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Abstract. In this paper, we establish discrete versions of the Poincaré and trace inequalities for hybridizable

finite element spaces. These spaces are made of piecewise polynomial functions defined both within the
interiors of elements and across all faces in a mesh’s skeleton, serving as the basis for both the hybridizable

discontinuous Galerkin (HDG) and hybrid high-order (HHO) methods. Additionally, we present a specific

adaptation of these inequalities for the HDG method and apply them to demonstrate the stability of the
related numerical schemes for second-order elliptic equations under the minimal regularity assumptions for

the source term and boundary data.

1. Introduction

We take Ω as a connected, bounded, open polyhedral domain within Rd, where d is either 2 or 3. H1(Ω)
denotes the standard Sobolev space consisting of functions in L2(Ω) (the set of square integrable functions
over Ω) whose first-order distributional derivatives are also in L2(Ω). The classical Poincaré-Friedrichs
inequalities for H1 functions are outlined as follows [52, 66]:

(1.1) ∥f∥2L2(Ω) ≲ ∥∇f∥2L2(Ω) +

(∫
Ω

f dx

)2

∀f ∈ H1(Ω),

and

(1.2) ∥f∥2L2(Ω) ≲ ∥∇f∥2L2(Ω) +

(∫
Γ

f ds

)2

∀f ∈ H1(Ω).

where Γ represents a measurable subset of ∂Ω with a positive (d − 1)-dimensional measure. Additionally,
the classical trace inequality is presented as follows [35, 41]:

(1.3) ∥f∥2L2(∂Ω) ≲ ∥f∥2H1(Ω).

Applying the Poincaré-Friedrichs inequalities from (1.1) to (1.2), the trace inequality is thus reformulated
as:

(1.4) ∥f∥2L2(∂Ω) ≲ ∥∇f∥2L2(Ω) +

(∫
Ω

f dx

)2

∀f ∈ H1(Ω),

and

(1.5) ∥f∥2L2(∂Ω) ≲ ∥∇f∥2L2(Ω) +

(∫
Γ

f ds

)2

∀f ∈ H1(Ω).

Our primary focus is on extending these inequalities from the classical H1 space to piecewise polynomial
hybridizable spaces, given their significance in the mathematical analysis of partial differential equations
(PDEs) [41, 44, 66]. These spaces have increasingly become prevalent in the spatial discretization of a
variety of problems, thanks to the advent of several modern numerical methods. Notably, hybridizable
discontinuous Galerkin (HDG) methods [14, 15, 17, 19, 22, 26, 38, 43, 55, 59] and hybrid high-order (HHO)
methods [6, 12, 18, 28, 31, 33, 34, 36, 37] have been instrumental in this development.

The key distinction between hybridizable spaces and other more traditional nonconforming spaces [1, 10,
13, 27], often utilized in the discontinuous Galerkin (DG) method, is depicted in Figure 1. In the DG method,
the approach involves using piecewise polynomial functions; for instance, as illustrated in the left part of
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Figure 1. Comparison of Spaces: Nonconforming Space for DG Method (Left) versus
Hybridizable Space for HDG or HHO Method (Right)

Figure 1, distinct functions uK and uL are selected for elements K and L respectively, and these functions
may be discontinuous across the boundary where the two elements meet. Conversely, within hybridizable
spaces, the function values are not only determined within the elements’ interiors but also the function values
on the boundaries are treated as separate variables. This idea is represented in the right part of Figure 1,
where uK and uL are defined within elements K and L respectively, and ûeK,L

is defined on the interface
eK,L between the two elements.

In recent years, significant efforts have been made to develop analogs of Poincaré-Friedrichs and trace
inequalities as analytical tools for nonconforming spaces, which are extensively used in the analysis of various
numerical methods. For further information, we direct readers to [7, 8, 11, 20, 42, 64, 65] and references
therein. Notably, [8] established a foundational discrete Poincaré inequality for piecewise H1 functions,
applicable across a wide range of nonconforming spaces used in DG methods. However, the direct application
of these findings is insufficient in establishing numerical stability for HDG methods due to challenges in
controlling the jump term. This issue will be discussed in more detail in Section 3.1 and Section 5.

In this paper, we introduce analogues of the Poincaré inequalities (1.1) to (1.2) for any pair of piecewise
polynomial functions (uh, ûh) ∈ X k

h , where X k
h represents the hybridizable space (the precise definition of

X k
h is provided in Section 2.1):

(1.6) ∥uh∥2L2(Ω;Th)
≲ (hK)2|uh|2H1(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+
∣∣LCR

h (¯̂uh)
∣∣2
H1(Ω;Th)

+

(∫
Ω

ûh dx

)2

and

(1.7) ∥uh∥2L2(Ω;Th)
≲ (hK)2|uh|2H1(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+
∣∣LCR

h (¯̂uh)
∣∣2
H1(Ω;Th)

+

(∫
Γ

ûh ds

)2

.

In this context, uh represents a function defined within the interior of each element, whereas ûh pertains to
a function specified on the mesh’s skeleton. The mesh-specific term hK denotes the diameter of a simplex K
in the mesh. The term LCR

h refers to a lifting operator that maps piecewise constant functions into piecewise
linear functions within the Crouzeix-Raviart space, detailed further in Section 3.2. ¯̂uh is a piecewise constant
function representing the average of ûh across each face of the mesh. Additional details on this are provided
in Section 3, while a comprehensive explanation of all other relevant notations is provided in Section 2.1.

Moreover, we develop analogues of the trace inequalities, from (1.4) to (1.5), for any pair of piecewise
polynomial functions (uh, ûh) ∈ X k

h :

(1.8) ∥uh∥2L2(Ω;∂T b
h ) ≲ hK |uh|2H1(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂T b
h ) + (1 + hK)|LCR

h (¯̂uh)|2H1(Ω;Th)
+

(∫
Γ

ûh ds

)2
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and

(1.9) ∥ûh∥2L2(Ω;∂T b
h ) ≲ hK |uh|2H1(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂T b
h ) + (1 + hK)|LCR

h (¯̂uh)|2H1(Ω;Th)
+

(∫
Γ

ûh ds

)2

.

Our proof of both the Poincaré and trace inequalities relies on the work presented in [7] and [8]. By
employing a Crouzeix-Raviart lifting, we bridge hybridizable spaces with traditional nonconforming spaces.
This methodology facilitates the use of theories from [7] and [8], allowing us to eliminate jump terms.
Consequently, this enables us to achieve an estimate of order O(hK), as opposed to O( 1

hK
).

Another main contribution of this paper involves utilizing the Poincaré inequality, as detailed from (1.6)
to (1.7), and the trace inequality, from (1.8) to (1.9), to prove the stability of second-order elliptic equations
solved by the HDG formulation. This approach represents a variation on the proof technique found in [46],
which relies on a translation argument stemming from (1.7) for establishing stability. In Section 5, we will
provide a proof based on the mathematical tools developed in this work directly.

Specifically, the mixed formulation approach [3, 4, 5], which considers a vector-valued mesh function

ppph = −∇uh,

is often adopted in the standard HDG formulation for second-order elliptic equations [21, 22, 25, 61] to devise
the numerical scheme. For each element K, given (uh, ûh) ∈ X k

h , one can determine ppph ∈ VVVk
h as it satisfies

the following relation:

(1.10) (ppph, qqqh)K = (uh,∇ · qqqh)K − ⟨ûh, qqqh ·nnn⟩∂K
where VVVk

h is space of piecewise-polynomial vector-valued functions that will be defined in Section 2.1. Intro-
ducing such a variable typically leads to an energy term involving ∥ppph∥2LLL2(Ω;Th)

, as opposed to ∥∇u∥2LLL2(Ω;Th)
,

which is more commonly encountered in classical elliptic theory [41]. The specifics of this distinction will be
elaborated in Section 5. As a result, we require a variation of the existing analytical tools, adapted for use
with ppph. In the last section of this paper, we introduce the following findings: The Poincaré inequality from
(1.6) to (1.7) is revised as

(1.11) ∥uh∥2L2(Ω;Th)
≲ (1 + (hK)2)∥ppph∥2LLL2(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Ω

uh dx

)2

and

(1.12) ∥uh∥2L2(Ω;Th)
≲
(
1 + (hK)2

)
∥ppph∥2LLL2(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Γ

ûh ds

)2

.

The trace inequalities (1.8)-(1.9) can be written as

(1.13) ∥uh∥2L2(Ω;∂Th)
≲ (1 + hK)∥ppph∥2LLL2(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Γ

ûh ds

)2

and

(1.14) ∥ûh∥2L2(Ω;∂Th)
≲ (1 + hK)∥ppph∥2LLL2(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Γ

ûh ds

)2

.

