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Abstract—Microservice-based systems (MSS) may experience
failures in various fault categories due to their complex and
dynamic nature. To effectively handle failures, AIOps tools utilize
trace-based anomaly detection and root cause analysis. In this
paper, we propose a novel framework for few-shot abnormal
trace classification for MSS. Our framework comprises two
main components: (1) Multi-Head Attention Autoencoder for
constructing system-specific trace representations, which enables
(2) Transformer Encoder-based Model-Agnostic Meta-Learning
to perform effective and efficient few-shot learning for abnormal
trace classification. The proposed framework is evaluated on two
representative MSS, Trainticket and OnlineBoutique, with open
datasets. The results show that our framework can adapt the
learned knowledge to classify new, unseen abnormal traces of
novel fault categories both within the same system it was initially
trained on and even in the different MSS. Within the same
MSS, our framework achieves an average accuracy of 93.26%
and 85.2% across 50 meta-testing tasks for Trainticket and
OnlineBoutique, respectively, when provided with 10 instances
for each task. In a cross-system context, our framework gets an
average accuracy of 92.19% and 84.77% for the same meta-
testing tasks of the respective system, also with 10 instances
provided for each task. Our work demonstrates the applicability
of achieving few-shot abnormal trace classification for MSS and
shows how it can enable cross-system adaptability. This opens an
avenue for building more generalized AIOps tools that require
less system-specific data labeling for anomaly detection and root
cause analysis.

Index Terms—Microservice, anomaly classification, root cause
analysis, tracing, NLP, meta learning, cross-system anomaly
detection

I. INTRODUCTION

Microservice architecture is a software design approach
where software systems are developed as a collection of
small, independent services [1]. Traces are fundamental to
understanding and monitoring Microservice-based systems
(MSS) [2]. A trace maps the path of a user request and it
is composed of interconnected spans [3]. Each span is an
individual operation performed by a particular service. Logs
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record the behaviors of each service instance in a span. Log
content varies based on what the developer has decided to log.

The operational workflow for handling failures within MSS
typically involves anomaly detection (AD) and root cause
analysis (RCA) [4], [5]. AD identifies deviations from normal
behavior, signaling potential anomalies. Upon detection of
anomalies, RCA is performed to conduct a detailed exami-
nation of the anomaly. This examination aims to pinpoint the
exact service(s) causing the anomaly and to understand the
underlying reasons for its occurrence. Manual AD and RCA
can be time-consuming and error-prone for MSS [4] not only
due to the numerous services and their intricate interactions but
also the complexity and multimodality of monitoring data [4].

Artificial intelligence for IT operations (AIOps) tools place
particular emphasis on trace-based AD and RCA due to their
importance. Several studies focus on trace-based AD [6]–
[8] represent each trace as a sequence of spans and design
models to detect abnormal traces. Regarding RCA, substantial
efforts [9]–[12] have been devoted to locating the service
responsible for abnormal traces for MSS, e.g., using graph
neural networks. However, tooling to classify abnormal traces
for MSS is still in its infancy, though the demand for such
tools is increasing as they provide advantages that can signif-
icantly improve RCA. This is primarily due to the following
challenges:

• High dimensional and multi-modal trace-related data:
In each trace, the length of spans and logs is varied,
and they feature attributes in diverse formats, including
semantic, numeric, and identical. This makes it imprac-
tical to rely solely on raw data for constructing trace
representations.

• Imbalanced abnormal trace distribution in MSS. This
imbalance arises when some fault categories are more
common than others. It poses a challenge for normal
machine learning methods as they may become biased
towards the more frequent fault categories [13], resulting
in poor performance in identifying less frequent.

• Heterogeneity of MSS: Different MSS can have differ-
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ent architectures, components, and behaviors, making it
difficult to develop a universal solution for both trace
representation construction and classification.

Few-shot learning [14] has the potential to address the
challenges of imbalanced abnormal trace distribution in MSS
for abnormal trace classification, as it can recognize abnormal
traces from both frequent and rare fault categories by learning
from a minimal number of examples. Autoencoder (AE),
an unsupervised algorithm, has been utilized in trace-based
AD studies [10], [15], [16] to construct the system-specific
low-dimensional trace representations (also known as latent
trace representations) by fusing high-dimensional, multi-modal
trace-related data, addressing the challenges driven by trace-
related data and the heterogeneity of MSS. However, no
studies have explored the application of few-shot learning for
abnormal trace classification for MSS. Also, the use of latent
trace representations generated by autoencoders for abnormal
trace classification has not been explored.

To address the challenges and fill the research gap, we
propose a framework for few-shot abnormal trace classification
for MSS. Our framework is designed around two central
concepts: C1. constructing system-specific low-dimensional
trace representations by fusing high-dimensional multi-modal
trace-related data, which can enable C2. the effective and effi-
cient few-shot learning for abnormal trace classification. Fig-
ure 1 shows the overview of our framework. Our framework
comprises two key components: the Multi-Head Attention
Autoencoder (MultiHAttenAE) for C1, and, the Transformer
Encoder-based Model-Agnostic Meta-Learning (TE-MAML)
for C2.

Fig. 1. Overview of our framework

Given a MSS, MultiHAttenAE is trained using normal
traces to construct low-dimensional trace representations tai-
lored for this MSS. MultiHAttenAE is based on AE [17],
and it is in the encoder-decoder structure: an encoder that
learns to fuse multi-modal high-dimensional trace-related data
into latent trace representations; The decoder reconstructs the
original input data from constructed trace representations. The
optimized encoder can be used independently to construct low-

dimensional trace representations for new, unseen traces within
the MSS it is trained on.

TE-MAML uses the optimized encoder from MultiHAtte-
nAE to construct trace representations for a given MSS. TE-
MAML is built upon the meta-learning algorithm MAML [18],
which allows to learn a meta-leaner with an optimal set of
initial model parameters that can adapt to new tasks using
only a few instances and a small number of gradient updates.
These new tasks can be either from the same domain or in
different domains. In our case, domains are different MSS.
By leveraging MAML, TE-MAML learns from meta-training
tasks from an MSS and adapts the learned knowledge (i.e.,
optimized initial parameters) to meta-testing tasks both within
the same MSS it was initially trained on and in a different
MSS. Here, each of the meta-training and meta-testing tasks
is a distinct abnormal trace classification task. TE-MAML uses
TE as the meta-learner, which uses a self-mechanism to weigh
different parts of trace representations to identify the most
relevant features for doing classification.

