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ABSTRACT

Explaining Deep Learning models is becoming increasingly
important in the face of daily emerging multimodal models,
particularly in safety-critical domains like medical imaging.
However, the lack of detailed investigations into the perfor-
mance of explainability methods on these models is widening
the gap between their development and safe deployment. In
this work, we analyze the performance of various explainable
AI methods on a vision-language model, MedCLIP, to demys-
tify its inner workings. We also provide a simple method-
ology to overcome the shortcomings of these methods. Our
work offers a different new perspective on the explainability
of a recent well-known VLM in the medical domain and our
assessment method is generalizable to other current and pos-
sible future VLMs.

Index Terms— Explainable AI, Vision-Language Mod-
els, Multimodal Models

1. INTRODUCTION

Deep Learning (DL) models provide a remarkable perfor-
mance on many tasks, however, they often work as a black
box and their internal working mechanism is hidden from the
end-user [1]. This induces skepticism and a lack of trust in
these models, particularly for cases like clinical diagnosis.
Thereby hindering the real-life deployment and adaptation of
DL models in critical domains like healthcare.

Explainable AI (XAI) [2] offers a remedy to this problem
by providing insights into the inner workings of DL models. It
enables the end-users to see and understand the rationale be-
hind models’ prediction, enhancing fairness and confidence
in DL models. In recent years, a number of XAI methods
have been introduced to demystify these black-box behavior
in DL. These methods differ from each other mainly based on
the information they offer, their applicability (model specific
or agnostic), and the scope of their explanation [2]. Further-
more, XAI methods can be categorized as intrinsic or post-
hoc depending on the provided interpretation. Intrinsic or
model-based methods rely on the structure of the model it-
self and hence are limited to models like linear regression.

Whereas post-hoc methods are applied to more complex mod-
els that are often difficult to explain. Examples of post-hoc
methods include gradient backpropagation [3], layer-wise rel-
evance propagation [4], and class activation mapping (CAM)
[5].

Multimodal learning has shown great success in combin-
ing the information from various modalities to increase the
performance of deep learning models [6, 7]. Particularly,
vision-language models (VLM) utilize both visual and tex-
tual information to learn a meaningful representation [8, 9]
and to answer complex questions related to the associated
data [10, 11]. These models bring AI a step closer to the
human-like working paradigm where AI models can process
multiple types of inputs simultaneously to perform a task. It
also enables the utilization of large-scale pre-trained vision
and language models for downstream tasks, which reduces
the cost and hustle of training models from scratch.

VLMs have also demonstrated significant utility in med-
ical applications, as evidenced by studies such as [12, 13,
14]. Moreover, the medical domain contains the paired scans-
reports that can be utilized to train VLMs for enhanced per-
formance in downstream tasks like classification, segmenta-
tion, and image generation [15, 16, 14]. A recent VLM, Med-
CLIP [14] efficiently trained the CLIP-like [17] model using a
modified objective for X-Ray image-report dataset. However,
despite being very useful, the complexity of VLMs makes
them less plausible causing obstruction to their wide applica-
tions. Explaining these VLMs is of high importance but also
challenging as typical XAI methods work with one modal-
ity i.e. text or image alone [18], which can be misleading as
VLMs heavily rely on the interaction between text and image
features. Furthermore, it is unclear whether single-modality-
based explainability methods can explain VLMs.

To address the problem of explainability in VLMs, we an-
alyze the effectiveness of different existing XAI methods to
explain a recently introduced VLM, MedCLIP [14]. Further-
more, we propose a simple and effective method to overcome
the shortcomings of these methods by combining the XAI
methods with the text and image interaction in VLM. This
increases the plausibility as well as provides a framework to
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understand what the VLM actually looks for when making a
certain prediction.

2. METHODOLOGY

We selected a diverse set of XAI methods for our analysis. A
brief overview of these methods is as follows:

• Gradient backpropagation (GB) is a saliency-map-
based method that backpropagates the gradients to find
the features of high importance [19]. It assigns each input
feature an importance score which indicates that feature’s
contribution to the model prediction.

• Occlusion method is used for analyzing the importance
of each region in the input. It partly occludes an image
and observes the change in the network activation and the
model’s prediction [20]. The input regions that bring the
most change are considered to be the most important.

• Integrated-Gradients (IG) interpolates a baseline image
to the actual input image to quantify the importance of
each pixel. The baseline image can be random noise or
pure white pixels. This is an efficient method that inte-
grates the gradients at different levels [21].