These inequalities will serve as important tools for developing novel analytical theories for hybridizable finite
element methods, such as the HDG method.

The rest of this paper is organized as follows: Section 2 lays the groundwork for our study, covering
essential notations like domain discretization and function spaces, mesh assumptions throughout our analysis,
key technical lemmas aiding in the proof of our main results, and an introduction to the Crouzeix-Raviart
space due to its critical role in our analysis. The Poincaré inequality for hybridizable spaces will be established
in Section 3, where an averaging technique and a lifting from piece-wise constant space to the Crouzeix-
Raviart space will be developed as key preliminary steps for the proof. Section 4 will extend the discussion
to trace inequalities, employing a similar approach to the Poincaré inequality proof by utilizing a Crouzeix-
Raviart element to bridge hybridizable and classical nonconforming spaces. Finally, Section 5 applies these
findings to investigate the stability of the HDG method for second-order elliptic equations, obtaining a
variant of these inequalities specifically designed for the HDG method.
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2. Preliminary

This section is dedicated to presenting the foundational preliminaries necessary for this paper. We will
outline the notations and general assumptions frequently used throughout. Additionally, we will review
several technical lemmas well-known in finite element analysis that will be applied in later discussions. A
concise overview of the Crouzeix-Raviart space is also provided, due to its importance in our analysis.

2.1. Notations and Assumptions.

2.1.1. Space Discretization. Consider a domain Ω, which is an open connected polyhedral region in Rd. Here,
d can either be 2 or 3. We define Th as a shape-regular triangulation of Ω. (The exact definition of shape-
regularity will be given in Section 2.1.4) This means Th consists of triangles when d = 2 and tetrahedrons
for d = 3. Each simplex in the triangulation is denoted as K, and so the entire domain can be written as
Ω̄ =

⋃
K∈Th

K. When we have a face e appearing as the intersection of two adjacent simplex, labeled as K+

and K− (e = K+
⋂
K−), this face e is called an interior face of the triangulation Th. The set of all such

interior faces is noted as ∂T i
h . The faces that lie on the boundary are collected under ∂T b

h . Hence, all faces
within Th can be collectively described as ∂Th = ∂T i

h ∪∂T b
h . We call the collection of all the faces in the mesh

to be skeleton. Additionally, the outward normal vectors for the simplexes K+ and K− are represented by
nnn+ and nnn−, respectively. However, in practice, we often drop the superscripts and simply use nnn to denote
the outward normal vector for a simplex K at any given face.

Regarding the mesh size of the triangulation Th, we use hK to indicate the diameter of a simplex K. This
diameter is defined as the greatest distance between any two points within the simplex K.

2.1.2. Function Spaces. The spaces that we will repeatedly utilize are listed here. Boldface notation will
be used to indicate vector-valued functions or their corresponding spaces. The set of square integrable
functions over Th within Ω is represented as L2(Ω; Th). Similarly, square integrable functions on the face
space, ∂Th, are denoted by L2(Ω; ∂Th). When addressing the function space associated with a specific
element K, we modify the second component of this notation to reflect the domain of that element. For
instance, L2(Ω;K), L2(Ω; ∂K), and L2(Ω; e) are used to represent the spaces of square integrable functions
on K, on the boundary of K, and on a face e belonging to ∂Th, respectively. These spaces are defined with
specific norms: for functions uh ∈ L2(Ω; Th) and ûh ∈ L2(Ω; ∂Th),

∥uh∥L2(Ω;Th) =

( ∑
K∈Th

∥uh∥2L2(Ω;K)

) 1
2

, ∥ûh∥L2(Ω;∂Th) =

( ∑
K∈Th

∥ûh∥2L2(Ω;∂K)

) 1
2

Moreover, when evaluating the L2 norm of a function that is defined over the whole mesh that exists within
the interior part of each element, specifically uh ∈ L2(Ω; Th), we can define its L2 norm over the skeleton,
∂Th, as well, by considering its trace on each face. Specifically, for uh ∈ L2(Ω; Th), its norm on ∂Th is
expressed as ∥uh∥L2(Ω;∂Th). This is detailed by the following equation:

∥uh∥L2(Ω;∂Th) =

( ∑
K∈Th

∥uh∥2L2(Ω;K)

) 1
2

=

 ∑
e∈∂T i

h

∥uhnnn
+
e ∥2L2(Ω;e) +

∑
e∈∂T i

h

∥uhnnn
−
e ∥2L2(Ω;e) +

∑
e∈∂T b

h

∥uhnnne∥2L2(Ω;e)

 1
2

,

where nnn+
e and nnn−

e denote the outward normal vectors on each side of an interior face e, and nnne represents
the outward normal vector at the boundary for a boundary face e. Therefore, uh on each interior face is
computed twice, reflecting the contributions from both sides of the face. (·, ·)X will be used to denote inner
product in L2(Ω;X) when X is a collection of simplexes while we use ⟨·, ·⟩X if X is one or a collection of
faces.

We designate H1(Ω; Th) to represent for piecewise H1 functions which is defined as

(2.1) H1(Ω; Th) =
{
f ∈ L2(Ω; Th) : fK = f |K ∈ H1(Ω;K),∀K ∈ Th

}
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We will use the operator ∇h to denote the broken gradient operator [58]. In this context, ∇hf and ∇h · fff
refer to functions that, when restricted to an element K, equal ∇f and ∇ · fff , respectively. The semi-norm
for H1(Ω; Th) is given by

(2.2) |f |H1(Ω;Th)
=

( ∑
K∈Th

∥∇uh∥2L2(Ω;K)

) 1
2

= ∥∇huh∥L2(Ω;K)

We want to clarify for readers that the notation H1(Ω), which will be discussed in Section 4, refers to
the standard Sobolev space. Regarding the L2 space, it’s important to note that L2(Ω) = L2(Ω; Th) and
L2(∂Ω) = L2(Ω; ∂Th). Therefore, we will not distinguish between these notations.

Next, we focus on defining the hybridizable spaces, which are central to this paper. The piecewise
polynomial space Uk

h within the domain is delineated as follows:

(2.3) Uk
h = {f ∈ L2(Ω; Th) : f |K ∈ Pk(K),∀K ∈ Th},

and the piecewise polynomial space Fk
h over the faces is outlined as:

(2.4) Fk
h = {f̂ ∈ L2(Ω; ∂Th) : f̂ |e ∈ Pk(∂K),∀e ∈ ∂Th}.

Here, Pk denotes the collection of polynomials with degree at most k. The combined space, X k
h , is thus

formulated as the Cartesian product of Uk
h and Fk

h :

(2.5) X k
h = Uk

h ×Fk
h .

Our analysis will primarily focus on elements within X k
h , denoted by (uh, ûh) ∈ X k

h . Additionally, we
introduce the concept of a vector-valued piecewise polynomial function space, VVVk

h, defined as:

(2.6) VVVk
h = {fff ∈ LLL2(Ω; Th) : fff |K ∈ PPPk(K),∀K ∈ Th}

This space becomes relevant when employing a lifting operator to transform a scalar function, defined on
the mesh skeleton, into a vector function that is defined on the entire mesh. More information on this will
be provided in Section 5.1. Additionally, it will be used for the discussion on HDG formulations in Section
5.

2.1.3. Other Notations. To avoid proliferation of constants, we will use the notation ≲ in this paper. Specif-
ically, when we say f1 ≲ f2, it implies the existence of a constant C > 0, which is independent of both f1
and f2, ensuring f1 ≤ Cf2.

Additionally, we follow the standard notations for jump at the boundaries of elements consisting of
piecewise continuous functions [9]. For a given function f ∈ Uk

h , and a face e which is the boundary between

two elements K+ and K− with respective outward normal vectors nnn+ and nnn− (where e = K+
⋂
K−), the

jump of f across face e is defined by the equation:

(2.7) [[f ]]e = f+nnn+ + f−nnn−

Here, f+ and f− indicate the values of f on the sides of K+ and K−, respectively.
We employ | · | to signify the magnitude or measure of an object. For instance, |K| refers to the d-

dimensional measure of K, while |∂K| and |e| relate to the (d− 1)-dimensional measures of ∂K and a face
e, respectively. Based on the shape regularity assumption, which will be detailed in Section 2.1.4, we can
assert that |K| ∝ (hK)d and |∂K| ∝ (hK)d−1.

For integral notation, we use dx when referring to spatial integrals and ds for integrals taken over faces.
We also use f |K and f |e to denote the restriction of a function on a simplex K or a face e, respectively.