We evaluate the effectiveness and efficiency of our frame-
work through several experiments on representative bench-
mark MSS, Trainticket and OnlineBoutique, with open
datasets. We evaluated the effectiveness of each component
in our framework. We define these research questions:

• RQ1: Within-system adaptability. How effective and
efficient is our framework, once trained on abnormal
trace classification tasks within a MSS, can adapt to new
abnormal trace classification tasks within the same MSS?

• RQ2: Cross-system adaptability. How effective and
efficient is our framework, once trained on abnormal
trace classification tasks within a MSS, can adapt to new
abnormal trace classification tasks in a different MSS?

• RQ3: Component Impact. How does each component
of our framework contribute to its overall performance
(effectiveness & efficiency)?

Significance. RQ1 evaluation is critical because within-
system adaptability allows the framework to maintain its
effectiveness in classifying abnormal traces in the changing
context. Since MSS are dynamic with frequent service updates,
additions, or removals, new abnormal traces from novel fault
categories may appear [1]. A framework that can adapt to new
abnormal trace classification tasks without extensive retraining
would significantly reduce the costs and rework effort while
increasing practical utility in practices. RQ2 evaluates our
framework’s capability to transfer learned knowledge from one
MSS to another MSS with different architectures, components,
and behaviors. Prior studies [19]–[21] have investigated cross-
system adaptability in software system AD tasks to enhance
the generalization capability of AIOps tools across diverse
software systems. Cross-system adaptability is valuable for
organizations that run several MSS, as it allows them to use the
same framework for abnormal trace classification across differ-
ent MSS without extensive training on each MSS. Moreover,
cross-system adaptability extends the applicability of academic
benchmark MSS, enabling to train on the benchmark MSS



and adapt the learned knowledge to classify abnormal traces
in industry-specific MSS. RQ3 identifies which parts of the
framework are most critical for achieving good performance
in terms of both effectiveness and efficiency. This information
is valuable for others to decide on using the framework in
their applications, and also they can focus on optimizing the
most critical components for them.

Our main contributions are highlighted as follows:

• An unsupervised method to construct system-specific
low-dimensional trace representations using high-
dimensional multi-modal trace-related data. Such trace
representations can enable further effective and efficient
trace analysis like few-shot abnormal trace classification
in our study.

• The evaluated AIOps framework with within-system and
cross-system adaptability for few-shot abnormal trace
classification for MSS.

• The practical implementation of the meta-learning algo-
rithm MAML for a new NLP classification task: few-shot
abnormal trace classification for MSS. Meta-learning has
been observed actively in the domain of computer vision,
while its exploration within NLP remains relatively lim-
ited [22]

II. RELATED WORK AND EXISTING APPROACHES

Existing approaches for abnormal trace classification are
very rare for MSS or similar cloud-based systems. The
study [23] is the only related work. It uses a convolutional
neural network (CNN) to classify abnormal traces from time
series-based fault categories (e.g., incremental, mean shift,
gradual increase, cylinder). It characterizes the trace as a
sequence of spans and uses the time-series data on span
attribute “URL” to do the classification. It evaluated the model
using a large dataset from a real-world production cloud.
The evaluation results showed that the model can accurately
classify the tested anomaly patterns. Besides, prior trace-
based AD studies [6]–[8] also characterized a trace as a
sequence of spans and used span attributes to construct trace
representations. However, these representations might not be
effective for abnormal trace classification tasks, because each
span only offers insight into local behaviors for a service
instance. Our study complements the prior studies and makes
the novelty from these aspects:

• For a given MSS, our study constructs trace representa-
tions by fusing multi-modal trace-related data, spans and
logs, which have attributes in diverse formats, including
semantic, numeric, and identical.

• Our study aims to achieve effective abnormal trace clas-
sification across a wider range of fault categories with
fewer instances, making our framework more robust when
facing imbalanced abnormal trace distribution in MSS.

• Our study observes the cross-system adaptability of
AIOps tools in this field.

III. METHODOLOGY

We first introduce the trace structure and then describe our
framework’s components, MultiHAttenAE and TE-MAML, in
the following sub-sections.

A. Trace structure

Based on OpenTelemetry [3], a trace is structured as a
hierarchical tree of spans. The root span is the starting point
of the trace, akin to the tree’s base, from which all other spans
branch out. Each span has a parent span, except for the root
span. The span that is currently being executed (i.e, active
span) may contain nested sub-spans, which represent smaller
units of work that are part of the larger operation encompassed
by the active span to which they belong. Figure 2 shows an
example tree structure for a trace, where Span A is the root
span, and it triggers a sequence of calls to other spans. Figure 3
shows the same spans depicting how a request flows through
the execution of each span in sequence and pinpoints the time
where relevant logs are generated.

Fig. 2. An example trace structure (Zhang et. al. [9])

log

Span B

log loglog log loglog log log

Time
Span C

Span A Span D

Span E

Span F

Fig. 3. Spans and logs in the timeline (modified from Zhang et. al. [9])

B. MultiHAttenAE for constructing trace representation

Figure 4 shows the basic structure of MultiHAttenAE.
For a given MSS, we denote a set of traces as Tr =
{Tr1, T r2, ..., T rn}, where each Tri represents an individual
trace consisting of a sequence of spans and logs. Thus,
Tr = (Span, Log) represents the combination of spans and
logs across all traces.

1) Span prepossessing and vector generation: For each
span, we extract all available common attributes within it: start
time, end time, duration, span ID, service name (i.e., service
component) and URL (i.e., operation). We normalize time
related attributes within each span’s context, considering the
unique characteristics and scale of each span. We denote vector
representations of normalized span attributes as Vstart time,
Vend time and Vduration for Span of Tr.

For MSS, Span IDs are designed with a hierarchical struc-
ture reflecting the relationship between the active spans and
their nested sub-spans [3]. Take Figure 3 as an instance,
assuming that Span A is the active span, both Span B and
Span C are nested in Span A. When Span A initiates, it is
assigned a Span ID “a480f2.0”, while its nested spans, Span
B and Span C, are assigned with the derivative Span IDs
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“a480f2.1” and “a480f2.2” respectively. Spans like Span D and
Span E, which are not nested sub-spans of any active spans,
receive distinct Span IDs, like “a343mc.0” and “a987gq.0”,
to reflect their separate execution pathways. In our study, to
construct a vector representation, we abstract away the shared
common prefix in Span IDs and only retain hierarchical-level
digits. For example, we reassign Span A, Span B, Span C,
Span D, Span E with Span ID “1.0”, “1.1”, “1.2”, “2.0”, “3.0”.
We normalize Span IDs within the trace context. As such, we
construct a vector representation Vspan id for Span of Tr.

