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Abstract. Shape plays an important role in computer graphics, offering
informative features to convey an object’s morphology and functionality.
Shape analysis in brain imaging can help interpret structural and func-
tionality correlations of the human brain. In this work, we investigate the
shape of the brain’s 3D white matter connections and its potential pre-
dictive relationship to human cognitive function. We reconstruct brain
connections as sequences of 3D points using diffusion magnetic resonance
imaging (dMRI) tractography. To describe each connection, we extract
12 shape descriptors in addition to traditional dMRI connectivity and
tissue microstructure features. We introduce a novel framework, Shape-
fused Fiber cluster transformer (SFFormer), that leverages a multi-head
cross-attention feature fusion module to predict subject-specific language
performance based on dMRI tractography. We assess the performance of
the method on a large dataset including 1065 healthy young adults. The
results demonstrate that both the transformer-based SFFormer model
and its inter/intra feature fusion with shape, microstructure, and con-
nectivity are informative, and together, they improve the prediction of
subject-specific language performance scores. Overall, our results indi-
cate that the shape of the brain’s connections is predictive of human
language function.

Keywords: Shape analysis · tractography · diffusion MRI · deep em-
beddings · domain-fusion.

1 Introduction

The study of 3D shape has long been recognized as crucial for computer graphics
and medical image analysis [32]. In the field of magnetic resonance imaging
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(MRI), the study of shape has enabled detailed analyses of the folding of the
brain’s cortex and the morphology of subcortical gray matter structures [5].
However, the shape of the brain’s white matter connections, which transmit
information throughout the brain, has been much less studied.

Diffusion MRI (dMRI) tractography is a unique method that enables the
3D reconstruction of the brain’s white matter connections based on water dif-
fusion in brain tissue [2]. dMRI tractography produces sequences of 3D points,
called streamlines, which can be grouped to define individual brain connections
or fiber clusters that have different anatomical shapes (Fig. 1). Quantitative
analyses of fiber clusters include tissue microstructure (using water diffusion in
tissue), brain connectivity (strength of each connection), and shape analyses.
Measures of shape capture white matter variability across individuals [30] and
changes in aging [21]. However, the functional importance of the shape of white
matter connections is not well understood. To assess whether fiber cluster shape
is important for brain functional performance, in this work we employ a testbed
task of predicting individual language performance. We assess whether the in-
tegration of information across shape, microstructure, and connectivity feature
domains can enhance the prediction of individual language performance.

Fig. 1. Four example individual white matter connections (fiber clusters) extracted
from the entire white matter of the human brain using a fiber clustering approach [34].
Example shape descriptors are extracted for the blue fiber cluster.

1.1 Related Work

In this section, we first give an overview of methods that have been proposed for
the prediction of individual language function using dMRI tractography data,
then we briefly describe the deep learning techniques upon which our current
framework is built.

In the literature, several approaches have been proposed to predict individ-
ual cognitive and/or language functional performance using dMRI tractography
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data [3,10,14,17]. Tissue microstructure measures derived from dMRI have been
shown to relate to language function using traditional (non-deep learning) re-
gression analysis [31]. The studied measures included the fractional anisotropy
(FA), which describes the anisotropy of water diffusion within brain tissue, and
the mean diffusivity (MD), which describes the overall magnitude of water diffu-
sion [19], as well as the number of streamlines (NoS), which is thought to relate
to the connectivity of the brain [33]. In contrast to these traditional features,
brain connections can be described by shape measures such as surface area and
volume, as well as recently proposed, fiber-tract-specific measures such as the
surface area of the region where the tract inserts into the gray matter [30]. How-
ever, prediction of cognitive or language functional performance based on shape
measures of white matter connections has not been explored yet.

Recent deep-learning methods have investigated the prediction of individual
language performance using dMRI tractography. A convolutional neural network
(CNN) based deep learning method has shown that connectivity is predictive of
language proficiency in children with epilepsy [14]. A geometric deep-learning ap-
proach showed that microstructure and connectivity are predictive of language
function in healthy young adults [3]. A multilayer perceptron approach was ap-
plied to predict language performance in human aging, with “relatively poor” re-
sults [8]. In contrast with these methods, we focus on a novel transformer-based
network design that can leverage information from multiple shape descriptors
for potentially enhanced prediction.