2.1.4. Mesh Assumptions. In this section, we establish certain mesh assumptions. These criteria are broadly
applicable across a range of meshes and are commonly used in analyses of DG and HDG methods, as seen
in [8, 23].
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A1 (Shape Regularity Assumption): There exists a constant κT > 0 such that for any mesh size
hK > 0, the minimum ratio of the volume of any simplex K within the mesh Th to the power of its
diameter (cubed for d = 3 or squared for d = 2) is always above κT :

(2.8) min
K∈Th

|K|
diam(K)d

≥ κT .

A2 (Hanging Node Assumption): The mesh does not contain hanging nodes.

Two remarks are given here regarding these assumptions:

Remark 2.1. The Shape Regularity Assumption (A1) introduces a constant θT > 0, which bounds the
maximum diameter of any simplex K relative to the diameter of the largest inscribed sphere in K, for all
h > 0:

max
K∈Th

diam(K)

ρK
≤ θT ,

where ρK represents the inscribed sphere’s diameter. It also establishes a constant φT > 0, ensuring the
minimum angle within any simplex K remains above φT . This angle is measured in radians for d = 2 or
steradians for d = 3.

Remark 2.2. While our findings could be extended to more complex meshes, incorporating hanging nodes
would overly complicate the paper’s structure. Thus, we choose this assumption (A2) to focus on simplicial
meshes, which more effectively illustrate our proof’s core ideas.

2.2. Technical Lemmas. This section outlines several well-known results that pave the way for the proofs
developed later in this paper. We begin with the discrete trace theorem in triangular simplex, summarized
in the lemma below.

Lemma 2.3. Consider a simplex K in Rd, with e representing one of its faces. For any function f belonging
to Pk(K), the following inequality holds true:

(2.9) ∥f∥L2(Ω;e) ≤
(
(k + 1)(k + d)

d

) 1
2
(

|e|
|K|

) 1
2

∥f∥L2(Ω;K)

Proof. For the proof, we refer readers to [65][Theorem 5]. □

Remark 2.4. The lemma mentioned primarily focuses on scalar-valued functions. To extend this principle
to vector-valued functions, one can evaluate the inequality for each vector component separately and then
combine the results. This approach leads to a vector-valued version of the inequality.

Remark 2.5. Considering a simplex K and its face e, there is a proportional relationship between their
measures, expressed as |K| = cdhe|e|. Here, he represents the height from face e within K, and cd is only
dependent on the dimension d. With hK denoting the diameter of the simplex, the discrete trace inequality
can be rephrased to reflect this geometrical relation under the shape regularity assumption, as follows:

(2.10) ∥f∥L2(Ω;e) ≲
1

h
1
2

K

∥f∥L2(Ω;K).

Next, we present the Poincaré inequality in a simplex K, which includes an estimate of the order of the
Poincaré constant in this case.

Lemma 2.6. Let K be a simplex, e is a face in ∂K, and f ∈ H1(Ω;K). We set

fe :=
1

|e|

∫
e

f ds, fK =
1

|K|

∫
K

f dx.

They denote the average of f over one face e and the interior of simplex K, respectively. Then the following
estimates hold

(2.11)

∫
K

(fK − fe)
2
dx ≲ diam(K)2

∫
K

|∇f |2 dx,

(2.12)

∫
K

[f − fK ]2 dx ≲ diam(K)2
∫
K

|∇f |2 dx.
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and

(2.13)

∫
K

[f − fe]
2 dx ≲ diam(K)2

∫
K

|∇f |2 dx.

Proof. See [64][Lemma 4.1] for (2.11) and (2.13) and then (2.12) will follow as a consequence. Or see [57]
and [40] for (2.12) directly. □

This leads us to understand that the L2 norm of the difference between a function and its mean value
(either averaged over the entire simplex or just on one face of it) can be bounded by the function’s H1

semi-norm, multiplied by a constant that depends on the simplex’s diameter.

2.3. Crouzeix–Raviart Space. Introduced by Crouzeix and Raviart in the early 1970s [27], the Crouziex-
Raviart (CR) finite element space is an important development in the area of non-conforming P1 finite
elements. Characterized by its application to both triangular (d = 2) and tetrahedron (d = 3) cases, the CR
space uniquely defines its degrees of freedom through the evaluation of functions at the midpoint of edges
or faces. This distinctive approach results in element functions that maintain continuity exclusively at these
midpoints, different from the traditional conforming elements [9, 16, 67] which are continuous across the
entire element.

As a consequence, the discontinuity outside the midpoints of edges or faces makes CR finite element
function not an element of the Sobolev space H1(Ω) which is the standard space for second-order elliptic
equations to be posed in [41, 44]. This difference underscores the non-conforming nature of the CR space.
The theoretical analysis and evolution of CR space are extensively discussed in literature. We refer readers
to [2, 10, 30, 45] and the references therein.

Here, we give the precise definition of the CR space:

(2.14) CR(Ω; Th) = {f ∈ L2(Ω; Th) : f |K ∈ P1(K),

∫
e

[[f ]]e ds = 0 for all e ∈ ∂T i
h}.

The condition that the integral of the function’s jump across any interior edge is zero underlines that the CR
space’s degrees of freedom are centered on the edges’ midpoints. In this research, the CR space is utilized
for the interpolation of a function µ̂, defined on the mesh skeleton, into a P1 element within the CR space.
The specifics of this interpolation method will be detailed in Section 3.2.

3. Discrete Poincaré Inequality

This section focuses on establishing one of our main results, the Poincaré inequality, within the hybridiz-
able space X k

h . Our approach involves linking hybridizable spaces to DG spaces via a lifting operator. This
connection is set up by utilizing the Crouzeix-Raviart element as an intermediary.

3.1. Discrete Poincaré Inequality for Piecewise H1 Functions. To start, we revisit the discrete
Poincaré-Friedrichs inequalities that applied to classical nonconforming finite element methods and dis-
continuous Galerkin methods, as introduced in [8]. These inequalities will serve as crucial tools in deriving
the Poincaré-Friedrichs inequalities for hybridizable spaces.

Lemma 3.1. The following are the Poincaré–Friedrichs inequalities for f ∈ H1(Ω; Th) where H1(Ω; Th) is
the space of piecewise H1 functions defined in (2.1):

(3.1) ∥f∥2L2(Ω;Th)
≲

|f |2H1(Ω,P ) +
∑

e∈∂T i
h

|e|d/(1−d)

∣∣∣∣∫
e

[[f ]]e ds

∣∣∣∣2 + (∫
Ω

f dx

)2
 ,

(3.2) ∥f∥2L2(Ω;Th)
≲

|f |2H1(Ω,P ) +
∑

e∈∂T i
h

|e|d/(1−d)

∣∣∣∣∫
e

[[f ]]e ds

∣∣∣∣2 + (∫
Γ

f ds

)2
 ,

where |e| represents the (d−1)-dimensional measure of the face e, and [[f ]]e signifies the jump of the function
f across the face e, as defined in (2.7). The positive constant, not explicitly mentioned due to the use of
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the symbol ≲, relies solely on the shape regularity of the partition P . And Γ is a subset of ∂Ω that has a
positive measure.

Proof. See [8]. □

The following corollary is an immediate result when the integral of jump at each interior face vanishes,
namely,

(3.3)

∫
e

[[f ]]e ds = 0

for every e ∈ ∂T i
h .

Corollary 3.2. If condition (3.3) holds, then (3.1)-(3.2) will reduce to

(3.4) ∥f∥2L2(Ω;Th)
≲ |f |2H1(Ω,P ) +

(∫
Ω

f dx

)2

,

and

(3.5) ∥f∥2L2(Ω;Th)
≲ |f |2H1(Ω,P ) +

(∫
Γ

f ds

)2

.

For any function f within the CR space, as defined in (2.14), it satisfies the condition given in (3.3).
Therefore, the two types of Poincaré-Friedrichs inequalities mentioned above, (3.4) and (3.5), which apply
to cases without jumps in integral sense, are naturally applicable to a CR element.

We want to point out that Lemma 3.1 is broadly applicable and serves as a cornerstone in the theory of the
DG method [32, 39, 47, 60]. This lemma allows us to generalize the concept of derivatives to discontinuous
spaces and lays down a framework for designing a generalized gradient operator. It illustrates what gradients
look like within such spaces. However, directly applying these principles to hybridizable spaces does not
suffice to achieve the inequalities presented in (1.6)-(1.7). In fact, when considering an element (uh, ûh) ∈ X k

h ,

if the jump term
∑

e∈∂T i
h
|e|d/(1−d)

∣∣∫
e
[[uh]]e ds

∣∣2 in (3.1) and (3.2) remains, the best estimate we could expect

for this term would be∑
e∈∂T i

h

|e|d/(1−d)

∣∣∣∣∫
e

[[uh]]e ds

∣∣∣∣2 ≤
∑

e∈∂T i
h

|e|1/(1−d)

∣∣∣∣∫
e

([[uh]]e)
2
ds

∣∣∣∣ ≲ ∑
e∈∂T i

h

hK
1

1−d ∥uh − ûh∥2L2(Ω;e).