We concatenate textual attributes “service name” and “URL”
to form a singular attribute termed “service operation”.
Template-based representation of textual attributes may not
be ideal given the diverse range of service operations of-
ten present in MSS [24], [25]. Thereby, we use a neural
representation method from the study [26]. To construct a
neural representation for service operations, we undertake
three steps. Step 1. Prepossessing. We convert all uppercase
letters to lowercase, substitute specific variables with standard
identifiers (e.g., replace instances like “Prod1234” with “Pro-
ductID”), and remove any non-alphabetic characters. Step 2.
Tokenization. We use WordPiece tokenization [27] to tokenize
service operations into subwords. It starts with a vocabulary of
individual characters and then incrementally combines them
into more extensive sub-word units. We choose WordPiece
over other methods because it gives the flexibility to handle
any words (including new, unfamiliar and out-of-vocabulary
ones) with a relatively small vocabulary of sub-word units, as
every word is decomposable into subword units. Step 3. Neural
representation. We feed the subwords, into the BERT base
model [28] to generate word embeddings for each sub-word.
We use the word embeddings generated by the last encoding
layer of the model and calculate the sentence embedding of
each service operation as the average of its word embeddings.
This process yields a vector representation Voperation for service
operations of Span of Tr.

For Tr, we concatenate the individual vector representations
acquired from the preceding phase, thereby establishing a com-
posite vector Vspan ∈ Rdspan for Span, where dspan represents
the dimensionality of the vector space for Vspan:

Vspan = Concat(vstart time, vend time, vduration, vspan id, voperation)
(1)

2) Log prepossessing and vector generation: To capture the
semantic contents of each log, we extract all textual attributes:
severity level (such as INFO, WARN, ERROR), component (a

part of the system that generated the message), log message
content (written by developers reflecting the system state).
We concatenate these attributes to form a singular attribute
termed “log event”. We build a neural representation for
log events that omits the usual step of log parsing. This
approach leverages the capability of neural representations to
more effectively comprehend the semantic meanings of log
events [29]. Some past works indicate that log parsing might
provide limited benefits [26], [30]. Our method for building a
neural representation of log events follows the same three-step
process as the one that is used for service operations in spans
in Section III-B1. This process yields a vector representation
Vlog ∈ Rdlog , which comprises the sentence embeddings of log
events, for Log of Tr. Here, dlog represents the dimensionality
of the vector space for Vlog.

3) Trace representation construction: For a given MSS,
we construct trace representations for its traces Tr utilizing
our MultiHAttenAE, which consists of two main components:
encoder and decoder. The encoder first projects the input
vectors Vspan and Vlog into a common feature space Rd′

:

V ′
span = g(WspanVspan + bspan)

V ′
log = g(WlogVlog + blog)

(2)

where, g denotes the activation function, Wspan and Wlog are
the respective weight matrices, and bspan and blog are the bias
vectors.

The encoder incorporates the multi-head attention mecha-
nism [31] , as shown in Equation 3. First, the mechanism
calculates the attention each sequence element in Q should
put on all other elements in K and V, where Q, K and V
denote the matrices for queries, keys, and values, respectively.
It computes initial attention scores by taking the dot product of
Q and K, regulates these scores by

√
dk for numerical stability,

and then processes the scores through a softmax function,
yielding the final attention distribution. This final attention
distribution assigns weights to the elements in V. Second, the
mechanism characterizes each attention head (headi), which is
computed by separate learned linear projections of Q, K, and
V using the matrices WQ, WK , WV as learnable weights.
This process transforms the original matrices to produce
distinct queries, keys, and values for each head, enabling a
unique attention mechanism per head. Third, the mechanism
details the formation of the multi-head attention, termed as
MultiHead. It concatenates the outputs of all the individual
attention heads into a single vector and linearly transforms



this single vector using the weight matrix WO to produce the
final representation for multihead attention representation.

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V,

headi = Attention(QWQ,KWK , V WV ),
MultiHead(Q,K, V ) = Concatenate(head1, . . . , headh)WO

(3)
Our encoder takes V ′

span and V ′
log as input into the above

multi-head attention mechanism to fuse them into a low-
dimensional trace representation Z for the set of traces Tr.
This approach effectively captures the essential patterns and
dependencies present within the multi-modal data V ′

span and
V ′

log. The fusion process is delivered as:

Z = MultiHead(V ′
span, V

′
log, V

′
log) (4)

where, we set V ′
span as Q, and V ′

log as both K and V. This
setup aligns with the roles of spans in reflecting the trace
structure and service communications, while logs provide
detailed contextual event information.

For the set of traces Tr = {Tr1, T r2, ..., T rn}, we generate
the corresponding trace representations Z = {Z1, Z2, ..., Zn},
where Zi corresponds to Tri. The decoder reconstructs trace
representations Z into the original span and log vectors,
effectively inverting the encoder’s process:

V̂span = g(W ′
spanZ + b′span)

V̂log = g(W ′
logZ + b′log)

(5)

where, V̂span ∈ Rdspan , and V̂log ∈ Rdlog , g is the activation func-
tion, and W ′

span and W ′
log are the respective weight matrices,

and b′span and b′log are the bias vectors.
Training MultiHAttenAE includes optimizing its parameters

Ψ to minimize the overall loss L which between original and
reconstructed vectors:

minΨ L = ∥V̂span − Vspan∥2 + ∥V̂log − Vlog∥2 (6)

here, the mean squared error (MSE) loss is utilized to quantify
the euclidean distance between the original (Vspan, Vlog) and
their respective reconstructed (V̂span, V̂log).

C. TE-MAML for few-shot abnormal trace classification

TE-MAML constructs a classifier to do few-shot abnormal
trace classification. Following the principle of few-shot learn-
ing, we define our classification problem as the N-way K-shot
setup. This setup involves N distinct fault categories, with each
category having K labeled support examples.