In recent years, transformer models [11] are increasingly popular for computer
vision tasks such as object detection [37], classification [6], and segmentation [23].
The advantage of transformers over CNNs is the use of multi-head self-attention
[28] to enhance the model’s ability to interpret complex semantic and structural
feature relationships more comprehensively. Transformers have also been shown
to be successful in many medical image computing applications, including dMRI
[25,4,7,35]. There is a substantial body of literature on transformer models to
predict tissue microstructure, including SwinDTI [25], Microstructure Estima-
tion Transformer with Sparse Coding [36], Hybrid Graph Transformer (HGT)
[4], and 3D HGT [7]. Applications of transformers in tractography analysis are
relatively limited, such as TractoFormer [35] for whole-brain tractography anal-
ysis. Consequently, it is of interest to investigate the application of transformers
in the analysis of tractography data such as the prediction of language perfor-
mance based on quantitative measurements of white matter connections derived
from dMRI tractography in this study.

2 Methodology

2.1 Tractography and Fiber Clustering

In this work, we study the shape of the brain connections of 1065 healthy young
adults (575 females and 490 males, 28.7 years old on average) from the Human
Connectome Project Young Adult (HCP-YA) dataset [26,27]. Whole brain trac-
tography is generated for each subject’s dMRI data using a two-tensor unscented
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Fig. 2. Overview of the SFFormer framework.

Kalman filter method [18] that can represent multiple crossing fibers, enabling
anatomically sensitive estimation of the pathway and connectivity of brain con-
nections [12]. Tractography is then parcellated into 953 fiber clusters using an
anatomically curated tractography brain atlas [34]. Each fiber cluster contains
hundreds of streamlines and represents a particular connection in the human
brain (Fig. 1).

2.2 Traditional and Shape Features

For each cluster, we compute traditional tissue microstructure features includ-
ing fractional anisotropy (FA) and mean diffusivity (MD), and the traditional
connectivity feature of the number of streamlines (NoS) [33]. These features are
used to comapre and evaluate the shape features.

We study 12 fiber cluster shape features that are considered to provide a com-
prehensive shape analysis of tractography [30]. Features include length, diameter,
elongation, span, curl, volume, trunk volume, branch volume, total surface area,
total radius of end regions, total area of end regions, and irregularity. These
shape features are computed for all fiber clusters from all subjects by applying
the software DSIStudio [30]. A fiber cluster is a 3D coordinate sequence defined
as {vi(t)|i = 1, 2, 3, ...n}, where n represents the number of streamlines in a fiber
tract, and vi(t) denotes the set of 3D coordinates of streamline i. The variable t
is a discrete value ranging between {1, mi(t)} with mi being the number of co-
ordinates [30]. The length (Eq. 1) and span (Eq. 2) of a fiber tract are calculated
as follows:

Length =
1

n

i=1∑
i=n

t=mi−1∑
t=1

∥vi(t)− vi(t+ 1)∥2 . (1)

Span =
1

n

i=1∑
i=n

∥vi(1)− vi(mi)∥2 . (2)
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Curl is calculated as length divided by the span. The volume is computed
by multiplying the total number of voxels intersected by the fiber cluster by
the volume of each voxel. The diameter (Eq. 3) of a fiber tract is calculated as
follows:

diameter = 2

√
volume

π × length
(3)

Elongation is determined by dividing the length by the diameter. The surface
area is computed by multiplying the number of voxels that make up the fiber
cluster surface by the voxel spacing squared. The surface area of the end region is
conceptualized as a circle, assuming that the endpoints are evenly spread within
a disk shape. Therefore, the radius of the disk’s end region is calculated as 1.5
times the mean distance from its central point. Additionally, clusters with more
convexity and concavity may have varying degrees of irregularity [30], which is
quantified by dividing the surface area of the fiber cluster by the product of π,
diameter, and length.

2.3 Shape-Fused Fiber Cluster Transformer (SFFormer)

In this section, we present our proposed SFFormer for subject-specific language
score prediction. As depicted in Fig. 2, the SFFormer model comprises a tokeniza-
tion module and an encoder-only transformer architecture, specifically tailored
for prediction tasks. This encoder-only design aligns with the task of focusing on
learning the fiber clusters’ features for language score predictive outcomes. The
SFFormer encoder comprises a stack of 1-4 identical layers. Each layer includes
a multi-head attention module and a feed-forward network.

