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Dealing with Imbalanced Classes in Bot-IoT

Dataset∗

Jesse Atuhurra

Abstract

With the rapidly spreading usage of internet of things (IoT) devices, a network

intrusion detection system (NIDS) has an important role to detect and protect

various types of attacks in the IoT network. To evaluate the robustness of the

NIDS in the IoT network, the existing work proposed a realistic botnet dataset

in the IoT network (Bot-IoT dataset) and applied it to machine learning based

anomaly detection. This dataset contains imbalanced normal and attack packets

because the number of normal packets is much smaller than that of attack ones.

The nature of imbalanced data may make it difficult to identify the minority

class correctly. In this thesis, to address the class imbalance problem in the Bot-

IoT dataset, we propose a binary classification method with synthetic minority

over-sampling techniques (SMOTE). The proposed classifier aims at detecting

the attack packets and overcoming the class imbalance problem with the help of

SMOTE algorithm. Through numerical results, we demonstrate the fundamental

characteristics of the proposed classifier and the impact of imbalanced data on

the classifiers’ performance.
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Network intrusion detection system (NIDS), IoT network, SMOTE algorithm,

class imbalance problem, machine learning
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1. Introduction

Nowadays, the internet of things (IoT) plays a key role to facilitate and ad-

vance services and encompasses various application domains [22]. With rapidly

increasing heterogeneous connected devices, that is, IoT devices, various services

are constantly being created, and thus the network traffic in IoT networks has

exponentially been increasing. To protect these devices against cyber-attacks in-

cluded in the huge amount of network traffic, the need for IoT security arises [19].

The existing IoT networks are vulnerable to various types of attacks due to the

accessibility to devices from anywhere via the internet and the proliferation of

low-level security protection. These attacks lead to not only critical damage of

infrastructures but also privacy violation. Since the distributed nature of IoT

networks makes it difficult to monitor the network and to collect audit data, it is

hard to take an effective security strategy against various attacks included in the

huge amount of network traffic due to the heterogeneity of IoT devices and the

limited resources available in IoT devices.

Under such background, IoT networks have increasingly become susceptible

to intruder attacks, e.g., denial of service (DoS), distributed denial of service

(DDoS), probe attacks , and IP spoofing. To protect these attacks by intruders,

an intrusion detection system (IDS) [21,26] was proposed, which is a monitoring

system to detect abnormal and/or malicious activities by analyzing audit data.

The existing studies have addressed the anomaly detection using the IDS, which

monitors the normal activities of network traffic and alerts the administrator to

the activity if any activities which deviate from the normal activities are found.

In addition, several studies have proposed a network-based IDS (NIDS) [2] placed

at the fog node in the IoT network to address the issue of huge latency [3,9,33,37].

The NIDS’s built on machine learning (ML) have attracted many researchers [9,

14,17,32,37,41], since the existing NIDS has the limitation of scalability and au-

tonomic self-adoption due to constantly evolving attacks and threats in the IoT

network. The combination of an NIDS and ML is expected to overcome these

limitations. However, the existing ML methods, e.g., support vector machine

(SVM), k-nearest neighbor (KNN), and decision tree (DT), may demonstrate low

performance on anomaly detection because the NIDS requires high-dimensional

representation. Deep neural network based NIDS’s were proposed [1, 24], which
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can exhibit high performance by exploring the high-dimensional representation

from the audit data. In general, the audit data generated from network traffic

tends to have the class imbalance problem because the activity which deviates

from the normal activities, i.e., the attack, is a rare case. More precisely, such

imbalanced traffic data has majority of normal traffic and minority of abnormal

traffic. With imbalanced data, it becomes difficult for the classifier to correctly

identify traffic which belongs to the minority class.

To apply ML to the NIDS, there are various datasets related to the cyber-

attacks [4, 23, 27, 38–40]. In particular, Koroniotis et al. published the realistic

botnet dataset, for network intrusion detection and network forensic analytics,

which contains IoT network traffic including various types of attacks [23]. In [23],

they evaluated the reliability of this dataset by using several ML methods and

showed the baseline of binary classification. This dataset also contains imbalanced

normal and attack packets because the number of normal packets is much smaller

than that of attack ones.

We will describe the detail of the Bot-IoT dataset in Section 3.1.