This is weaker than the estimates in (1.6)-(1.7), where we obtain a coefficient related to hK of order
O(hK) for this analog of the jump term. This observation suggests the need to eliminate the jump term∑

e∈∂T i
h
|e|d/(1−d)

∣∣∫
e
[[uh]]e ds

∣∣2 for a more accurate estimate, leading to the introduction of the CR lifting

operator in the following subsection.

3.2. CR Lifting Operator. Here we introduce a lifting operator mapping a piece-wise constant function
defined on skeleton of the mesh to be a function defined in the CR space. We define LCR

h : P0(∂Th) →
CR(Ω; Th) as

(3.6) LCR
h (µ̂)(ce) = µ̂|e

for every µ̂ ∈ P0(∂Th) and face e ∈ ∂Th. Here ce denotes the center of the face e and the left-hand side
of (3.6) is to evaluate LCR

h (µ̂) at point ce. In other words, the lifting operator defines a CR element by
determining its degree of freedom lying on the centers of each side of each element.

The following result describes the quantity relation between µ̂ and LCR
h (µ̂) when it is restricted in K.

Lemma 3.3. We take the restriction of µ̂ ∈ P0(∂Th) on an element K as µ̂K = µ̂|K , then

(3.7) ∥µ̂K∥2L2(Ω;∂K) ≤ ∥LCR
h (µ̂K)∥2L2(Ω;∂K) = ∥LCR

h (µ̂)|K∥2L2(Ω;∂K)

Proof. Consider a face e within ∂K and let µ̂K,e represent the value of µ on face e. We can express this
term in another way as

µ̂K,e =
1

|e|

∫
e

LCR
h (µ̂K) ds
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due to the linearity of LCR
h (µ̂K) and the definition of the CR lifting operator. Applying the Cauchy-Schwarz

inequality, we get

(3.8) (µ̂K,e)
2 =

1

|e|2

[∫
e

LCR
h (µ̂K) ds

]2
≤ 1

|e|

∫
e

[
LCR
h (µ̂K)

]2
ds =

1

|e|
∥∥LCR

h (µ̂K)
∥∥2
L2(Ω;e)

Following this,

∥µ̂K∥2L2(Ω;∂K) =
∑
e∈∂K

|e|(µ̂K,e)
2 ≤

∑
e∈∂K

∥∥LCR
h (µ̂K)

∥∥2
L2(Ω;e)

= ∥LCR
h (µ̂K)∥2L2(Ω;∂K)

This concludes the proof. □

3.3. Poincaré Inequalities in X k
h . In this part, our goal is to prove the Poincaré inequalities for the space

X k
h . Before proceeding with the proof, it’s crucial to recognize that ûh ∈ Fk

h is generally a Pk function, not a
P0 function. For the CR lifting operator to be applicable, we need to transform these piecewise polynomial
functions into piecewise constant ones. Thus, for a boundary face e and a function ûh ∈ Fk

h , we take:

(3.9) ¯̂uh,e =
1

|e|

∫
e

ûh ds

Then ¯̂uh ∈ P0(∂Th) is introduced as a piecewise constant function that averages ûh on each boundary
segment, defined by:

(3.10) ¯̂uh|e = ¯̂uh,e

This procedure converts ûh into the piecewise constant function ¯̂uh within Fk
h , facilitating the unique defi-

nition of a corresponding CR element by the CR lifting operator LCR
h .

With these preparations, we present the following findings, detailing the connection between the L2 norm
of uh and that of the function derived from LCR

h (¯̂uh), along with the jump terms existing on the faces.

Proposition 3.4. Let (uh, ûh) ∈ X k
h . Then the following local inequality holds in each element K:

(3.11) ∥uh∥2L2(Ω;K) ≲ h2
K |uh|2H1(Ω;K) + hK∥uh − ûh∥2L2(Ω;∂K) +

∥∥LCR
h (¯̂uh)

∥∥2
L2(Ω;K)

,

and the global inequality will naturally hold as well:

(3.12) ∥uh∥2L2(Ω;Th)
≲ h2

K |uh|2H1(Ω;Th)
+ hK∥uh − ûh∥2L2(Ω;∂Th)

+
∥∥LCR

h (¯̂uh)
∥∥2
L2(Ω;Th)

Proof. We start by restricting our scope in an element K. In each K, we can split ∥uh∥L2(Ω;K) into two
parts as

(3.13) ∥uh∥L2(Ω;K) ≲ ∥uh − ūh,∂K∥L2(Ω;K) + ∥ūh,∂K∥L2(Ω;K).

where

(3.14) ūh,∂K :=
1

|∂K|

∫
∂K

uh ds

is defined as the average of uh over ∂K. Using the Poincaré inequality in a single simplex (Lemma 2.6), the
first quantity on the right-hand side of (3.13) can be controlled as:

(3.15) ∥uh − ūh,∂K∥L2(Ω;K) ≲ hK∥∇huh∥L2(Ω;K)

For the second quantity, since u∂K is a constant, we have

∥ūh,∂K∥2L2(Ω;K) = |K| ū2
h,∂K .

This leads us to the objective of estimating ūh,∂K to effectively bound ∥uh∥L2(Ω;K). By revisiting its defini-
tion, we can reinterpret this as the cumulative sum of integrals of uh across the different faces ei of element
K, yielding the subsequent formulation:



10 Y. YUE

ūh,∂K =
1

|∂K|

∫
∂K

uh ds =
1

|∂K|

d+1∑
i=1

∫
ei

uh ds

=
1

|∂K|

d+1∑
i=1

∫
ei

(uh − ¯̂uh,ei) ds+
1

|∂K|

d+1∑
i=1

∫
ei

¯̂uh,ei ds

where definition of ¯̂uh,ei follows from (3.9). As
∫
ei
¯̂uh,ei ds =

∫
ei
ûh ds, ūh,∂K can be written as:

ūh,∂K =
1

|∂K|

∫
∂K

(uh − ûh) ds+
1

|∂K|

d+1∑
i=1

∫
ei

¯̂uh,ei ds.

Applying the Cauchy-Schwarz inequality along with the assumption of shape regularity enables us to perform
the following calculation:

(3.16)

(ūh,∂K)2 ≲
1

|∂K|2

[∫
∂K

(uh − ûh) dx

]2
+

1

|∂K|2

[
d+1∑
i=1

∫
ei

¯̂uh,ei dx

]2

≤ 1

|∂K|

∫
∂K

(uh − ûh)
2 dx+

1

|∂K|2

(
d+1∑
i=1

|ei| ¯̂uh,ei

)2

≲
1

|∂K|
∥uh − ûh∥2L2(Ω;∂K) +

1

|∂K|2

(
d+1∑
i=1

|ei|2
) (

d+1∑
i=1

¯̂u2
h,ei

)

≲
1

|∂K|
∥uh − ûh∥2L2(Ω;∂K) +

d+1∑
i=1

(¯̂uh,ei)
2

Hence, using the principle of shape regularity once more, we obtain:

(3.17) ∥ūh,∂K∥2L2(Ω,K) = |K|u2
∂K ≲ hK∥uh − ûh∥2L2(Ω;∂K) + hK∥¯̂uh∥2L2(Ω;∂K),

where ¯̂uh is defined in (3.10). Additionally, we have used the following fact to deduce (3.17)

∥¯̂uh∥2L2(Ω;∂K) =

d+1∑
i=1

|ei| ¯̂u2
h,ei

since ¯̂uh,ei is a constant for each i.
Then we use the lifting operator LCR

h to define a function LCR
h (¯̂uh) in CR(Ω; Th). According to Lemma

3.3, we get that in each element K,

(3.18) ∥¯̂uh∥2L2(Ω;∂K) ≤
∥∥LCR

h (¯̂uh)
∥∥2
L2(Ω;∂K)

Now combining (3.18) with Lemma 2.3 (discrete trace inequality in simplex), we can rewrite (3.17) as

(3.19)

∥ūh,∂K∥2L2(Ω,K) ≲ hK∥uh − ûh∥2L2(Ω;∂K) + hK∥¯̂uh∥2L2(Ω;∂K)

≤ hK∥uh − ûh∥2L2(Ω;∂K) + hK

∥∥LCR
h (¯̂uh)

∥∥2
L2(Ω;∂K)

≲ hK∥uh − ûh∥2L2(Ω;∂K) +
∥∥LCR

h (¯̂uh)
∥∥2
L2(Ω;K)

By inserting the estimates from (3.19) and (3.15) into (3.13), we get (3.11). And then summing the results
over all elements K in Th, (3.12) follows.