TE-MAML is built upon the meta-learning algorithm
MAML, which aims to learn a meta-leaner with an optimal set
of initial model parameters that can quickly adapt to new tasks
using only a few instances and a small number of gradient
updates [18]. TE-MAML uses TE [31] as the meta-learner.
The core objective of TE-MAML is to learn the initial model
parameters of this meta-learner, such that when provided with
the support set S of an N-way K-shot task, it can be quickly
and robustly updated to perform well on the query set Q (i.e.,

classify the query set Q well). Figure 5 illustrates TE-MAML’s
basic architecture. TE-MAML progresses through two phases:
meta-training, where the meta-leaner is trained, and meta-
testing, where the meta-learner is adapted to the new tasks. We
explain the meta-leaner, and meta-training and meta-testing
phases in detail below.

1) Meta learner: In TE-MAML, the meta-learner TE is
denoted as f , which takes trace representations Z of a given
MSS as input. We choose TE as the meta-leaner due to its
self-attention mechanism, which can weigh the most relevant
elements in each trace representation Zi and capture the
dependencies among them for doing classification. This self-
attention mechanism follows the multi-head attention mech-
anism presented in Equation 3. It is termed ‘self-attention’
because it uses the same input Z as Q, K, and V in the attention
process, as illustrated below:

output = MultiHead(Z,Z,Z) (7)

For classifying abnormal traces, the output from the above
self-attention mechanism is further passed through a pooling
layer to highlight key features, a dropout layer to prevent
overfitting, and a fully connected layer that transforms the
refined output into a suitable form for classification. Finally,
the softmax classifier takes the output from the fully connected
layer and computes the probabilities for each fault category.

2) Meta-training: During this phase, TE-MAML is trained
on a set of meta-training tasks (i.e., few-shot abnormal trace
classification tasks), denoted as T = (S,Q), which can be
sampled from a single MSS or multiple MSS. This phase aims
at optimizing the meta-learner’s initial model parameters to
enable rapid and effective adaptation to new tasks. Each of
these meta-training tasks is unique and it is denoted by Ti =
(Si, Qi), where Si is a support set and Qi is a query set for the
i-th task. The support set Si = {(zsptij , ysptij )}N×K

j=1 is indexed
by j from 1 to N×K. Here, N×K follows our N-way K-shot
setup, indicating that there are N distinct fault categories and
each has K labeled trace instances. Each (zsptij , ysptij ) is a pair
of a trace representation and its corresponding fault category
label, where ysptij ∈ {1, 2, . . . , N} = [N ]. Meta-training tasks
form the foundation for the meta-learner’s adaptive learning
process. Similarly, the query set Qi = {(zqryig , yqryig )}N×M

g=1 ,
indexed by g from 1 to N ×M . Here, N ×M indicates there
are N distinct fault categories and each has M labeled trace
instances. M is typically greater than K (i.e., |Qi| > |Si|) to
ensure robust optimization across all meta-training tasks. Trace
representations zsptij and zqryig for Si and Qi respectively are
generated using the optimized encoder of MultiHAttenAE for
a given MSS.

As shown in Figure 5, at the beginning of the meta-
training phase, model parameters of the meta-learner f are
randomly initialized. Here, the meta-learner f is considered
as a parameterized function fθ with its parameters θ.

The meta-training phase is composed of two integral parts:
the inner loop and the outer loop. The inner loop is responsible
for task-level learning, wherein the model is adapted to each
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meta-training task. The outer loop operates at the meta-level,
with the objective of adjusting the model’s initial parameters
in such a way that a few gradient steps will produce maximum
performance on new tasks.

In the inner loop, when adapting to each training task Ti,
the meta-learner f ’s parameters θ are transformed into task-
specific parameters θ′i, corresponding to the modified function
fθ′

i
. θ′i is computed using gradient descent updates on the

support set Si of the training task Ti. Each gradient descent
update is computed as:

θ′i = θ − α∇θLTi
(fθ(Si)) (8)

where α is the learning rate for the inner loop update process
and LTi

is the loss function for task Ti.
In the outer loop, the meta-learner f ’s model parameters are

trained by optimizing for the performance of θ′i with respect
to θ across meta-training tasks T. More concretely, the meta-
training objective is to minimize the overall loss L on the
query set Qi of the training task Ti as follows:

min
θ
L(θ) =

∑
Ti∈T

LTi(fθ′
i
(Qi)) (9)

During the outer loop, the meta-training optimization across
training tasks T is performed. The model parameters θ are
updated p times, where p is defined as the predetermined
number of optimization steps. Each update gets the updated
model parameters θc. For example, when using one gradient
update (i.e., p = 1),

θ ← θ − β∇θ

∑
Ti∈T

LTi(fθ′
i
(Qi)) (10)

where β is the learning rate for the outer loop update process.
The standard MAML outer loop update involves a compu-

tationally intensive process of computing a gradient through a
gradient, which requests an additional backward pass through
the function f to compute Hessian-vector products [18]. We
use a first-order approximation [18] to simplify the update by
such second-order derivatives.

As the final result of the outer loop, the optimal initial
model parameters θ∗ are obtained. The meta-learner f is then
initialized with θ∗, transforming it into fθ∗ . This optimally
initialized fθ∗ is then used in the meta-testing phase.

3) Meta-testing: This phase adapts the optimized meta-
learner fθ∗ to the meta-testing task Tts = (Sts, Qts), which
has the same structure as the meta-learning task Ti = (Si, Qi).
In this phase, the support set Sts is fed into the meta-learner
fθ∗ . To finely adapt to the meta-testing task Tts, a limited
number of gradient updates are applied, mirroring gradient
updates in the meta-training’s inner loop. These adaptation
steps are aimed at fine-tuning the meta-learner f ’s parameters
specifically for Tts, resulting in adapted parameters θ′ts. After
adaptation, the meta-leaner, now as fθ′

ts
, proceeds to classify

abnormal traces in Qts into fault categories. Typically, the
optimized meta-learner fθ∗ will be tested on many meta-
testing tasks to ensure its generalization capability.