In this thesis, to address the class imbalance problem in the Bot-IoT dataset,

we propose a binary classification method at the network packet level considering

the nature of imbalanced data. The proposed method aims at identifying normal

or attack packets and overcoming the class imbalance problem with the help of

the existing sampling method, i.e., synthetic minority over-sampling technique

(SMOTE) [11]. Before selecting SMOTE technique for sampling, we report that

we tried random over sampling and random under sampling too but SMOTE

sampling showed more consistent results. Therefore we used SMOTE sampling

for further analysis. Through numerical results, we demonstrate the fundamen-

tal characteristics of the proposed method from the viewpoint of the impact of

SMOTE sampling on the performance of classifiers, during intrusion detection.

Moreover, though binary classification is reported in this work, it is possible to

extend the binary classification to multi-class classification especially after an

attack has been detected, to identify the actual category of the attack.

The main contributions of this thesis are as follows:

1. Use the Bot-IoT dataset to develop a NIDS for IoT networks.

2. Investigate the class imbalance problem in Bot-IoT dataset.

3



The rest of this thesis is organized as follows. Section 2 gives the related work.

In Section 3, we introduce the Bot-IoT dataset and ML techniques used in this

thesis. In Section 4, we propose a binary classification method to deal with the

class imbalance. Section 5 shows the fundamental characteristics of the proposed

method. Finally, we give the conclusion and future work in Section 6.
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2. Related Work

Many researchers have studied an NIDS to protect various types of attacks by

intruders [2]. An NIDS runs on a strategic point and inspects the traffic among

all the devices on the network. In the domain of IoT networks, several studies

have proposed NIDS’s placed at the fog node in the IoT network [3,33,37]. Aliyu

et al. proposed a resource efficient IDS for man in the middle attacks at the fog

layer [3]. There are studies to apply ML to the NIDS [33, 37]. Reddy et al.

proposed an extreme greedy boosting ensemble method [12] based NIDS running

at the fog node to monitor network traffic in IoT network by identifying and

classifying the attacks based on abnormal activities [33]. Sahar et al. developed

a deep learning based NIDS implemented on the fog node [37]. Recent surveys

can be found in [9,14,17,32,41]. In this thesis, we propose the ML-based binary

classification for an NIDS in IoT network.

There are various datasets related to intrusion detection [4, 23, 27, 38–40].

These datasets are summarized in the Figure 1. From this figure, we can see that

only the Bot-IoT dataset contains traces of IoT network traffic. This makes it

plausible for the analysis of intrusion detection in IoT networks.

The KDD dataset is a commonly used dataset for the evaluation of intrusion

detection and contains seven weeks of network traffic including simulated attacks.

In [40], Tavallaee et al. proposed NSL-KDD dataset, which is an extended version

of the KDD dataset such that it does not contain redundant and duplicate records,

the number of records is reasonable. The UNSW-NB15 dataset is generated by

IXIA PerfectStorm, Tcpdump, Argus, and Bro-IDS tools, which create some

types of attacks [27]. Shiravi et al. created ISCX dataset consisting of the seven

days of both normal and abnormal activities [39]. Sharafaldin et al. proposed

CICIDS2017 dataset, which contains common attacks resembling the real-world

data, i.e., packet capture [38]. In contrast to these studies, Koroniotis et al.

focused on the IoT network and created the Bot-IoT dataset, which consists of

the IoT network traffic including various types of attacks [23]. We will describe

the details of the Bot-IoT in Section 3.1. Since we also focus on the NIDS in IoT

networks, the Bot-IoT dataset is used in this thesis. In addition we also tackle

the class imbalance problem by using the over-sampling method.

We note that our work is similar to a recent study conducted by [31]. How-

5



Figure 1: Comparison of datasets used in intrusion detection (F=False, T=True).

ever, the major differences are: (1) We removed all non-network features before

any analysis is conducted, that is, pkSeqID, seq, dur, mean, stddev, sum, min,

and max (2) We employ three algorithms to select the list of features needed

for intrusion detection analysis (3) Whereas their study investigates three ma-

chine learning models namely K-Nearest Neighbours (KNN), Naive Bayes and

Multi-layer Perceptron, we investigated seven models, that is, Logistic Regres-

sion, Linear SVC, Linear Kernel SVM, RBF Kernel SVM, Random Forest, Ex-

treme Gradient Boosting, and Multi-layer Perceptron (4) We evaluate and select

the best classifiers based on false positive rate, false negative rate, and inference

time, on top of accuracy, recall, precision and F1-scores.
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3. Background

In this section, we introduce the Bot-IoT dataset and ML techniques used in this

thesis.