The tokenization module [11] performs deep embedding of a particular feature
(e.g., FA or length) of dimension 1 × 953. To create the embedding, we multiply
the input data (x) with random initialized weights and then add random ini-
tialized biases. This process prepares the data for the multi-head cross-attention
module in the deep learning pipeline.

We extended our design from the vanilla transformer [11]. We naturally take
a fiber cluster feature as a token to utilize the long-range dependency of all
cluster features to benefit prediction. We employ a multi-head mechanism [28]
that is well suited for processing long sequences, such as the 953 fiber cluster
features, because each head independently attends to different parts of the input
sequence.

We design a multi-head cross-attention module to fuse features from shape,
microstructure, and connectivity feature domains. Instead of using the trans-
former’s self-attention mechanism, our multi-head cross-attention module can
fuse the features of different domains to symmetrically combine two embed-
ding sequences of the same dimension, where one sequence is used as the query
(Q) input. The other sequence is used as the key (K) and value (V) inputs in
SFFormer to provide feature fusion. As it requires two embeddings SFFormer
captures and attends to information from different features simultaneously. The



6 Y. Lo et al.

motivation is to more effectively determine varying attention weights by utilizing
the dual-stream input framework. This methodology emphasizes cross-attention
to concurrently train on the primary feature to attempt to integrate key infor-
mation from both data streams.

2.4 Implementation Details

Our model is trained and tuned with Optuna Hyperparameters [1], set to 20
trials. The model is configured with the ReGLU activation and the He initializa-
tion [13] with 8 attention heads. The model is trained and evaluated with batch
sizes of 8 for 1000 epochs with patience of 50 epochs. All of the experiments
are split into three-fold cross-validation. The training is optimized with Adam
[16], where the learning rate is set between 1e-5 and 1e-3 with a log uniform
weight decay between 1e-6 and 1e-3. The tokens are set between 64 to 512 with
larger embeddings capturing more information. The dropouts for attention and
feed-forward modules are set between 0 and 0.5, and 0 and 0.2 for residual con-
nections. All experiments are conducted on an NVIDIA RTX A5000 GPU using
PyTorch 1.7.1 [20].

3 EXPERIMENTS & RESULTS

First we conduct experiments to perform subject-specific language score predic-
tion based on individual features. We compare the performance of a state-of-
the-art 1DCNNN model [17] and a baseline transformer model, when trained on
an individual microstructure, connectivity, or shape feature. Next, we fuse each
feature with a selected helper shape feature and apply the SFFormer model. The
helper shape feature is selected as the best-performing shape feature when using
the baseline transformer model. We select diameter as the helper shape feature
(highlighted in gray) for TPVT score prediction and irregularity as the helper
shape feature (highlighted in gray) for TORRT score prediction.

3.1 Language Assessments Scores

We predict subject-specific performance on two language assessments provided
by HCP-YA, including the NIH Toolbox Picture Vocabulary Test (TPVT) and
the NIH Toolbox Oral Reading Recognition Test (TORRT) [9,29]. TPVT mea-
sures vocabulary comprehension and is a receptive language assessment [9].
TORRT measures reading decoding and is a spoken language assessment [9].

3.2 Evaluation Metric

The Pearson correlation coefficient (r) [22] is employed to evaluate language
performance prediction as it is a prevalent metric in neurocognitive performance
prediction [10,15,24]. Pearson’s r measures the strength and direction (positive
or negative) of the linear association between two variables.
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Table 1. Prediction performance for TPVT

Features CNN [17] Transformer Base-
line

SFFormer (helper:
diameter)

Microstructure
FA 0.293±0.063 0.418±0.077 0.404±0.079
MD 0.260±0.041 0.337±0.098 0.338±0.098
Connectivity
NoS 0.395±0.054 0.410±0.103 0.417±0.007
Shape
Length 0.133±0.039 0.330±0.079 0.414±0.080
Span 0.119±0.044 0.355±0.094 0.417±0.098
Curl 0.203±0.092 0.310±0.070 0.407±0.081
Volume 0.381±0.063 0.410±0.102 0.423±0.071
Trunk Volume 0.156±0.083 0.275±0.041 0.414±0.084
Branch Volume 0.376±0.064 0.414±0.096 0.430±0.079
Diameter 0.406±0.082 0.419±0.083 —————————
Elongation 0.313±0.070 0.392±0.074 0.419±0.083
Total surface area 0.395±0.060 0.418±0.098 0.406±0.092
Radius of end re-
gions