IV. EVALUATION

A. Experimental design

1) Dataset: We use two open-source datasets to establish
our own dataset: DeepTraLog [32] and Nezha [33]. (1) Deep-
TraLog was collected from TrainTicket, a medium-scale,
widely-used benchmark MSS for train ticket booking, com-
prising 45 services. TrainTicket contains various real-industrial
faults in different branches. DeepTraLog was created by Zhang
et al. [9], who executed such fault branches of TrainTicket and
generated abnormal traces of 14 fault categories. These fault
categories pertain to related to asynchronous interaction, multi-
instance, configuration, and monolithic dimensions. (2) Nezha
was created by Yu et al. [34]. It includes data from two MSS:
TrainTicket, and a small-scale e-commerce benchmark MSS
OnlineBoutique composed of 12 services. This dataset was
constructed by injecting faults into the pods of TrainTicket
and OnlineBoutique and collocating abnormal traces. Within
each system, faults injected into each pod belong to four cate-
gories: CPU-intention, CPU-consumption, service exception,
and message return. Each fault case within a pod here is
considered as a unique fault category.

2) Training and evaluation: To train MultiHAttenAE for
the TrainTicket and OnlinBoutique, we utilized a random
selection of 3960 normal traces (3360 training/570 validation)
for each system from both DeepTraLog and Nezha datasets.
Traces within each system were input into MultiHAttenAE to
train and optimize MultiHAttenAE. This process is detailed in
the specified section III-B.

To train and evaluate TE-MAML, we establish our fault
dataset using DeepTraLog and Nezha. Our fault dataset in-



TABLE I
DESCRIPTIVE STATISTICS ON TRACES IN OUR FAULT DATASET.

Trainticket.Base fault categories Mean Min Max
Unique traces per fault category: 1117 26 2309
Spans per trace: 71 1 303
Logs per trace: 44 1 219
Trainticket.Novel fault categories Meam Min Max
Unique traces per fault category: 1275 45 2546
Spans per trace: 87 1 345
Logs per trace: 60 1 340
OnlineBoutique.Base fault categories Mean Min Max
Unique traces per fault category: 565 32 1018
Spans per trace: 53 1 180
Logs per trace : 53 4 184
OnlineBoutique.Novel fault categories Mean Min Max
Unique traces per fault category: 320 34 902
Spans per trace: 52 1 190
Logs per trace: 49 4 164

cludes abnormal traces from 30 fault categories for TrainTicket
and 32 fault categories for OnlineBoutique. We divide 30
fault categories of Trainticket into 20 base and 10 novel
fault categories, and 32 fault categories of OnlineBoutique
into 22 base and 10 novel fault categories. These categories
within each system do not overlap. That is, there are 20 and
22 base fault categories in TrainTicket and OnlineBoutique,
respectively, along with 10 novel fault categories for each
system. To provide a consistent basis to compare experimental
results, we standardized the number of novel fault categories
for both systems. Considering the variability in the length of
spans and logs within traces, and the significant role semantic
attributes of these spans and logs play in constructing trace
representations via MultiHAttenAE (Section III-B). We design
the composition of both base and novel fault categories for
each system to include a random mix of fault categories from
our dataset. This mix incorporates fault categories that com-
prise traces with varying lengths of spans and logs. It ensures
the representation of fault categories with traces containing
both short and long spans and logs within base and novel
fault categories for each system. Table I presents summary
statistics for abnormal traces in base and novel categories of
each system. The full list of base and novel fault categories
of each system will be presented in our replication package.
Using the established base and novel fault categories on both
systems, we perform the following experiments:

• E1 (TrainTicket to TrainTicket). We train our frame-
work on TrainTicket’s base fault categories and adapt it
to TrainTicket’s novel fault categories.

• E2 (OnlineBoutique to OnlineBoutique). We train our
model on OnlineBoutique’s base fault categories and then
adapt it to OnlineBoutique’s novel fault categories.

• E3 (OnlineBoutique to TrainTicket). We train our
model on OnlineBoutique’s base fault categories and then
adapt it to TrainTicket’s novel fault categories.

• E4 (TrainTicket to OnlineBoutique). We train our
model on TrainTicket’s base fault categories and then
adapt it to OnlineBoutique’s novel fault categories.

E1 and E3 are within system experiments while E2 and

E4 are cross-system experiments. Considering prior MAML
studies [18], [35] and our fault dataset, we investigate 5-
way 5-shot and 10-shot setups across experiments E1-E4. In
these experiments, each meta-training and meta-testing task is
a unique abnormal trace classification task, where each task
involves classifying abnormal traces from a distinct set of 5-
way fault categories. In each experiment, we train and evaluate
our TE-MAML using the randomly established meta-training
and meta-testing tasks on base and novel fault categories of
the involved system(s), as described below:

In the meta-training phase of each experiment, four sets of
unique meta-training tasks are randomly generated using the
involved system’s base fault categories. Each task is either
a 5-way 5-shot or 10-shot abnormal trace classification task.
Specifically, for each task, 5 unique fault categories (with 5-
shot or 10-shot labeled trace instances) are randomly selected
from base fault categories of the involved system. A total of
four unique meta-learning tasks are established.

In the meta-testing phase of each experiment, 50 distinct
meta-testing tasks are randomly created by selecting 5 distinct
fault categories out of 10 novel fault categories of the involved
system. The mathematical permutations for selecting 5 out
of 10 categories yields a total of 252 possible permutations,
calculated as C(10, 5). We focus on 50 distinct meta-testing
tasks that represent 252 possible permutations to evaluate
our framework following the prior studies [18], [35]. This
approach allows for a focused comprehensive evaluation,
ensuring a broad coverage of various fault categories while
keeping the data size within practical limits for detailed
examination. Each meta-testing task is unique and is either
a 5-way 5-shot or 10-shot abnormal trace classification task.

Upon randomly established meta-training and meta-testing
tasks during respective meta-training and meta-testing phases
in each experiment, traces from the corresponding fault cat-
egories within these tasks are automatically sampled from
our dataset for the involved system(s). The given system’s
optimized encoder of MultiAttenAE is employed to generate
representations for sampled traces for this system.

3) Implementation details: E1-E4 are conducted on a Linux
server with a 32-core CPU and an NVIDIA Ampere A100
GPU with 40 GB of memory, utilizing Python 3.10.6. We train
MultiHAttenAE and TE-MAML using the AdamW optimizer.
Further details regarding hyperparameter settings of Multi-
HAttenAE and TE-MAML will be provided in our replication
package.