□

In this analysis, we encounter the term
∥∥LCR

h (¯̂uh)
∥∥2
L2(Ω;K)

. This is where the Poincaré inequality for

nonconforming spaces with no jump term, as outlined in Corollary 3.2, becomes relevant because this is a
CR element. Consequently, an integral involving LCR

h (¯̂uh) could emerge. To express this term in a form
more consistent with the classical Poincaré inequality, we examine the difference between

∫
Ω
LCR
h (¯̂uh) dx and∫

Ω
uh dx, leading to the subsequent finding:
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Lemma 3.5. The difference between integral of LCR
h (¯̂uh) and uh can be controlled as

(3.20)

(∫
Ω

LCR
h (¯̂uh) dx

)2

≲ (hK)2|uh|2H1(Ω;Th)
+ hK∥uh − ûh∥2L2(Ω;∂Th)

+

(∫
Ω

uh dx

)2

.

Proof. For simplicity of notation, we use ωh to denote the piecewise linear function LCR
h (¯̂uh) in the sense

that ωh|K = LCR
h (¯̂uh)|K . Then∫
Ω

LCR
h (¯̂uh) dx−

∫
Ω

uh dx =

∫
Ω

ωh dx−
∫
Ω

uh dx

=
∑

K∈Th

∫
K

(ωh − uh) dx =
∑

K∈Th

∫
K

(ω̄h,K − ūh,K) dx

where ω̄h,K and ūh,K denotes their averages over the simplex K. Since ωh is a linear function, ω̄h,K can be
evaluated via its value on the vertices and so we can compute that

(3.21) ω̄h,K =
1

d+ 1

d+1∑
i=1

¯̂uh,ei

With this, we have∫
Ω

LCR
h (¯̂uh) dx−

∫
Ω

uh dx =
1

d+ 1

∑
K∈Th

d+1∑
i=1

∫
K

(
¯̂uh,ei − ūh,K

)
dx

=
1

d+ 1

∑
K∈Th

d+1∑
i=1

[∫
K

(
¯̂uh,ei − ūh,ei

)
dx+

∫
K

(ūh,ei − ūh,K) dx

]

=
|K|
d+ 1

∑
K∈Th

d+1∑
i=1

1

|ei|

∫
ei

(ûh − uh) ds+
1

d+ 1

∑
K∈Th

d+1∑
i=1

∫
K

(ūh,ei − ūh,K) dx

:= I1 + I2

where ūh,ei , following the definition introduced in Lemma 2.6, is defined as average of uh|K on the side ei
with the simplex K,

ūh,ei =
1

|ei|

∫
ei

uh|K ds.

Therefore, we can control I1, using the shape-regularity assumption and Cauchy-Schwarz inequality, as

(I1)
2 =

|K|2

(d+ 1)2

[ ∑
K∈Th

d+1∑
i=1

1

|ei|

∫
ei

(ûh − uh) ds

]2
≲

|K|2

|∂K|2

[ ∑
K∈Th

∫
∂K

|ûh − uh| ds

]2

≲
|K|

|∂K|2

[ ∑
K∈Th

(∫
∂K

|ûh − uh| ds
)2
]

≲
|K|
|∂K|

∑
K∈Th

∫
∂K

|ûh − uh|2 ds

≲ hK∥uh − ûh∥2L2(Ω;∂Th)

while I2 can be controlled using (2.11) from Lemma 2.6 as

(I2)
2 =

1

(d+ 1)2

[ ∑
K∈Th

d+1∑
i=1

∫
K

(ūh,ei − ūh,K) dx

]2
≲

1

|K|
∑

K∈Th

[∫
K

|ūh,ei − ūh,K | dx
]2

≲
∑

K∈Th

∫
K

|ūh,ei − ūh,K |2 dx

≲ (hK)2
∑

K∈Th

∥∇huh∥2L2(Ω;K)

= (hK)2|uh|2H1(Ω;Th)



12 Y. YUE

Combining the estimate for I1 and I2, we get(∫
Ω

LCR
h (¯̂uh) dx

)2

≲

(∫
Ω

LCR
h (¯̂uh) dx−

∫
Ω

uh dx

)2

+

(∫
Ω

uh dx

)2

≲ (hK)2|uh|2H1(Ω;Th)
+ hK∥uh − ûh∥2L2(Ω;∂Th)

+

(∫
Ω

uh dx

)2

.

Here we finish the proof.
□

Now we state the main result of this section.

Theorem 3.6. Let (uh, ûh) ∈ X k
h . Then the following Poincaré inequalities hold:

(3.22)

∥uh∥2L2(Ω;Th)
≲ (hK)2|uh|2H1(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+
∣∣LCR

h (¯̂uh)
∣∣2
H1(Ω;Th)

+

(∫
Ω

LCR
h (¯̂uh) dx

)2

and

(3.23) ∥uh∥2L2(Ω;Th)
≲ (hK)2|uh|2H1(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+
∣∣LCR

h (¯̂uh)
∣∣2
H1(Ω;Th)

+

(∫
Γ

ûh ds

)2

where Γ is combination of boundary faces that has a positive measure, namely, Γ =
⋃N

i=1 ei such that
ei ∈ ∂T b

h and {e1, e2, · · · , eN} are different faces. In addition, the following variant of (3.22) expressing in
term of integral of uh also holds:

(3.24) ∥uh∥2L2(Ω;Th)
≲ (hK)2|uh|2H1(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+
∣∣LCR

h (¯̂uh)
∣∣2
H1(Ω;Th)

+

(∫
Ω

uh dx

)2

Proof. As LCR
h (¯̂uh) ∈ CR(Ω; Th), estimate (3.4) and (3.5) in Corollary 3.2 hold for LCR

h (¯̂uh). Combining
(3.4) with Proposition 3.4, (3.22) will be immediately obtained. Similarly, combining (3.5) with Proposition
3.4 will lead to

∥uh∥2L2(Ω;Th)
≲ h2

K |uh|2H1(Ω;Th)
+ hK∥uh − ûh∥2L2(Ω;∂Th)

+
∣∣LCR

h (¯̂uh)
∣∣2
H1(Ω;Th)

+

(∫
Γ

LCR
h (¯̂uh) ds

)2

Since Γ is a combination of boundary faces, we have∫
Γ

LCR
h (¯̂uh) ds =

∫
⋃N

i=1 ei

LCR
h (¯̂uh) ds

=

N∑
i=1

∫
ei

LCR
h (¯̂uh) ds =

N∑
i=1

∫
ei

¯̂uh ds =

N∑
i=1

∫
ei

ûh ds =

∫
Γ

ûh ds

and so (3.23) is obtained.
To the end, (3.22) together with Lemma 3.5 will immediately lead to (3.24). □

4. Discrete Trace Inequality

In this section, we present an analogue of the trace theorem specifically designed for hybridizable spaces,
which is an essential tool for analyzing boundary value problems. We want to highlight the difference between
the notations H1(Ω) and L2(Ω)—indicating the standard Sobolev space and the square integrable space,
respectively—and the specialized notations H1(Ω; Th) and L2(Ω; Th). Our discussion commences with a
finding from [7] that provides insight into H1(Ω; Th), laying the groundwork for understanding this space
through its relationship with functions belonging to H1(Ω).
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Lemma 4.1. Let f ∈ H1(Ω; Th). Then there exists a function ζ ∈ H1(Ω) such that

(4.1)

∥∇ζ∥2L2(Ω) +
1

hK
∥f − ζ∥2L2(∂Ω) +

1

(hK)2
∥f − ζ∥2L2(Ω)

≲ |f |2H1(Ω;Th)
+
∑

e∈∂T i
h

1

|e|
∥Π0,e[[f ]]e∥2L2(Ω;e)

where Π0,e is the orthogonal projection operator from L2(Ω; e) onto P0(Ω; e), the space of constant functions
on e.

Proof. See [7, Proposition 2.7]. □

We observe that the jump term appears again in the inequality, similar to the discrete Poincaré inequality
for classical non-conforming elements discussed in Section 3.1. This observation leads us to concentrate on
functions from the CR space CR(Ω; Th), where the jump term is eliminated. Consequently, we obtain the
following result:

Lemma 4.2. Let ωh ∈ CR(Ω; Th), then the following estimates hold:

(4.2) ∥ωh∥2L2(Ω;∂T b
h ) ≲

[
1 + (hK)2

]
|ωh|2H1(Ω;Th)

+

(∫
Ω

ωh dx

)2

and

(4.3) ∥ωh∥2L2(Ω;∂T b
h ) ≲ (1 + hK)|ωh|2H1(Ω;Th)

+

(∫
Γ

ωh ds

)2

where Γ is combination of boundary faces that has a positive measure, namely, Γ =
⋃N

i=1 ei such that
ei ∈ ∂T b

h and {e1, e2, · · · , eN} are different boundary faces.