3.1 Bot-IoT Dataset

Koroniotis et al. developed a realistic testbed to simulate the IoT network traffic

including various types of attacks, i.e., DDos, DoS, operating system and service

scan, key logging and data theft attacks, and published the Bot-IoT dataset gen-

erated by this simulation [23]. The Bot-IoT dataset contains more than 72 million

records, each of which represents a network packet comprising of 43 features and

is categorized into either a normal packet or an attack one. Note that all the

features in the dataset are shown in Table 1.

To evaluate the reliability of this dataset, the authors proposed ML-based

algorithms to detect attack packets and demonstrated good accuracy [23]. How-

ever, the dataset used in this evaluation contains imbalanced normal and attack

packets because the number of attack packets is much higher than that of normal

ones, as shown in Table 2. This distribution is counterintuitive because we can

usually monitor more normal packets than attack ones. Such imbalanced data

may cause performance degradation in the minority class.

In this thesis, we address the class imbalance problem in the Bot-IoT dataset

to improve the performance by using the data sampling techniques.

3.2 Machine Learning based Binary Classification

3.2.1 Logistic Regression

Logisitic regression [36] is an extension to the linear regression to estimate a

dependent variable, i.e., binary variable, from one or more independent variables,

i.e, a feature vector x, where x = (x1, . . . xD) is a D dimensional feature vector

and xk (1 ≤ k ≤ D) is a feature value.

More precisely, given the independent variables x, the logistic regression esti-

mates the probability p that the independent variables x belongs to the positive

class. The logistic regression uses the log-odds, i.e., logit function, where the logit

7



Table 1: BoT-IoT dataset features.

Feature Description

pkSeqID Row Identifier

sbytes Source-to-destination byte count

Stime Record start time

dbytes Destination-to-source byte count

flgs Flow state flags seen in trans- actions

rate Total packets per second in transaction

flgs number Numerical representation of feature flags

srate Source-to-destination packets per second

Proto Textual representation of transaction protocols present in network flow

drate Destination-to-source packets per second

proto number Numerical representation of feature proto

TnBPSrcIP Total Number of bytes per source IP

saddr Source IP address

TnBPDstIP Total Number of bytes per Destination IP

sport Source port number

TnP PSrcIP Total Number of packets per source IP

daddr Destination IP address

TnP PDstIP Total Number of packets per Destination IP

dport Destination port number

TnP PerProto Total Number of packets per protocol

pkts Total count of packets in transaction

TnP Per Dport Total Number of packets per dport

bytes Total number of bytes in transaction

AR P Proto P SrcIP Average rate per protocol per Source IP. (calculated by pkts/dur)

state Transaction state

AR P Proto P DstIP Average rate per protocol per Destination IP

state number Numerical representation of feature state

ltime Record last time

N IN Conn P SrcIP Number of inbound connections per source IP

seq Argus sequence number

N IN Conn P DstIP Number of inbound connections per destination IP

dur Record total duration

AR P Proto P Sport Average rate per protocol per sport

mean Average duration of aggregated records

AR P Proto P Dport Average rate per protocol per dport

stddev Standard deviation of aggregated records

Pkts P State P Protocol P DestIP Number of packets grouped by state of flows and protocols per destination IP

sum Total duration of aggregated records

Pkts P State P Protocol P SrcIP Number of packets grouped by state of flows and protocols per source IP

min Minimum duration of aggregated records

attack Class label: 0 for Normal traffic, 1 for Attack Traffic

max Maximum duration of aggregated records

category Traffic category

spkts Source-to-destination packet count

subcategory Traffic subcategory

dpkts Destination-to-source packet count

function z(·) is defined as the logarithm of the odds ratio,

z(p) = ln

(
p

1− p

)
. (1)

8



Table 2: Class distribution in the BoT-IoT dataset.

Class label Number of samples

Normal 477

Attack 3,668,041

Here, we can interpret the logit function z(·) as the linear combination of indepen-

dent variables, i.e, the dot product of a learnable weight vector w = (w1, . . . , wD)

and a feature vector x. Therefore, we can map the logit function z(·) to the value

at the range of [0, 1], i.e., the probability p, by using the inverse function of (1).

p =
1

1− e−z
=

1

1− e−wT·x . (2)

If the probability p is higher than or equal to a certain threshold, i.e., 0.5, x

belongs to the positive class. The logistic regression aims at learning the weight

vector w to maximize the logarithm of the likelihood function.