4) Baselines: Given the absence of directly comparable
research within this domain, our baselines are established
via an ablation study by systematically exploring alternative
configurations to evaluate the impact of different components
within our model. These configurations were designed by
replacing key elements of our framework. We carried out
experiments E1-E4 on these baselines:

As the MultiHAttenAE alternative, OnlySpan follows the
related work [23] to consider each trace as a sequence of
spans and construct trace representations using span attributes.
As alternatives to the multi-head attention fusion (used in



MultiHAttenAE alternative:
Feed only spans (OnlySpan) into TE-MAML for classification.

Multihead atten fusion alternatives:
Linear-based AE (Linear-AE) fusion +TE-MAML
Gated linear unit-based AE (GLU-AE) fusion +TE-MAML

Meta-learner alternatives:
MultiHAttenAE+Linear-MAML
MultiHAttenAE+RNN-MAML
MultiHAttenAE+LSTM-MAML
MultiHAttenAE+CNN-MAML

MAML alternatives:
MultiHAttenAE+Prototypical network (ProtoNet)
MultiHAttenAE+TE-based Matching network (TE-MatchingNet)
MultiHAttenAE+Nearest neighbor (NearNeighbor)
MultiHAttenAE+Decison tree

our MultiHAttenAE), Linear-AE and GLU-AE use the linear
projection and gate mechanism, respectively, to fuse spans and
logs for generating trace representations. These approaches
provide simpler alternatives to multi-head attention mecha-
nisms. Meta-learner alternatives include the basic linear model,
sequence models RNN and LSTM, and CNN. MAML alterna-
tives include metric-based meta-learning algorithms (ProtoNet
[36], MatchingNet [37]) and traditional classification models
(NearNeighbor and Decision tree). These alternatives are sim-
pler than MAML. Note that, MAML alternative baselines are
only evaluated on E1 and E3 since the fundamental algorithms
of these do not have cross-system adaptability.

5) Evaluation metrics: In each experiment’s meta-testing
phase, for our framework and baselines, each is evaluated
on 50 meta-testing tasks of the involved system, randomly
selected from 252 possible permutations. To ensure a con-
sistent comparison, the same random seed is used for all
evaluations, ensuring that both our framework and all baselines
are subjected to the same set of task permutations in each
experiment.

Effectiveness. To assess the effectiveness of our framework
and baselines, we have chosen accuracy as the evaluation
metric, a standard measure for multi-class classification tasks.
We reported the average accuracy along with the 95% con-
fidence interval computed across 50 meta-testing tasks in
each experiment, as well as the range of task accuracies
(minimum and maximum). This provides a comprehensive
view of the approach’s effectiveness and offers insights into its
consistency and reliability in various scenarios. Given that both
DeepTraLog and Nezha datasets (used to establish our fault
dataset) were created using automatic labeling methods, with
normal and abnormal traces collected by executing normal and
faulty versions of the system interchangeably, there is a chance
that some latent normal traces are labeled as abnormal in the
respective fault category and vice wise. To mitigate the risk
of obtaining an inaccurate evaluation of the approach’s perfor-
mance due to such automatic labeling methods, we calculated
each meta-testing task’s accuracy by running this task 5 times
and taking the highest. Efficiency. To evaluate the efficiency
of our framework and baselines, we calculate the time each

takes at different phases of the training and adaptation process.
This analysis provides insights into the computational costs of
our framework compared with baselines.

B. Evaluation results

Table II and III present effectiveness evaluation results of
our framework and all baselines. They report the average
accuracy (in %) and the corresponding 95% confidence in-
terval, which are computed across 50 meta-testing tasks in
each experiment. The range of task accuracies (minimum
and maximum) is also reported in these tables. Regarding
efficiency, Table IV presents the average time (in seconds)
taken by our framework and other effective baselines to adapt
to each meta-testing task in each experiment. Table V presents
the average time (in seconds) taken by our framework to
construct trace representations for each meta-testing task in
each experiment, compared with other effective baselines and
the baseline OnlySpan+TE-MAML. For our framework and
AE-based baselines, this time is calculated as the time taken
by the optimized encoder to construct trace representations
(see Figure 1) after training. For the baseline OnlySpan+TE-
MAML, the time is calculated on how long it takes to use span
vectors to directly construct trace representations. We analyze
the above evaluation results to answer our research questions
in the following sub-sections.

1) RQ1: Within-system adaptability: Effectiveness. Ta-
ble II shows that both our framework and multi-head attention
alternatives get similar high average accuracy in both 5-shot
and 10-shot setups of E1 for Trainticket. Referring to Table
III, our framework outperforms all baselines in both 5-shot
and 10-shot setups of E2 for OnlineBoutique. Efficiency. Table
IV shows that our framework and other baselines (Linear-AE
and GLU-AE) that have a pre-training phase with AE can
adapt more quickly to new tasks compared to the baseline
MultiHAttenAE+NearNeighbor, which does not have a pre-
training phase and thus requires instant training on new tasks.
Our framework and these approaches also require time to
construct trace representations before adaptation, as shown
in Table V. Answer to RQ1. Overall, the evaluation results
confirm our framework’s effective and efficient within-system
adaptability.

Exploratory analysis. Besides, for OnlineBoutique,
through analysis, we found that both our framework
and effective baselines (MultiHAttenAE+CNN-MAML,
MultiHAttenAE+NearNeighbor) are less effective in
differentiating abnormal traces between those caused by
CPU contention and network delay. This issue arises because
both fault cases may result in service latency, as reflected
by anomalies in the span start time, end time, and duration.
Such specific fault cases, which are part of tasks that get
lower accuracy among all meta-testing tasks in both 5-shot
and 10-shot setups of E2, contribute to a reduction in the
overall average accuracy. Similarly, for Trainticket, the
meta-testing task that receives the lowest average accuracy
(62.00-78.00%) on both our framework and the highest
baselines, including Multihead attention fusion alternatives



TABLE II
COMPARISON OF OUR FRAMEWORK AND BASELINES ON TRAINTICKET.