Proof. For a given ωh ∈ CR(Ω; Th) and based on Lemma 4.1, there exists a function ζ ∈ H1(Ω) satisfying
the relationship described in (4.1),

(4.4) ∥∇ζ∥2L2(Ω) +
1

hK
∥ωh − ζ∥2L2(∂Ω) +

1

(hK)2
∥ωh − ζ∥2L2(Ω) ≲ |ωh|2H1(Ω;Th)

as every interior face satisfies, ∫
e

[[ωh]]e ds = 0.

Next, by decomposing ωh into (ωh − ζ) and ζ, we can derive an estimate for the trace of ωh on ∂T b
h as

follows:

(4.5) ∥ωh∥2L2(Ω;∂T b
h ) ≲ ∥ωh − ζ∥2L2(Ω;∂T b

h ) + ∥ζ∥2L2(Ω;∂T b
h )

The first part has already appeared in (4.4). Regarding the second portion, given that ζ ∈ H1(Ω), the
classical trace theorem and Poincaré inequality related to the mean-value are applicable, resulting in:

∥ζ∥2L2(Ω;∂T b
h ) ≲ ∥∇ζ∥2L2(Ω) +

(∫
Ω

ζ dx

)2

≲ ∥∇ζ∥2L2(Ω) +

[∫
Ω

(ζ − ωh) dx

]2
+

(∫
Ω

ωh dx

)2

≲ ∥∇ζ∥2L2(Ω) + ∥ωh − ζ∥2L2(Ω;Th)
+

(∫
Ω

ωh dx

)2

.
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The last line is deduced through employing the Cauchy-Schwarz inequality and acknowledging Ω’s finite
measure. Analogously, applying a Poincaré inequality relative to the boundary mean value provides:

∥ζ∥2L2(Ω;∂T b
h ) ≲ ∥∇ζ∥2L2(Ω) +

(∫
Γ

ζ ds

)2

≲ ∥∇ζ∥2L2(Ω) +

[∫
∂Ω

(ζ − ωh) ds

]2
+

(∫
Γ

ωh ds

)2

≲ ∥∇ζ∥2L2(Ω) + ∥ωh − ζ∥2L2(Ω;∂T b
h ) +

(∫
Γ

ωh ds

)2

,

due to Γ’s finite measure. Integrating these findings into (4.5) and associating it with (4.4) leads to:

∥ωh∥2L2(Ω;∂T b
h ) ≲ ∥∇ζ∥2L2(Ω) + ∥ωh − ζ∥2L2(Ω;∂T b

h ) + ∥ωh − ζ∥2L2(Ω;Th)
+

(∫
Ω

ωh dx

)2

≲
[
1 + hK + (hK)2

]
|ωh|2H1(Ω;Th)

+

(∫
Ω

ωh dx

)2

≲
[
1 + (hK)2

]
|ωh|2H1(Ω;Th)

+

(∫
Ω

ωh dx

)2

,

and

∥ωh∥2L2(Ω;∂T b
h ) ≲ ∥∇ζ∥2L2(Ω) + ∥ωh − ζ∥2L2(Ω;∂Th)

+

(∫
Γ

ωh ds

)2

≲ (1 + hK)|ωh|2H1(Ω;Th)
+

(∫
Γ

ωh ds

)2

.

We here yield the anticipated outcomes.
□

Remark 4.3. This finding indicates that when the average value of a CR element on the boundary can be
evaluated, the classical trace theorem from the H1 Sobolev space can be extended to the non-conforming
CR space.

With this insight, we now shift our focus to formulating a trace argument for hybridizable spaces, em-
ploying a methodology akin to that used in proving the Poincaré inequality. Our goal is to establish a bridge
between uh and ûh by examining the discrepancies between their average values and their individual values,
and subsequently mapping these boundary averages into CR spaces. This process leads to the following
theorem:

Theorem 4.4. Let (uh, ûh) ∈ X k
h , then the following trace inequalities hold:

(4.6) ∥uh∥2L2(Ω;∂T b
h ) ≲ hK |uh|2H1(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂T b
h ) + (1 + hK)|LCR

h (¯̂uh)|2H1(Ω;Th)
+

(∫
Γ

ûh ds

)2

and

(4.7) ∥ûh∥2L2(Ω;∂T b
h ) ≲ hK |uh|2H1(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂T b
h ) + (1 + hK)|LCR

h (¯̂uh)|2H1(Ω;Th)
+

(∫
Γ

ûh ds

)2

.

Here Γ has the same definition as Lemma 4.2.

Proof. We evaluate the estimate for ∥uh∥L2(Ω;∂T b
h ). This norm is derived from the trace of uh on ∂T b

h . By

the definition of ∂T b
h , the boundary of the mesh can be expressed as ∂T b

h =
⋃NhK

i=1 ei for a given mesh with
hK as its mesh diameter, where ∂T b

h consists of NhK
distinct faces. Therefore, we can state:

∥uh∥2L2(Ω;∂T b
h ) =

NhK∑
i=1

∥uh∥2L2(Ω;ei)
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For each boundary face ei, if we consider Ki to be the element it belongs to, we can decompose uh into two
parts and achieve:

(4.8) ∥uh∥2L2(Ω;ei)
≲ ∥uh − ūh,ei∥2L2(Ω;ei)

+ ∥ūh,ei∥2L2(Ω;ei)

where ūh,ei is the average value of uh on face ei, defined by:

ūh,ei =
1

|ei|

∫
ei

uh ds

For the first term, utilizing Lemma 2.3 and Lemma 2.6, which are the discrete trace inequality and discrete
Poincaré inequality in a simplex, we can establish bound as follows:

(4.9) ∥uh − ūh,ei∥2L2(Ω;ei)
≲

1

hK
∥uh − ūh,ei∥2L2(Ω;Ki)

≲ hK∥∇uh∥2L2(Ω;Ki)
,

Given that ūh,ei is a constant, we can estimate the second term as follows:

(ūh,ei)
2 =

1

|ei|2

(∫
ei

uh ds

)2

≲
1

|ei|2

[∫
ei

(uh − ûh) ds

]2
+

1

|ei|2

(∫
ei

ûh ds

)2

≲
1

|ei|
∥uh − ûh∥2L2(Ω;ei)

+ (¯̂uh,ei)
2,

where ¯̂uh,ei is detailed in (3.9). Consequently,

∥ūh,ei∥2L2(Ω;ei)
= |ei|(ūh,ei)

2 ≲ ∥uh − ûh∥2L2(Ω;ei)
+ ∥¯̂uh,ei∥2L2(Ω;ei)

.

Following Lemma 3.3 and especially, estimate (3.8), it’s evident that:

∥ūh,ei∥2L2(Ω;ei)
≲ ∥uh − ûh∥2L2(Ω;ei)

+ ∥LCR
h (¯̂uh)∥2L2(Ω;ei)

,

with ¯̂uh specified in (3.10). Merging these results leads to:

(4.10) ∥uh∥2L2(Ω;ei)
≲ hK∥∇uh∥2L2(Ω;Ki)

+ ∥uh − ûh∥2L2(Ω;ei)
+ ∥LCR

h (¯̂uh)∥2L2(Ω;ei)

Summarizing these results gives:

(4.11) ∥uh∥2L2(Ω;∂T b
h ) =

Nh∑
i=1

∥uh∥2L2(Ω;ei)
≲ hK |uh|2H1(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂T b
h ) + ∥LCR

h (¯̂uh)∥2L2(Ω;∂T b
h )

By (4.3) from Lemma 4.2 and the definition of CR lifting operator, the trace of LCR
h (¯̂uh) can be bounded as

(4.12)

∥LCR
h (¯̂uh)∥2L2(Ω;∂T b

h ) ≲ (1 + hK)|LCR
h (¯̂uh,e)|2H1(Ω;Th)

+

(∫
Γ

LCR
h (¯̂uh) ds

)2

= (1 + hK)|LCR
h (¯̂uh,e)|2H1(Ω;Th)

+

(∫
Γ

¯̂uh ds

)2

= (1 + hK)|LCR
h (¯̂uh,e)|2H1(Ω;Th)

+

(∫
Γ

ûh ds

)2

Inserting (4.9), (4.11) and (4.12) into (4.8), we have shown the estimate (4.6). To obtain (4.7), we simply
need to notice the fact that

∥ûh∥2L2(Ω;∂T b
h ) ≲ ∥uh∥2L2(Ω;∂T b

h ) + ∥ûh − uh∥2L2(Ω;∂T b
h )

and then the desired result follows. □

Remark 4.5. In the estimates (4.6) and (4.7), the term
(∫

Γ
ûh ds

)2
can be replaced with

(∫
Γ
uh ds

)2
. This

adjustment is viable as the term ∥ûh −uh∥2L2(Ω;∂T b
h )

is involved in the estimate. Moreover, it’s also practical

to exchange this term with the integral of LCR
h (¯̂uh) over the entire domain Ω, opting for (4.2) over (4.3) to

establish the trace estimate for ∥LCR
h (¯̂uh)∥2L2(Ω;∂T b

h )
.
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5. Application to HDG formulation

In this section, we will discuss how Poincaré inequalities and trace inequalities developed above can
actually benefit in analysis for problems set up by HDG method. In particular, we will use these tools to
obtain uniform energy estimates for the solutions for second-order elliptic equations in dependent of mesh
size hK with a minimal regularity assumption. For sake of simplicity, we will only consider Poisson equation
as a model problem and the analysis can be extended to more general case of second-order elliptic equations
easily.