3.2.2 Support Vector Machine

A support vector machine (SVM) [5] is one of the supervised learning models and

aims at finding an appropriate separating hyperplane in high-dimensional feature

spaces to discriminate between categories by using a kernel function, e.g., linear,

polynomial, or radial basis function. In case of binary classification, the SVM

classifier calculates the hyperplane to distinguish between the data belonging to

a certain class and the rest of data. The appropriate hyperplane is obtained by

maximizing the distance from the hyperplane to the closest point across both

classes under the assumption where the training data are linearly separable. This

maximum distance is called the maximum margin separator.

Consider a training dataset of n points of the form (x1, y1) , . . . , (xn, yn) where

the yi are either 1 or −1, each indicating the class to which the point xi belongs.

Each xi is a real vector of dimensions D. Our aim is to find the hyperplane of

maximum margin that divides the group of points xi for which yi = 1, from the

group of points for which yi = −1. Our aim is formulated so that the distance

between the hyperplane and the nearest point xi from either group is maximized.

The hyperplane can be written as the set of points x which satisfy wTx− b = 0,
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where w is the normal vector to the hyperplane. The parameter b
∥w∥ determines

the offset of the hyperplane from the origin along the normal vectorw, that is, the

margin. To compute the soft-margin SVM classifier is equivalent to minimizing

the optimization problem:[
1

n

n∑
i=1

max
(
0, 1− yi(w

Txi − b)
)]

+ λ∥w∥2. (3)

The primal problem definition is obtained by reformulating the optimization prob-

lem above as:

min
1

n

n∑
i=1

ζi + λ∥w∥2, subject to yi(w
Txi − b) ≥ 1− ζi and ζi ≥ 0,∀i. (4)

The variable ζi = max
(
0, 1− yi(w

Txi − b)
)
is introduced for each i ∈ {1, . . . , n}.

The primal problem can be further simplified to give the dual maximization prob-

lem, that is the dual problem. The dual problem is a quadratic programming

problem and it is defined below:

max f(c1 . . . cn) =
n∑

i=1

ci −
1

2

n∑
i=1

n∑
j=1

yici(x
T
i xj)yjcj, (5)

subject to
∑n

i=1 ciyi = 0, and 0 ≤ ci ≤ 1
2nλ

,∀i.
The variables ci are defined such that w =

∑n
i=1 ciyixi. Moreover, ci = 0 when

xi lies on the correct side of the margin, and 0 < ci < (2nλ)−1 when xi lies on

the margin’s boundary. It follows that w can be written as a linear combination

of the support vectors. The offset, b can be recovered by finding an xi on the

margin’s boundary and solving b = wTxi − yi.

The sequential minimal optimization (SMO) algorithm was proposed, which

is a fast algorithm for solving the dual maximization problem in order to train

SVMs [30].

3.2.3 Random Forest

Random forest (RF) [6] is a supervised learning method and ensemble learning

using multiple decision trees, where the ensemble learning algorithm combines

multiple ML algorithms to obtain higher performance. The RF creates multiple

10



Figure 2: An example of MLP with two hidden layers.

decision trees, each of which is generated from a different training subset provided

by the training dataset sampled with replacement. Each decision tree is indepen-

dently trained and outputs a classification result. The RF outputs a classification

result based on majority voting after aggregating all the classification results of

all the decision trees.

3.2.4 Extreme Gradient Boosting

The extreme gradient boosting (XGBoost) algorithm [12] is an extended version

of the gradient boosting decision tree (GBDT) [44] in a distributed manner. The

GBDT is ensemble learning based on multiple decision trees similar to the RF.

The GBDT, however, has a different aspect from the RF in terms of the ensemble

algorithm.