• Grad-Shapley (GS) combines the gradients of the model
predictions with respect to the input pixels and combines
them with the Shapley value [22].
We selected these four XAI methods for several reasons.

First, they represent a diverse range of techniques that offer
distinct insights into the inner workings of the DL model.
GB helps us understand feature importance through the gra-
dient flow in the model. Occlusion provides insights into the
model’s sensitivity to different image regions by systemati-
cally occluding parts of the input. IG method offers a way to
attribute predictions to specific features by tracking their in-
fluence across input variations. GS method, on the other hand,
enables us to quantify the contribution of each feature’s inter-
action to the final prediction. Moreover, these methods are
well-established and widely recognized in the field of XAI.
They have been applied successfully across various domains,
making them suitable choices for our specific use case.

For our analysis, we first applied these methods to Med-
CLIP in order to analyze their performance through explain-
ability maps for a given image. This is followed by using
our proposed method to acquire the explainability maps and
analyze the difference in interpretability.

2.1. MedCLIP
MedCLIP is a recently introduced powerful VLM for chest X-
ray (CXR) classification. It combines a BioClinicalBERT1-
based text-encoder backbone and a SwinTransformer [23]
vision-encoder, pre-trained on the ImageNet dataset [24].
This BERT model has been pre-trained on the MIMIC-III
dataset [25] containing the electronic health records from
ICU patients. These transformer-based large models possess

1https://huggingface.co/emilyalsentzer/Bio ClinicalBERT

the ability to efficiently learn complex features from the input
data.

First, a 224x224 input image (Ximg) is passed through
the vision encoder (Venc) to produce image embeddings (I ∈
RD). These embeddings are then further projected into a
lower-dimensional vector Ip ∈ RM via a projection head de-
noted as Pv .

I = Venc(Ximg) (1)
Ip = Pv(I) (2)

Similarly, the input text (Xtxt) is tokenized and then encoded
using the text encoder Tenc. The resultant vector (T ∈ RE) is
subsequently projected to Tp ∈ RM using the text projection
head Pt, to match the vision and text embeddings dimensions
denoted as M (M=512 in MedCLIP).

T = Tenc(Xtxt) (3)
Tp = Pt(T ) (4)

These text and image embeddings (Ip and Tp) are normalized
before calculating the dot product Mdot in a contrastive man-
ner.

Mdot = Ip · Tp (5)
L = Mdot ∗ τ (6)

Here L represents the final output logit, indicating the similar-
ity between the input image and the text and τ is the learnable
temperature parameter.

2.2. Proposed Approach
Our proposed approach is based on the idea of applying the
selected XAI methods to the embedding space of the VLM,
instead of the final output of the model. This is motivated by
the fact that VLMs process each input separately before fus-
ing them to generate the final output (see MedCLIP section)
and each of the encoders can be treated as separate models.
Hence applying the existing XAI methods for each of the in-
put modalities and then combining it with the other modality
can lead to better explainability. The proposed method has
three main steps:
1. Firstly, an XAI method of choice Mxai is applied to the

image embeddings generated by the vision-encoder of
Venc of the MedCLIP to generate an explainability map
F i
map ∈ RAxA for each embedding dimension i. This

yields M distinct maps, each highlighting the input im-
age pixels important for one specific image embedding
dimension.

F i
map = Mxai(model = Venc, target = i)

where i is the index of the image embedding Ip ∈ R1x512.
2. In the second step, a text input Xtxt is selected and en-

coded through the text encoder Tend to generate the em-
beddings Tp ∈ R1xM . These generated embeddings are
scaled by the learned temperature parameter of the VLM.



Fig. 1. Class-specific feature maps generated for the prompt-classifier. These maps do not provide any significant class-specific
information and therefore are not suitable for explaining VLM like MedCLIP.

3. In the final step, a dot product between the image explain-
ability maps generated in step 1 and text embeddings is
calculated to get a RAxA weighted average of these maps
F out
map. This step calculates the similarity of each text em-

bedding to the corresponding image embedding as well
as quantifies their contribution to the final output, thereby
providing a measure of how important each explainability
map is for the models’ prediction.

F out
map = Tp · F all

map

where F all
map ∈ RMxAxA is a list containing M generated

feature maps.
This results in a single explainability map that highlights

the specific image pixels influencing the model’s confidence
with regard to the given input. It is important to note that
this method is very efficient as the second and third steps can
be repeated for different prompt embeddings once the com-
plete set of feature maps for an image is obtained, obviating
the need for repeating step 1 for each input text. We exper-
imented with both class labels as well as text prompts (sen-
tences) as text input to the model. A set of 10 prompts was
developed for each class label. Each generated text prompt
encompasses information about the specific pathology, its lo-
cation, intensity, and variations in sub-types (e.g. ”mild linear
atelectasis at the mid lung zone”). This comparison between
text prompts and class labels will help us visualize the effect
of different input types on the VLM.