5.1. Boundary Lifting Operator. As a start, we introduce the definition of a discrete gradient operator,
which will be called a lifting operator in the following. This operator is designed to approximate the
distributional gradient which is also a common methodology in analyzing discontinuous schemes presented
in related works [11, 29, 48, 50, 51, 62, 63]. The cornerstone of this discrete gradient operator lies in a critical
observation regarding the nature of functions within X k

h [11]. Specifically, it is noted that these functions
exhibit discontinuities, which in turn implies that their distributional gradient is influenced by the difference
of uh and ûh on the interfaces of elements.

In each element K, we introduce a local lifting operator G∂K
h : L2(Ω; ∂K) → PPPk(K), inspired by the

previously discussed contents. This operator transforms a function µ̂, defined on ∂K, into a vector-valued
piecewise polynomial function. Specifically, for each function µ̂ ∈ L2(Ω; ∂K), we define G∂K

h (µ̂) as follows:

(5.1)

∫
K

G∂K
h (µ̂) ·ωhωhωh dx =

∫
∂K

µ̂ωhωhωh ·nnnds

for any ωhωhωh ∈ PPPk(K). The global lifting operator Gk
h : L2(Ω; ∂Th) →VVVk

h is then defined through the restriction
to each element, such that Gk

h(µ̂)|K = G∂K
h (µ̂|K) for every µ̂ ∈ L2(Ω; ∂Th). Hence, it should comply with the

form:

(5.2)

∫
Ω

Gk
h(µ̂) ·ωhωhωh dx =

∑
K∈Th

∫
K

Gk
h(µ̂) ·ωhωhωh dx =

∑
K

∫
∂K

µ̂ωhωhωh ·nnnds, ∀ωhωhωh ∈ VVVk
h.

The following lemma provides a local estimate for this lifting operator, emerging as a direct consequence
of the discrete trace inequality Lemma 2.3.

Lemma 5.1. For every µ̂ ∈ L2(Ω; ∂K),

∥G∂K
h (µ̂)∥2LLL2(Ω;K) ≲

1

hK
∥µ̂∥2L2(Ω;∂K).

Proof. Let ωhωhωh = G∂K
h (µ̂) in equation (5.1), by Cauchy-Schwarz inequality we have

∥G∂K
h (µ̂)∥2LLL2(Ω;K) =

∫
µ̂G∂K

h (µ̂) ·nnnds ≤ ∥µ̂∥L2(Ω;∂K)∥G∂K
h (µ̂) ·nnn∥L2(Ω;∂K).

By Lemma 2.3, combining with Remark 2.4 and Remark 2.5, we can conclude that

∥G∂K
h (µ̂) ·nnn∥L2(Ω;∂K) ≲

1

h
1
2

K

∥G∂K
h (µ̂)∥L2(Ω;K).

Combining these two formulas and the claim of this lemma follows. □

This result can be extended to be an estimate for the global lifting operator by direct addition of the part
in each element, which is summarized as follows.

Corollary 5.2. For µ̂ ∈ L2(Ω; ∂Th),

∥Gk
h(µ̂)∥2LLL2(Ω;Th)

≲
1

hK
∥µ̂∥2L2(Ω;∂Th)

.
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5.2. Problem Setup. We will briefly outline the HDG method’s formulation and structure for the Poisson
problem, then explore how the Poincaré inequality and the trace inequality we derived can be used for
stability analysis towards it. This contrasts with [46], where a translation argument was employed for
deducing stability.

In this discussion, we address the Poisson equation with mixed boundary conditions as a model problem.
Other types of boundary conditions can also be accommodated within this framework. The strong form of
the Poisson equation in Ω is given by:

(5.3)

 −∆u = f in Ω,
u = uD on ΓD,
∇u ·nnn = uN on ΓN .

Here, ∂Ω = Γ̄D

⋃
Γ̄N and ΓD

⋂
ΓN = ∅, with f serving as the source term.

A mixed formulation is introduced by defining ppp = −∇u, allowing the system to be reformulated as:

(5.4)


∇ · ppp = f in Ω,
ppp+∇u = 0 in Ω,
u = uD on ΓD.
ppp ·nnn = −uN on ΓN

In situations where the solution possesses sufficient regularity, these two formulations are equivalent. To
solve this problem numerically, the domain is partitioned into a mesh Th, and we will continue employing the
notations introduced in Section 2.1. Upon establishing a mesh, we adhere to the standard HDG formulation
for second-order elliptic equations as documented in [21, 22, 25, 61] to devise the scheme. Specifically, within
each element K, our objective is to find (ppph, uh) ∈ VVVk

h × Uk
h fulfilling:

(5.5) (ppph, qqqh)K = (uh,∇ · qqqh)K − ⟨ûh, qqqh ·nnn⟩∂K ,

and

(5.6) −(ppph,∇vh)K + ⟨p̂pph ·nnn, v⟩∂K = (f, v)K ,

for every test function pair (qqqh, vh) ∈ VVVk
h × Uk

h . The Dirichlet boundary condition is imposed as [24]:

(5.7) ⟨ûh, µ̂⟩ΓD
= ⟨uD, µ̂⟩ΓD

,

for all µ̂ ∈ Fk
h . Numerical traces of the fluxes in the HDG scheme are typically chosen as [22, 53, 54, 55, 56]:

(5.8) p̂pph ·nnn = ppp ·nnn+ τ(uh − ûh),

where τ is a stabilization function significantly affecting the scheme’s effectiveness and accuracy. Numerous
studies have been dedicated to this selection, for instance, [24, 25, 49] and references therein. It is noted
that choosing τ as a constant on a simplicial mesh ensures optimal convergence order. However, selecting
the stabilization function to be of order O( 1

hK
) results in a loss of one convergence order in both the locally

post-processed approximation to the scalar variable and the approximate to the gradient. Yet, conducting
stability analysis for the constant case presents more challenges from a traditional standpoint. We aim to
focus on this scenario using the newly developed tools above.

Once we have established the local problems, a global problem can be formulated to determine ûh,
considering the behavior of the numerical fluxes as outlined in [61]:

(5.9) ⟨p̂pph ·nnn, µ̂⟩∂T i
h
+ ⟨p̂pph ·nnn, µ̂⟩ΓN

= −⟨µ̂, uN ⟩ΓN

This equation also implements the Neumann boundary.
Merging (5.5)-(5.9) leads to summarizing the HDG formulation as the following task: Finding (ppph, uh, ûh) ∈

VVVk
h × Uk

h ×Fk
h such that:

(5.10a) (ppph, qqqh)Th
= (uh,∇ · qqqh)Th

− ⟨ûh, qqqh ·nnn⟩∂Th

(5.10b) τ ⟨uh − vh, ûh − v̂h⟩∂Th
+ (∇ · ppph, vh)Th

− ⟨ppph ·nnn, v̂h⟩∂Th
= (f, v)Th

+ ⟨uN , v̂h⟩ΓN
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(5.10c) ⟨ûh, v̂h⟩ΓD
= ⟨uD, v̂h⟩ΓD

for all (qqqh, vh, v̂h) ∈ VVVk
h×Uk

h ×Fk
h . For simplicity, τ will be assumed as a fixed positive constant throughout.

In a more general context, τ could be regarded as a function defined over the skeleton with a positive lower
bound. The ensuing analysis would remain applicable to such a scenario. It’s also assumed, without loss of
generality, that the mesh properly decomposes ΓD and ΓN , meaning each can be expressed as a union of
non-disjoint boundary faces. The well-posedness of this scheme has been presented in several studies, such
as [17]. The subsequent energy-type argument is standard and directly follows from the HDG scheme.