0.235±0.045 0.347±0.125 0.429±0.084

Surface area of end
regions

0.406±0.080 0.414±0.100 0.418±0.092

Irregularity 0.322±0.041 0.391±0.092 0.416±0.071

3.3 Results and Discussions

Tables 1 and 2 show the performance of the three compared models for predict-
ing subject-specific vocabulary comprehension (TPVT) and subject-specific oral
reading (TORRT) scores, respectively.

The CNN model [17], shown in the second column of Tables 1 and 2, suc-
cessfully predicts language performance, though it is outperformed by both the
baseline transformer and SFFormer models. When using the CNN model, the
NoS feature is the most informative traditional feature, while several shape fea-
tures (shown in italics) outperform NoS.

The baseline transformer model (third column of Tables 1 and 2) outper-
forms the CNN model for all input features. This indicates that the transformer
improves the performance of the language score prediction task. The FA feature
is the most informative traditional feature. Multiple shape features (shown in
italics) outperform FA, including diameter (Table 1), volume, diameter, total
surface area, and irregularity (Table 2).

The SFFormer (fourth column of Tables 1 and 2) successfully predicts lan-
guage performance, and most of its features outperform the baseline model as
well as the state-of-the-art CNN model. This indicates that the domain fusion
technique effectively contributes to subject-specific language score prediction.
In Table 1, all shape features outperform FA and MD, with various shape fea-
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Table 2. Prediction performance for TORRT

Features CNN [17] Transformer Base-
line

SFFormer (helper:
irregularity)

Microstructure
FA 0.332±0.055 0.382±0.059 0.383±0.06
MD 0.315±0.004 0.344±0.021 0.374±0.06
Connectivity
NoS 0.349±0.024 0.345±0.061 0.372±0.05
Shape
Length 0.103±0.002 0.301±0.056 0.376±0.053
Span 0.126±0.017 0.318±0.071 0.377±0.072
Curl 0.241±0.014 0.285±0.061 0.377±0.075
Volume 0.324±0.016 0.392±0.083 0.379±0.066
Trunk Volume 0.184±0.035 0.260±0.039 0.384±0.123
Branch Volume 0.357±0.021 0.377±0.075 0.362±0.073
Diameter 0.315±0.038 0.390±0.071 0.398±0.050
Elongation 0.275±0.005 0.363±0.045 0.376±0.049
Total surface area 0.368±0.046 0.391±0.079 0.369±0.056
Radius of end re-
gions

0.3196±0.063 0.341±0.087 0.374±0.053

Surface area of end
regions

0.330±0.001 0.374±0.085 0.371±0.062

Irregularity 0.341±0.021 0.439±0.062 —————————

tures (shown in italics), including the surface area of end regions, elongation,
volume, radius of end regions, and branch volume, surpassing the traditionally
best-performing feature, NoS, in predicting language performance. Also, Table
2 reveals that FA is the most informative traditional feature, FA is also outper-
formed by shape features, such as trunk volume and diameter (shown in italics).

In summary, the evaluation presented in Tables 1 and 2 demonstrates the
superior predictive power of shape features and domain fusion in the SFFormer
model, marking an improvement over traditional features and surpassing the
state-of-the-art method.

4 Conclusion

In this paper, we proposed the SFFormer, that utilizes a multi-head cross atten-
tion module to fuse features from different domains to improve the prediction
results. Our SFFormer results show that measures of the shape of fiber cluster
connections are informative for the prediction of individual, subject-specific lan-
guage performance. The evaluation of the HCP-YA dataset suggests inter/intra
domain feature fusion to be beneficial towards better prediction. This suggests
that shape-related features are useful for predicting and evaluating various cog-
nitive abilities, potentially outperforming microstructural and connectivity fea-
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tures in certain scenarios. Overall, this suggests that the shape of the white
matter fiber clusters relates to important functions of the human brain.
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