ−1 + 1

2
λ, (5.76)

so that we can let K = (θ−1 + 1)/2 > 1 and this completes the proof.

Given this lemma, we can prove the Theorem 5.7.

Proof of Theorem 5.7. First, we can derive the following property from Lemma 5.8. Define a
function

ρ(λ) =
R

(C−1λ)1/γ
(5.77)

so that the condition (5.64) is equivalent to r ≥ ρ(λ). Take r = ρ(λ) as in (5.63). If for some
point (s, w) ∈ Q, we have λ := u(s, w) > 0 and

C((s, w), ρ(λ)) ⊂ Q̃, (5.78)

then there exists a point (s′, w′) ∈ C((s, w), ρ(λ)) such that u(s′, w′) ≥ Kλ.
We can start with an arbitrary point (s0, w0) ∈ Q− where λ0 = u(s0, w0) > 0. Assuming

that
C((s0, w0), ρ(λ0)) ⊂ Q̃, (5.79)

we can choose a point (s1, w1) ∈ C((s0, w0), ρ(λ0)) where

λ1 = u(s1, w1) ≥ Kλ0. (5.80)

If again
C((s1, w1), ρ(λ1)) ⊂ Q̃, (5.81)

we can also find a point (s2, w2) ∈ C((s1, w1), ρ(λ1)) such that

λ2 = u(s2, w2) ≥ Kλ1 ≥ K2λ0. (5.82)

Following this procedure, we obtain a sequence of points {(sn, wn)} such that

λn = u(sn, wn) ≥ Knλ0. (5.83)

and
(sn, wn) ∈ C((sn−1, wn−1), ρ(λn−1)) ⊂ Q̃. (5.84)

We will continue the construction until

C((sn, wn), ρ(λn)) ̸⊂ Q̂ := [(l4εR)2, (l2εR)2]×D(z0, σR) (5.85)
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If such n does not exit, then we obtain an infinite sequence (sn, wn) ∈ Q̂ such that u(sn, wn) →
∞, which is not possible since the function u is bounded in Q̂ ⊂ Q.

Hence there exists an n such satisfies (5.85), which implies 3 cases,

wx
n /∈ B(x0, (σR)

2/dW ), wy
n /∈ B(y0, σR), or sn < l4εR, (5.86)

where we use the notation wn = (wx
n, w

y
n) with wx

n ∈ X and wy
n ∈ R.

In the first case, we have

d(wx
0 , w

x
n) ≥ d(x0, w

x
n)− d(x0, w

x
0 ) ≥ (σ2/dW − η2/dW )R2/dW (5.87)

On the other hand,

d(wx
0 , w

x
n) ≤

n−1∑
k=0

d(wx
k , w

x
k+1) ≤

n−1∑
k=0

ρ(λk)
2/dW ≤

n−1∑
k=0

ρ(Kkλ0)
2/dW ≤ C2R

2/dW λ
−2/(γdW )
0

(5.88)
Similarly, in the second case, we have the lower bound for |wy

0 , w
y
n|,

|wy
0 − wy

n| ≥ |y0 − wy
n| − |y0 − wy

0 | ≥ (σ − η)R (5.89)

and then the upper bound,

|wy
0 − wy

n| ≤
n−1∑
k=0

∣∣wy
k − wy

k+1

∣∣ ≤ n−1∑
k=0

ρ(λk) ≤
n−1∑
k=0

ρ(Kkλ0) ≤ C3Rλ
−1/γ
0 (5.90)

In the third case, we have the upper bound for s0 − sn,

s0 − sn ≥ (l3εR)2 − (l4εR)2 ≥ (l4εR)2 (5.91)

and then the upper bound,

s0 − sn =
n−1∑
k=1

(sk − sk+1) ≤
n−1∑
k=1

ρ(λk)
2 ≤ C4R

2λ
−2/γ
0 (5.92)

Comparing the lower bound and the upper bound of d(wx
0 , w

x
n), |wy

0 − wy
n|, and s0 − sn in all

three cases, we obtain that

λ0 ≤ C5 = C5(C2, C3, C4, σ, η, γ) (5.93)

Since λ0 is the value of u at an arbitrary point in Q−, it follows that supQ−u ≤ C4, which
finished the proof of (PHI).

5.4 Proof of Theorem 1.1.

We are now ready to provide the proof of our main result Theorem 1.1. Since (HKE) holds
on (X, d, µ, E ,F), we have by Lemma 5.8, (HKE-a) holds on (Xa, da, µa, Ea,Fa). Then follows
from Theorem 5.4, we see that (LLE) holds on (Xa, da, µa, Ea,Fa). At last, we have the
Parabolic Harnack inequality for non-negative caloric functions by Theorem 5.7.