Model E1. TrainTicket to TrainTicket E3. OnlineBoutique to TrainTicket

5-shot 10-shot 5-shot 10-shot

Our MultiHAttenAE+TE-MAML 92.91±2.10 (74.67-100.0) 93.26±1.40 (76.00-100.0) 86.35±2.00 (70.67-100.0) 92.19±1.99 (74.67-100.0)
MultiHAttenAE alternatives:
OnlySpan+TE-MAML 80.64±2.84 (57.33-97.33) 78.77±2.80 (60.00-97.33) 79.25±2.89 (57.33-97.33) 80.19±3.10 (56.00-97.33)
Multihead atten fusion alternatives:
Linear-AE+TE-MAML 89.15±2.29 (73.33-100.0) 90.59±2.43 (70.67-100.0) 83.09±2.55 (62.67-97.33) 90.61±2.01 (72.00-100.0)
GLU-AE +TE-MAML 92.21±1.73 (77.33-100.0) 93.07±1.64 (77.33-100.0) 85.07±2.38 (66.67-100.0) 94.40±2.19 (72.00-100.0)
Transformer encoder alternatives:
MultiHAttenAE+Linear-MAML 45.84±2.21 (25.33-61.33) 45.36±2.16 (30.67-60.00) 43.81±1.99 (28.00-58.67) 43.87±1.93 (29.33-60.00)
MultiHAttenAE+RNN-MAML 49.65±2.09 (37.33-64.00) 42.88±1.93 (24.00-58.67) 48.45±1.75 (38.67-65.33) 47.07±1.88 (34.67-58.67)
MultiHAttenAE+LSTM-MAML 41.39±2.20 (21.33-56.00) 42.67±1.91 (29.33-56.00) 40.32±1.68 (22.67-52.00) 42.29±1.79 (25.33-56.00)
MultiHAttenAE+CNN-MAML 57.06±2.85 (41.33-81.00) 69.20±2.19 (56.00-88.00) 49.04±1.80 (38.67-64.00) 69.47±2.65 (48.00-89.33)
MAML alternatives:
MultiHAttenAE+TE-MatchingNet 76.56±2.80 (49.33-93.33) 76.05±2.37 (50.67-94.67) — —
MultiHAttenAE+ProtoNet 57.25±0.03 (40.00-74.67) 59.68±0.03 (44.00-76.00) — —
MultiHAttenAE+NearNeighbor 88.19±0.02 (74.67-98.67) 92.56±0.02 (78.00-100.0) — —
MultiHAttenAE+DecisonTree 66.80±0.03 (46.67-88.00) 77.09±0.03 (54.67-96.00) — —

TABLE III
COMPARISON OF OUR FRAMEWORK AND BASELINES ON ONLINEBOUTIQUE

Model E2. OnlineBoutique to OnlineBoutique E4. TrainTicket to OnlineBoutique

5-shot 10-shot 5-shot 10-shot

Our MultiHAttenAE+TE-MAML 82.50±2.35 (65.33-98.67) 85.20±2.33 (66.67-98.67) 82.37±2.07 (64.00-97.33) 84.77±2.28 (68.00-98.67)
MultiHAttenAE alternatives:
OnlySpan+TE-MAML 72.83±2.40 (57.33-88.00) 73.15±2.81 (46.67-92.00) 71.81±2.25 (56.00-85.33) 73.60±2.21 (57.33-85.33)
Multihead atten fusion alternatives:
Linear-AE+TE-MAML 76.15±2.59 (60.00-95.00) 78.21±2.50 (64.00-96.00) 75.81±2.45 (52.00-89.33) 74.32±2.44 (53.33-88.00)
GLU-AE +TE-MAML 80.61±2.96 (58.67-98.67) 77.49±2.67 (48.00-94.67) 74.96±2.76 (54.67-94.67) 77.57±2.7 (56.00-94.67)
Transformer encoder alternatives:
MultiHAttenAE+Linear-MAML 42.59±3.63 (20.00-77.33) 40.75±3.53 (21.33-68.00) 47.01±3.59 (25.33-74.67) 44.35±4.10 (20.00-89.33)
MultiHAttenAE+RNN-MAML 72.59±2.50 (54.67-94.67) 64.75±2.53 (46.67-80.00) 72.58±2.58 (54.70-94.70) 71.01±2.80 (56.00-89.33)
MultiHAttenAE+LSTM-MAML 54.80±2.11 (40.00-70.67) 55.97±2.25 (41.33-69.33) 56.19±1.92 (38.67-72.00) 59.71±2.05 (42.67-77.33)
MultiHAttenAE+CNN-MAML 80.10±2.16 (60.00-94.67) 83.07±3.29 (68.00-97.33) 79.01±2.63 (56.00-97.33) 84.08±2.76 (65.33-100.0)
MAML alternatives:
MultiHAttenAE+TE-MatchingNet 76.29±3.00 (54.67-96.00) 73.11±2.94 (50.67-94.67) — —
MultiHAttenAE+ProtoNet 74.51±0.03 (53.33-92.00) 76.59±0.04 (58.66-94.67) — —
MultiHAttenAE+NearNeighbor 80.96±0.03 (64.00-98.67) 84.75±0.03 (62.80-98.67) — —
MultiHAttenAE+DecisonTree 66.99±0.02 (54.67-80.00) 73.79±0.03 (58.67-82.67) — —

TABLE IV
ADAPTATION EFFICIENCY (TASK AVERAGE IN SECONDS)

E1 E3

5-shot 10-shot 5-shot 10-shot

Our framework 0.0460 0.0680 0.0651 0.0953
GLU-AE +TE-MAML 0.0640 0.0942 0.0651 0.0954
Linear-AE +TE-MAML 0.0748 0.0946 0.0640 0.0944
MultiHAttenAE+NearNeighbor 0.1860 0.1890 — —

E2 E4

5-shot 10-shot 5-shot 10-shot

Our framework 0.0848 0.0977 0.0875 0.0974
GLU-AE +TE-MAML 0.0801 0.0978 0.0731 0.0969
CNN-MAML 0.0470 0.0472 0.0417 0.0490
MultiHAttenAE+NearNeighbor 0.5140 0.5307 — —

and MultiHAttenAE+NearNeighbor, is less effective in
differentiating abnormal traces caused by network delay and

TABLE V
TRACE CONSTRUCTION EFFICIENCY (TASK AVERAGE IN SECONDS)

Trainticket OnlineBoutique

5-shot 10-shot 5-shot 10-shot
Our MultiHAttenAE 1.8436 2.1524 4.1426 5.0189
GLU-AE+TE-MAML 1.8395 2.1541 4.3121 5.1921
Linear-AE+TE-MAML 1.8286 2.1486 4.1223 5.2066
OnlySpan+TE-MAML 1.1671 1.1818 1.9065 2.1822

certain service latency.