The ensemble algorithm used in the RF combines full decision trees in a

parallel manner while that used in the GBDT produces a classifier by combining

weaker decision trees in a sequential manner.
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3.2.5 Multi-layer Perceptron Neural Network

Multi-layer perceptron (MLP) is a multiple feedforward artificial neural network

with one or more hidden layers between the input and output layers and succeeds

in many applications including classification. Fig. 2 illustrates an example of

MLP with two hidden layers. The MLP can be defined as a directed graph

with multiple node layers. The left (resp. right) side layer indicates the input

(resp. output) layer and the others mean the hidden layers. The MLP is a fully

connected network where every node on a certain layer has connections with a

certain weight to all the nodes on the next layer, except for the output layer. Each

node corresponds to a processing unit with a nonlinear activation function, e.g.,

rectified linear unit function, except for the nodes on the input layer. Thanks

to nonlinear mapping, the MLP can approximate to any continuous function,

which is well-known as universal approximation theorem [13]. A backpropagation

algorithm [34], which is one of the supervised learning methods, is adopted to

train MLP.

3.3 Data Sampling Methods

The class imbalance problem arises from the real-world data.

In general, such imbalanced data causes performance degradation in the mi-

nority class. To tackle this issue, some sampling techniques were proposed [8,11,

18, 20, 25]. Random minority over-sampling (ROS) and random majority under-

sampling (RUS) are commonly used and increase the sensitivity of a classifier

to the minority class. The ROS randomly duplicates samples with the minority

class while the RUS randomly discards samples with the majority class from the

dataset. Chawla et al. proposed an over-sampling method called synthetic minor-

ity over-sampling technique (SMOTE), where the minority class is over-sampled

by creating synthetic data [11].

The SMOTE algorithm aims at generating synthetic samples with the mi-

nority class according to a certain sampling rate N based on the imbalanced

proportion by the following procedures. This algorithm first finds the k-nearest

neighbors Xk(xi) = {x1 . . . ,xk} of each sample xi ∈ X by calculating the Eu-

clidean distance between xi and every sample xj ∈ X (i ̸= j), and selecting

12



samples with the smallest Euclidean distance from the original sample. Here, we

define X (X = |X |) as a set of samples with the minority class and Xk(xi) as

k-nearest neighbors of sample xi. Next, for each sample xi ∈ X , the algorithm

randomly selects one of the k-nearest neighbors Xk(xi), i.e., xl (1 ≤ l ≤ k), and

generates a new synthetic sample x′ as follows:

x′ = xi + γ(xl − xi), (6)

where γ denotes a vector of uniform random values between 0 and 1. We repeat

the above selection and generation until N synthetic samples are generated. Ap-

plying these procedures to all samples in X , we consequently obtainNX synthetic

samples with minority class.

In addition to the SMOTE algorithm, several variants of the SMOTE algo-

rithm have been proposed [8, 18, 20]. We should note that such over-sampling

techniques may change the nature of the dataset but improve the performance of

the classifiers [42].
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4. Proposed Method

In this section, we propose binary classification to deal with the class imbalance

problem in the Bot-IoT dataset.

Figure 3: Intrusion Detection analysis based on Bot-IoT dataset.

4.1 Overview

As mentioned in Section 3.1, the Bot-IoT dataset contains imbalanced normal and

attack packets because the number of attack packets is much higher than that of

normal ones. This may cause performance degradation in the minority class. We

propose the binary classification method to address the class imbalance problem

in the Bot-IoT dataset. The proposed method consists of mainly three stages,

i.e., preprocessing, data sampling, and binary classification. We first conduct

the preprocessing to tackle the curse of dimensionality, which will be shown in

Section 4.2. To investigate the positive (resp. negative) impact of the balanced

(resp. imbalanced) dataset, we use the SMOTE algorithm, which generates the

synthetic samples such that number of normal packets is equivalent to that of

attack ones. (See the details of the data sampling in Section 4.3.) The proposed

binary classifiers aim at detecting the attack packets in Bot-IoT dataset. As

for performance comparison purposes, we adopt several binary classifiers, i.e.,

14



Figure 4: Feature importance with the random forest algorithm.

logistic regression, SVM, RF, XGBoost, and MLP. We will describe the details

of the proposed binary classifiers in Section 4.4.

4.2 Preprocessing

We use the Bot-IoT dataset [23] containing 43 features. Recall that all the features

in the Bot-IoT dataset are shown in Table 1. To tackle curse of dimensionality,

we select important features related to the prediction accuracy from the original

features by using feature selection algorithms based on three metrics, i.e., ran-

dom forest [7], mutual information [35], and chi-squared algorithm [16]. Before

executing the feature selection algorithms, we remove the features not related to

the typical characteristics of the network traffic, i.e., pkSeqID, seq, dur, mean,

stddev, sum, min, and max, from the original Bot-IoT dataset. Appying each

algorithm to the Bot-IoT dataset with the remaining features, we calculate the

feature importance scores with the three algorithms, as shown in Figs. 4 through

6. Figs. 4 through 6 illustrate the feature importance by applying each feature

selection algorithm, respectively. We manually select the important features such

that feature importance derived by each algorithm is higher than a certain thresh-
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Figure 5: Feature importance with the mutual information algorithm.