Suppose f is a non-negative weak solution of (−L)sf = 0. By Theorem 3.1, there exists
U such that U(·, 0) = f and, since ∂U

∂y (·, y) = 0, U is harmonic in Xa. By taking Ũ(t, x, y) =

U(x, y), which is a constant in the time variable t, it is clear that Ũ is a caloric function. Hence
the inhomogeneous parabolic Harnack inequality and the inhomogeneous Hölder continuity
hold for Ũ . Using the fact that Ũ is independent of t, we take the trace operator and project
the y direction of Ũ , and then derive the Harnack inequality for f . The Hölder continuity of
f follows similarly from the projection.
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5.5 Some remarks on boundary Harnack principles

In this Section, we briefly discuss boundary Harnack principles (BHP) for some generators
on Dirichlet spaces, under natural but more restrictive assumptions than the ones of the
previous sections. In the rest of the section, we always assume that the Dirichlet space under
consideration admits an interior Harnack inequality. Boundary Harnack inequalities are more
subtle properties than their interior versions. They require some sort of regularity and/or
geometry of the boundary. When dealing with powers of generators of local Dirichlet forms
(namely our setup), the situation starts becoming even more involved since one has two routes
(which do not seem to be equivalent in our general setting) to prove such results:

• One can start by extending the s-harmonic function from X into Xa and then apply
a version of Boundary Harnack on the space Xa for the new operator. We then come
back to the original space X taking a trace.

• One derives directly a BHP on Xa and then taking the trace one defines first a solution
of the original harmonic function as a trace of the extended function and as a by-product
one gets the desired BHP on X.

The two previous routes are equivalent in some geometries, like for instance the Euclidean
case for Lipschitz domains [20]. The argument in [20] can be easily extended to other nice
geometric contexts under natural assumptions. However, it is known [18] that powers of the
Euclidean laplacian satisfy BHP on any open domains. As far as we know, there is no purely
PDE proof of such a result. In a series of important works, De Silva and Savin [27, 26, 28]
initiated the derivation of BHP from only PDE tools, applying it to several free boundary
problems. It is not clear to us how to make several of their arguments work in our general
setting, though as alluded before, many of their strategy could be implement in a smoother
situation.

Keeping in mind such a striking difference between the laplacian and the fractional lapla-
cian, it would be desirable to have a BHP in our setting in the most general admissible
domains. When one tries to follow the first strategy described above, one faces the obvious
problem: a ball in Xa is not the product of a ball in X times an interval. In the case of very
simple ambiant spaces (like Euclidean spaces) and Lipschitz domains one can remedy to this
issue by extending properly the function and using transformations which allow to apply BHP
in so-called slit domains (see e.g. [20, 4, 21] and the papers of De Silva and Savin mentioned
above).

The notion of admissible domain we now consider is the one of uniform domains. If x is
a point in Ω, denote by δΩ(x) = d(x,X\Ω) the distance from x to the boundary of Ω. We
define

Definition 5.9. Let γ : [α, β] → Ω be a rectifiable curve in Ω and let c ∈ (0, 1), C ∈ (1,∞).
We call γ a uniform curve in Ω if

δΩ(γ(t)) ≥ c ·min {d(γ(α), γ(t)), d(γ(t), γ(β))} , for all t ∈ [α, β],

and if
length(γ) ≤ C · d(γ(α), γ(β)).

The domain Ω is called uniform if any two points in Ω can be joined by a uniform curve in
Ω.
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The following result is proved in [31].

Lemma 5.10. The domain X+
a is uniform in Xa.

The previous lemma is our starting point and combined with the results in [46] for instance,
allows to get

Lemma 5.11. (Boundary Harnack inequality in extended spaces) Assume that the Dirichlet
space (Xa := X×R, Ea, µa) is our local Dirichlet space supporting an interior Harnack estimate
for the generator La. Let ξ ∈ X and consider two nonnegative harmonic functions u, v
vanishing continuously on BR(ξ) for some R > 0 (this is a ball in Xa). Then there exists a
constant C > 0 such that for any ξ ∈ X

u(x)

u(x′)
≤ C

v(x)

v(x′)
,

for all x, x′ ∈ B(ξ, r) and r < R/2. The constant C depends only on the constant in the
interior Harnack inequality.

The point now would be to recover the desired BHP for s−harmonic functions on X
out of Lemma 5.11 (which involves functions on Xa). One would need to prove that an
s−harmonic function extends to a function satisfying the conditions of Lemma 5.11 with a
controled geometry. As already mentioned, it is not clear in our general setup how to produce
such a situation. We leave this problem to future work.
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