2.2.1. Dataset
We used the MIMIC-CXR [26] dataset which is a large CXR
dataset with free-text radiology reports collected from the

Beth Israel Deaconess Medical Center in Boston, MA. This
dataset contains approximately 377,110 CXR-report pairs
with 14 classes (13 pathologies and 1 healthy class). We in-
corporated a subset of 2000 randomly selected samples along
with the class labels for our analysis.

2.2.2. Implementation Details
We performed all experiments on a single Nvidia Quadro
RTX 6000 GPU with 24GB of memory. The MedCLIP model
was implemented using the PyTorch library [27], while we
used the Captum library [28] for off-the-shelf XAI methods.

3. RESULTS

Figure 1 shows the class-wise explainability maps generated
using the four selected XAI methods. It’s worth noting that
these explainability maps exhibit a remarkable degree of sim-
ilarity despite having significantly different inputs. What’s
more, they collectively assign a substantial portion of the im-
age as important, which results in a high rate of false posi-
tives. This consistent high false-positive behavior is observed
across all four methods. In fact, these methods often highlight
pixels outside the human body in chest X-rays as equally cru-
cial for the final prediction. Furthermore, it is evident that the
class labels do not exert a discernible influence on the final
output. These results fail to align with the established medical
diagnostic methodologies, which are typically lesion-specific,
as different regions of a chest X-ray are critical for different
diagnoses. This discrepancy further underscores the limita-
tions of conventional XAI methods in effectively elucidating



Fig. 2. Feature activation maps were generated using the proposed methods. These activation maps are focused and clearly
explain MedCLIP. The top part shows show the VLM is able to focus on specific areas of the input image based on the input
prompts. Whereas, the lower part shows the activation maps for the used models when provided with the class labels as text
inputs. These maps comprehensively explain the difference in the performance of MedCLIP based on the type of text input
provided.

the mechanisms underlying the MedCLIP model. Our pro-
posed approach produces the feature maps depicted in Figure
2. We generated explainability maps using both text prompts
(sentences) and class labels to investigate the influence of dif-
ferent text inputs. To begin, we applied our method to Med-
CLIP, utilizing images and text prompts describing various
lesions. As depicted in the top section of Figure 2, our ap-
proach stands in contrast to conventional XAI methods by
avoiding false positives and accurately highlighting the most
important images. The highlighted pixel locations closely
align with established clinical diagnostic procedures for the
specified pathology. Additionally, our method effectively il-
lustrates how MedCLIP’s focus shifts based on the input text
prompt, providing strong evidence of this VLMs’ capacity to
comprehend text and identify relevant image pixels. It is also
evident this method is capable of delivering nuanced, compre-
hensive, and meaningful insights into the model’s operation.
Secondly, we employed class labels in conjunction with chest
X-ray (CXR) images to evaluate our method, as shown in the
bottom section of Figure 2. The highlighted image pixels are
localized and exhibit variations across different class labels.

4. DISCUSSION AND CONCLUSION

In this paper, we analyzed the usefulness of existing XAI
methods for VLMs and provided a simple and highly effec-

tive method to overcome their shortcomings for the multi-
modal models. Through our work, we demonstrate the ef-
ficacy of our proposed approach in comprehensively explain-
ing the functioning of the MedCLIP VLM, a feat that the con-
ventional approach fails to achieve. Moreover, our approach
shows the combined effect of both input modalities on the
VLM prediction which can be of high importance in VLMs.
Furthermore, the explainability maps can help us understand
the discrepancy in the performance of DL models. We vi-
sualize the difference in activation maps for two different text
input forms in order to understand the effect of different types
of text inputs. One major benefit of this work is the flexibility
to use any off-the-shelf XAI method for VLMs, making the
method versatile. Furthermore, it can also be adapted to other
VLMs by following the image and text embedding fusion ap-
proach used in that specific model.

In conclusion, pretrained VLMs like MedCLIP have enor-
mous potential to be used for downstream tasks without fine-
tuning. However, it is very important to make AI more trust-
worthy by making these models explainable to the end user.
Further research is required to design new VLM-specific XAI
methods or frameworks for practical use of already existing
methods.
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