Figure 6: Feature importance with the chi-squared algorithm.

old. Table 3 shows the features selected by each feature selection algorithm. We

use the 19 features, which is the union set of the features selected by the three

16



Table 3: Features selected by each feature selection algorithm.

Chi-squared Mutual information Random forest

srate dport ltime

sport proto stime

AR P Proto P Sport flgs AR P Proto P DstIP

AR P Proto P SrcIP state AR P Proto P SrcIP

AR P Proto P DstIP proto number AR P Proto P Dport

rate daddr daddr

ARP Proto P Dport saddr AR P Proto P Sport

flgs number rate

TnP Per Proto

bytes

feature selection algorithms.

Since this dataset contains categorical features, we apply the one-hot encoding

to the categorical features, which results in the numeric features. We also apply

the min-max normalization to each feature to improve the classifier performance.

More precisely, the min-max normalization translates the dth (1 ≤ d ≤ D) feature

value xi,d of the ith sample (D dimensional feature vector) xi = (xi,1, . . . , xi,D)

to the following value xnormalized
i,d :

xnormalized
i,d =

xi,d −minxj∈X xj,d

maxxj∈X xj,d −minxj∈X xj,d

, (7)

where X denotes a set of all samples. As a result, we obtain the normalized

feature value between zero and one.

4.3 Data Sampling

Since the Bot-IoT dataset contains imbalanced normal and attack packets, the

classifier performance will be skewed. To address the class imbalance problem,

we apply the SMOTE algorithm [11] to the dataset with the minority class, i.e.,

normal packets, which generates the synthetic samples from the dataset with the

minority class such that the number of normal packets is equivalent to that of

17



attack ones. Remember that the detail of the SMOTE algorithm is described

in Section 3.3. We use the oversampled dataset only for the training phase to

mitigate the skewed classifier performance.

4.4 Binary Classifiers

The proposed binary classifier aims at detecting the attack packets from the

packets in the Bot-IoT dataset. As for performance comparison purposes, we use

several binary classifiers, i.e., logistic regression, linear SVM Classification (Lin-

earSVC), linear kernel SVM, radial basis function (RBF) kernel SVM, random

forest, XGBoost, and MLP. To train the SVM model, we adopt the two types

of the solvers, i.e., liblinear solver [15] and libsvm one [10]. The liblinear solver

is used for the Linear SVC without kernel transform while the libsvm sovler is

used for the Linear and RBF Kernel SVMs. As a result, the former can quickly

solve the SMO algorithm and deal with a large amount of data, compared with

the latter.

To realize the malicious packet detection, each of them is trained by using

the preprocessed training dataset after applying the SMOTE algorithm. Given

the preprocessed packet as the input, the proposed binary classifier involves cat-

egorizing the packet within a specific class, i.e., a normal packet or an attack

one.
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Table 4: Training and testing dataset sizes.

Scenario Training dataset size Testing dataset size

attack packet normal packet attack packet normal packet

Imbalanced data scenario 2,457,583 324 1,210,458 153

Balanced data scenario 2,457,583 2,457,583 1,210,458 153

Table 5: Confusion matrix.

Prediction class

Attack packet Normal packet

Actual class
Attack packet True Positive (TP) False Negative (FN)

Normal packet False Positive (FP) True Negative (TN)

5. Numerical Results

In order to verify the positive (resp. negative) impact of the balanced (resp. im-

balanced) dataset on the classifier performance, we evaluate the proposed binary

classifiers. We first explain the evaluation settings in Section 5.1. We show

the fundamental characteristics of the proposed binary classifiers in Section 5.2.

Finally, we further demonstrate the impact of data sampling on the classifier

performance in Section 5.3.

5.1 Evaluation Settings

We use the server with Intel CPU Xeon Gold 6226R 16 core and 200 GB memory

and with NVIDIA GeForce RTX 3090 GPU and 25.45 GB memory running on

CUDA Version 11.1. We implement the proposed binary classifiers, i.e., logistic

regression, LinearSVC, linear kernel SVM, radial basis function (RBF) kernel

SVM, random forest, XGBoost, and MLP, by using the python libraries, i.e.,

scikit-learn [29] and Pytorch [28].