2) RQ2: Cross-system adaptability: Effectiveness. Ta-
ble III shows that our framework achieves similar average
accuracy in 5-shot/10-shot setup of E2 and E4. Likewise,
Table II illustrates that E1 and E3 get similar levels of average
accuracy in their respective 10-shot setup. These results evi-
denced our framework’s cross-system adaptability. However,
E3 gets lower average accuracy than E1 in the 5-short setup.



A possible reason is: abnormal traces from OnlineBoutique are
less semantically rich compared to the ones from TrainTicket.
This can be attributed to two factors. First, fault categories in
OnlineBoutique are less diverse than those in TrainTicket, as
described in Section IV-A. Second, OnlineBoutique’s traces
are simpler than TrainTicket’s, with the shorter average length
of spans and logs, as shown in Table I. In such a context,
when adapting the knowledge learned from OnlineBoutique
tasks to new tasks from Trainticket, more instances may
be needed to provide to TE-MAML during the meta-testing
phase to ensure high effectiveness. Efficiency. Our framework
takes similar adaptation times across meta-testing tasks in
E1 and E3, as well as the E2 and E4, on both 5-shot and
10-shot setups, as shown in Table IV. This indicates that
our framework requires a similar amount of time for within-
system adaptation and cross-system adaptation. Answer to
RQ2. Overall, the evaluation results confirm our framework’s
effective and efficient cross-system adaptability.

3) RQ3: Component impact: As shown in Table II and III,
each part of our framework contributes to its overall effective-
ness. Among them, MultiHAttenAE is the most significant
contributor to the framework’s effectiveness. This can be seen
from these tables, our framework outperforms the baseline
OnlySpan+TE-MAML by about 10% in most setups of E1-E4.
However, MultiHAttenAE is also the most computationally
expensive part of our framework.

We conduct several measurements to provide an overview of
the computational costs of the main components of MultiHAt-
tenAE, aiming to help others make decisions about its use in
their applications. Table VI shows the time taken (in seconds)
by our MultiHAttenAE to construct neural representations for
3960 normal traces used to train our MultiHAttenAE and other
AE-based baselines. We compare this time with the time taken
to construct neural representations for semantic attributes of
only spans. Neural representation is the most computationally
expensive part of our framework, as it utilizes a large language
model, BERT.

Table VII compares the average time taken by our Mul-
tiHAttenAE and other AE-based baselines to train through
the AE encoder-decoder structure (as shown in Figure 1) for
each epoch, using a batch size of 32 and a total of 3960
normal traces for the respective system. We measure this
average time by running 100 epochs, but in our experiments,
MultiHAttenAE requires only 20-30 epochs to train effec-
tively with appropriate hyperparameters for Trainticket and
OnlineBoutique. Also, others can refer to Table V to get an
idea of how much time the optimized MultiHAttenAE takes
to construct trace representations for a given MSS.

TABLE VI
NEURAL REPRESENTATION CONSTRUCTION EFFICIENCY (IN SECONDS)

Trainticket OnlineBoutique
For span and log semantic attributes 323.4698 120.3414
For only span semantic attribute 77.0094 57.9034

TABLE VII
TRAINING EFFICIENCY (PER EPOCH IN SECONDS)

Trainticket OnlineBoutique
Our MultiHAttenAE 89.6450 62.5008
GLU-AE 86.3644 62.1378
Linear-AE 88.0473 62.2194

V. THREATS TO VALIDITY

The main internal threats may lay in the correctness of
baselines’ development. Given that there is only one related
work [23], we designed most of the baselines ourselves based
on our understanding via an ablation study. To mitigate this
threat, we carefully reviewed the core principles of the baseline
methodologies, conducted extensive testing, and consulted
domain experts for their insights.

The external threats may arise from the limitation of our
fault dataset sourced from open datasets DeepTraLog and
Nezha. First, we intended to include trace-related metrics
in constructing the latent trace representations for MSS. In-
cluding trace-related metrics could potentially help in dis-
tinguishing resource-related anomalies within a trace. This
may address the issue referred to RQ1 results, where our
framework and baselines are less effective in differentiating
abnormal traces caused by CPU contention and network delay
in OnlineBoutique, as well as those caused by network delay
and service latency in Trainticket. Nezha is a dataset that
contains sufficient modality data and enables the extraction
of spans, logs, and metrics within a trace to construct its
representation for the observed MSS. However, we did not
find other similar MSS open datasets that meet such needs.
Second, we aimed to expand the evaluation of our framework
by including additional datasets that contain abnormal traces
from a broader range of fault categories, as well as datasets
from various MSS. Despite our efforts, we were unable to
find such datasets. Thus, our study used abnormal traces from
30 and 32 fault categories in Trainticket and OnlineBoutique,
respectively. This limitation led us to adopt a 5-way setup
in order to ensure an adequate distribution of meta-training
and meta-testing tasks in each experiment. However, prior
studies have demonstrated that MAML is highly effective
for complex text classification tasks (e.g., 20-way and 50-
way classifications) across a variety of contexts [38]–[40].
The above two external threats pose the possibility that our
application of our framework for classifying abnormal traces
for MSS might not fully utilize its generalization capabilities.
Addressing these threats may improve our framework, thereby
enhancing the precision and robustness of trace-level RCA
in MSS. To address these threats, we are in the process of
deploying MSS and generating new open datasets.

VI. CONCLUSION

This paper proposes a framework for few-shot abnormal
trace classification for MSS with two main components: (1)
MultiHAttenAE for constructing system-specific trace repre-
sentations, which enables (2) TE-MAML to perform effective



and efficient few-shot learning for abnormal trace classifica-
tion. The proposed framework is evaluated on representative
benchmark MSS with open datasets. The evaluation results
shows our framework’s effective and efficient within-system
and cross-system adaptability. Overall, our framework pro-
vides a solution for a few-shot abnormal trace classification
for MSS. Future work will focus on further improving the
generalizability, scalability, and interpretability of the proposed
framework. Also, we plan to evaluate its performance on real
industrial MSS.

VII. REPLICATION PACKAGE

To ensure the transparency and reproducibility of our re-
search, we will publish a replication package upon acceptance
of the paper. The replication package will include all the
necessary artifacts to replicate our experiments, such as the
source code, data, and implementation details. We will provide
detailed instructions on how to use the replication package and
will make it available on a GitHub public repository.
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