As for evaluation, we use the hold-out method [43] to evaluate each of the

proposed classifiers where the 67% of dataset is used for training while the rest

of dataset is used for testing. Table 4 presents the training and testing dataset

sizes in case of the imbalanced and balanced data scenarios, respectively. To

investigate impact of class imbalance, we prepare the two types of the trained

models, i.e., the model trained on imbalanced data and that trained on balanced
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data. In the former case, we use the dataset without the SMOTE algorithm for

training. On the other hand, we use the dataset with the SMOTE algorithm for

training in the latter case. Note that we apply the SMOTE algorithm to only the

training dataset. As for the SMOTE algorithm parameter, we adopt the number

k = 5 of nearest neighbors to construct the synthetic samples.

There are possible four cases for the binary classification result of each packet,

i.e, true positive (TP), true negative (TN), false negative (FN), and false positive

(FP). Table 5 presents a confusion matrix used in this thesis. TP (resp. TN)

indicates the case where the binary classifier correctly predicts the attack (resp.

normal) packet. On the other hand, FN (resp. FP) refers to the case where the

packet is within the attack (resp. normal) class but the binary classifier performs

incorrect prediction for the attack (resp. normal) packet.

As for evaluation metrics, we use accuracy, recall, precision, false negative rate

(FNR), fales positive rate (FPR), and F1-score. These metrics can be calculated

as follows:

accuracy =
TP + TN

TP + FN + FP + TN
, (8)

recall =
TP

TP + FN
, (9)

precision =
TP

TP + FP
, (10)

FNR =
FN

TP + FN
, (11)

FPR =
FP

FP + TN
, (12)

F1-score = 2 · precision · recall
precision + recall

, (13)

where TP , TN , FN , and FP represent the numbers of TP, TN, FN, and FP

events, respectively. We also use the area under a receiver operating characteristic

(ROC) curve, i.e., AUC-score, where an ROC curve is a curve plotting the TP rate

against the FP rate at different classification thresholds and AUC-score indicates

the entire two-dimensional area under the entire ROC curve. In addition, we use

inference time, which indicates the actual time required for inference on all the

testing data.
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Table 6: Performance comparison among the proposed classifiers trained on im-

balanced data.

Scheme accuracy recall precision FNR FPR F1-score AUC-score inference time [s]

Logistic regression 99.9960 99.9999 99.9961 0.00008 30.72 99.9961 84.6404 0.05

Linear SVC 99.9964 99.9995 99.9968 0.0004 24.84 99.9968 87.5814 0.05

Linear kernel SVM 99.9960 100.0 99.9960 0.000 31.373 99.9960 84.3137 9.72

RBF kernel SVM 99.9985 99.9999 99.9986 0.00008 10.457 99.9986 94.7712 27.06

Random forest 99.8018 99.8032 99.9985 0.196 11.764 99.9985 94.0192 4.37

XGBoost 99.9950 99.9976 99.9974 0.0023 20.26 99.9974 89.8680 0.43

MLP 99.8619 99.8697 99.9922 0.130 53.10 99.9922 73.3811 0.0012

5.2 Performance Comparison among Classifiers

In this section, we focus on the fundamental characteristics of the proposed binary

classifiers. Table 6 presents the performance comparison among the proposed

binary classifiers trained on the imbalanced dataset. We first observe that all the

proposed classifiers achieve high accuracy yet the training dataset contains class

imbalance. Focusing on recall, we confirm that all the proposed classifiers achieve

over 99% recall. This indicates the proposed classifiers can correctly detect the

attack packets. In terms of precision, the proposed classifiers also achieve the

high performance. Next, focusing on the FPR, we observe that all the proposed

classifiers have relatively high FPR, compared with FNR. This is because the

performance of the classifier is skewed towards the “attack” class due to the

imbalanced training dataset, which results in a large number of false positive

events. From the viewpoint of AUC, the RBF kernel SVM and Random forest

exhibit the high performance, i.e., 94.01% and 94.07%, while the AUC-score of

the MLP is 73.38%.

Next, we focus on the inference time. We observe that logistic regression,

Linear SVC, XGBoost, and MLP exhibit small inference time less than one sec-

ond while Linear and RBF kernel SVMs and Random forest show much higher

inference time than them. The random forest requires long inference time to av-

erage the classification results obtained from the 1000 decision trees used for the

binary classification. Since Linear and RBF kernel SVM adjust the hyperplane

such that the samples are distinguished into their class, they require the higher

inference time.
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Table 7: Performance comparison among the proposed classifiers trained on the

balanced data.

Scheme accuracy recall precision FNR FPR F1-score AUC-score inference time [s]

Logistic regression 99.9722 99.9724 99.9998 0.027 1.307 99.9998 99.3326 0.05

Linear SVC 99.9786 99.9788 99.9998 0.021 1.307 99.9998 99.3358 0.05

Linear kernel SVM 99.6527 99.6535 99.9991 0.346 6.535 99.9991 96.5587 44.10

RBF kernel SVM 99.9982 99.9984 99.9998 0.00156 1.307 99.9998 99.3456 76.66

Random forest 99.9956 99.9957 99.9998 0.0042 1.307 99.9998 99.3442 4.35

XGBoost 99.9945 99.9947 99.9998 0.0052 1.307 99.9998 99.3437 0.45

MLP 99.9761 99.9781 99.9819 0.021 0.027 99.9819 99.9755 0.0012

5.3 Impact of Data Sampling

In this section, we focus on the impact of class imbalance on the classifier perfor-

mance. Table 7 presents the performance comparison among the proposed binary

classifiers trained in the balanced dataset. Comparing Table 6, we first confirm

that all the proposed classifiers trained on the balanced dataset can exhibit al-

most the same accuracy, recall, and precision compared with those trained on the

imbalanced dataset, thanks to the oversampling method. We observe that the

FPR is drastically improved because the proposed classifier is trained by using

the large amount of data within the normal class.

This result shows that the normal packet cannot be blocked from reaching the

IoT devices by introducing the balanced dataset.

Next, we focus on how the oversampling method affects the inference time.

We observe that the performance of Linear and RBF kernel SVM trained on the

balanced data degrades in terms of inference time compared with those trained

on the imbalanced data. This is because these classifiers require time to fit the

large amount of samples by finding the hyperplane. On the other hand, the rest

of the proposed classifiers trained in the balanced data exhibit almost the same

inference time as those trained in the imbalanced data.

Figures 7a,7b,9,8a,8b that follow illustrate the observations observe. In these

figures; LogReg, LSVC, LKernelSVM, rbfKernelSVM, rdnmFst, XGBoost, and

MLP refer to Logistic Regression, Linear SVC, Linear Kernel SVM, RBF Kernel

SVM, Random Forest, Extreme Gradient Boosting, and Multi-layer Perceptron

respectively.
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(a) FPR on Imbalanced and Balanced data.

(b) FNR on Imbalanced and Balanced data.

Figure 7: FPR and FNR on Imbalanced and Balanced data.

23



(a) Recall on Imbalanced and Balanced data.

(b) Precision on Imbalanced and Balanced data.

Figure 8: SMOTE impact on Precision and Recall of Minority Class.
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Figure 9: Inference Time on Imbalanced and Balanced data.

6. Conclusion

The existing Bot-IoT dataset contains imbalanced normal and attack packets

since the number of normal packets is much smaller than that of attack ones. Such

class imbalance leads to inaccurate results, especially for the minority class. In

this thesis, we have addressed the class imbalance problem to apply the SMOTE

algorithm to the original Bot-IoT dataset, where the SMOTE algorithm generates

synthetic samples such that number of normal packets is equivalent to that of

attack ones. We further have proposed the binary classification method to identify

the normal and attack packet.

Through the numerical results, we first have shown the performance compar-

ison among the different classifiers. We observe that all the proposed classifiers

achieve high accuracy, recall, and precision. Next, we have demonstrated the

impact of data sampling on the classifier performance. The proposed classifiers

trained in the balanced dataset also achieves almost the same accuracy, recall,

and precision as that in imbalanced dataset, and drastically improves the FPR.

In future work, we plan to develop the resource efficient NIDS based on both

the reinforcement learning and federated learning to learn patterns of attacks in

the IoT network over time. In addition, we aim to evaluate the performance of

the NIDS under the resource constraints. The more immediate efforts include

extending this work to do multi-class classification especially when an attack has

been detected, in order to identify the actual type of attack.
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