Lemma 5.3. The numerical solution (ppph, uh, ûh) ∈ VVVk
h × Uk

h ×Fk
h , solving (5.10), satisfies:

(5.11) ∥ppph∥2LLL2(Ω;Th)
+ τ∥uh − ûh∥2L2(Ω;∂Th)

= (f, uh)Th
+ ⟨uN , ûh⟩ΓN

,

and

(5.12) ∥ûh∥2L2(Ω;ΓD) ≤ ∥uD∥2L2(Ω;ΓD).

Proof. By setting qqqh = ppph, vh = uh, and v̂h = ûh in (5.10a) and (5.10b), equation (5.11) is obtained, whereas
(5.12) follows from the Cauchy-Schwarz inequality by choosing v̂h = ûh in (5.10c). □

It’s important to note that in the HDG scheme, energy estimation is conducted concerning ppph, rather
than ∇huh or ∇LCR

h (¯̂uh). Consequently, the direct application of the analytical techniques we’ve previously
discussed is not feasible without establishing a proper connection between ppph and these elements. Identifying
this relationship will be the primary objective in the following discussions.

5.3. Poincaré and Trace Inequalities for HDG. Building on the previous discussion, our goal here is to
elucidate the relationships between ∥uh∥L2(Ω;Th), ∥ûh∥L2(Ω;∂Th), and ∥ppph∥LLL2(Ω;Th), which are crucial to the
analysis of HDG scheme. We recognize that (5.10a) uniquely defines ppph in terms of (uh, ûh), serving as the
bridge for us to link ∇huh with ppph, and similarly, to connect ∇hLCR

h (¯̂uh) with ppph. These connections will
lay the groundwork for adapting the Poincaré and trace inequalities, previously established for hybridizable
spaces, to the specific context of the HDG scheme.

We initiate our analysis by examining ∇u within each element K, which yields the subsequent result:

Lemma 5.4. Given (uh, ûh) ∈ X k
h , and assuming ppph satisfies (5.10a), then:

(5.13) ∥∇uh∥2L2(Ω;K) ≲ ∥ppph∥2LLL2(Ω;K) +
1

hK
∥u− ûh∥2L2(Ω;∂K).

Proof. Using integration by parts, the equation (5.10a) can be reformulated as:

(ppph, qqqh)K = −(∇uh, qqqh)K + ⟨uh − ûh, qqqh ·nnn⟩∂K .

Referring to the definition of the lifting operator in (5.1), we find an equivalent expression:

(∇uh, qqqh)K = (−ppph + G∂K
h (uh − ûh), qqqh)K .

This holds true for all qqqh ∈ Pk(K). Given that ∇u,ppph,G∂K
h (u − ûh) are all functions in Pk(K), it follows

that:

∇uh = −ppph + G∂K
h (uh − ûh).

Thus, we deduce that:

∥∇uh∥2L2(Ω;K) = ∥ − ppph + G∂K
h (uh − ûh)∥2L2(Ω;K) ≲ ∥ppph∥2L2(Ω;K) + ∥G∂K

h (uh − ûh)∥2L2(Ω;K).

The conclusion is easy to drawn by Lemma 5.1. □

Another estimate derived from (5.10a) is the quantitative relationship between ppph and LCR
h (¯̂uh).

Lemma 5.5. Given (uh, ûh) ∈ X k
h and assuming ppph satisfies (5.10a), then:

(5.14) ∥∇LCR
h (¯̂uh)∥L2(Ω;K) ≤ ∥ppph∥LLL2(Ω;K)

in each element K.
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Proof. Selecting qqqh = ∇LCR
h (¯̂uh) in (5.10a) and noting that LCR

h (¯̂uh) ∈ P1(K) implies ∇LCR
h (¯̂uh) is a

constant vector in K. Hence,
∇ ·
(
∇LCR

h (¯̂uh)
)
= 0.

Consequently, (5.10a) simplifies to:

(ppph,∇LCR
h (¯̂uh))K = −⟨ûh,∇LCR

h (¯̂uh) ·nnn⟩∂K .

Given that ∇LCR
h (¯̂uh) ·nnn is also constant, it follows that:

(ppph,∇LCR
h (¯̂uh))K = −⟨¯̂uh,∇LCR

h (¯̂uh) ·nnn⟩∂K = −⟨LCR
h (¯̂uh),∇LCR

h (¯̂uh) ·nnn⟩∂K = −∥∇LCR
h (¯̂uh)∥2LLL2(Ω;K),

with the final equality due to integration by parts. Applying the Cauchy-Schwarz inequality to the left-hand
side yields the lemma’s statement. □

We immediately obtain the following theorems in terms of ppph which are variants of Theorem 3.6 and
Theorem 4.4. The proof follows directly by incorporating Lemma 5.4 and Lemma 5.5 into these theorems.

Theorem 5.6. Let (uh, ûh) ∈ X k
h , and ppph is obtained solved through (5.10a), then the following Poincaré

inequalities hold:

(5.15) ∥uh∥2L2(Ω;Th)
≲ (1 + (hK)2)∥ppph∥2LLL2(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Ω

LCR
h (¯̂uh) dx

)2

and

(5.16) ∥uh∥2L2(Ω;Th)
≲ (1 + (hK)2)∥ppph∥2LLL2(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Γ

ûh ds

)2

where Γ is combination of boundary faces that has a positive measure, namely, Γ =
⋃N

i=1 ei such that
ei ∈ ∂T b

h and {e1, e2, · · · , eN} are different boundary faces. In addition, the following variant of (5.15)
expressing in term of integral of uh also holds:

(5.17) ∥uh∥2L2(Ω;Th)
≲ (1 + (hK)2)∥ppph∥2LLL2(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Ω

uh dx

)2

Theorem 5.7. Let (uh, ûh) ∈ X k
h , and ppph is obtained solved through (5.10a), then the following trace

inequalities hold:

(5.18) ∥uh∥2L2(Ω;∂T b
h ) ≲ (1 + hK)∥ppph∥2LLL2(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Γ

ûh ds

)2

and

(5.19) ∥ûh∥2L2(Ω;∂T b
h ) ≲ (1 + hK)∥ppph∥2LLL2(Ω;Th)

+ ∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
Γ

ûh ds

)2

,

where Γ is combination of boundary faces that has a positive measure, namely, Γ =
⋃N

i=1 ei such that
ei ∈ ∂T b

h and {e1, e2, · · · , eN} are different boundary faces.

5.4. Stability Analysis. To the end, we address an application of the mathematical tools developed in
this study to examine the stability of the HDG formulation (5.10) for the mixed boundary Poisson equation,
specifically when the stabilization term is chosen to be a constant.

A crucial inquiry we pursue is whether it is possible to obtain an energy estimate for the HDG solution
that does not depend on the mesh size hK , without assuming additional regularity for the solution to the
Poisson equation beyond the minimum requirements for the data f , uD, and uN . Existing research typically
assumes the existence of a solution in a ”strong” sense (with varying interpretations of ”strong”) and employs
a projection-based analysis to verify the numerical solution’s stability [24]. In a previous work [46], we initially
proved the stability of the numerical solution with only minimal regularity, utilizing a translation argument.
In this paper, our objective is to demonstrate the same result using a distinct approach, leveraging the
mathematical instruments we have developed and making it easier to adapt to other type of problems.

More specifically, we seek to determine: for a given mesh Th, can ∥uh∥L2(Ω;Th) and ∥ppph∥LLL2(Ω;Th) be
uniformly bounded by a constant solely dependent on the input data and independent of the mesh size?
This question is affirmatively addressed in the subsequent theorem:
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Theorem 5.8. Let (ppph, uh, ûh) ∈ VVVk
h × Uk

h × Fk
h solve (5.10) with f ∈ L2(Ω), uD ∈ L2(ΓD), uN ∈ L2(ΓN ),

then the following estimate hold:

(5.20) ∥ppph∥2LLL2(Ω;Th)
+ τ∥uh − ûh∥2L2(Ω;∂Th)

+ ∥ûh∥2L2(Ω;ΓD) ≤ C(f, uD, uN )

where the constant C(f, uD, uN ) depends on ∥f∥L2(Ω), ∥uD∥L2(ΓD), ∥uN∥ΓN
and the domain but independent

of the mesh.

Proof. Recall Lemma 5.3, the following identity hold:

(5.21) ∥ppph∥2LLL2(Ω;Th)
+ τ∥uh − ûh∥2L2(Ω;∂Th)

= (f, uh)Th
+ ⟨uN , ûh⟩ΓN

.

We firstly assume that ΓD has a positive measure. In this case, the only thing we need to do is to bound
∥uh∥L2(Ω;Th) and ∥ûh∥L2(Ω;ΓN ) as

|(f, uh)Th
+ ⟨uN , ûh⟩∂Th

| ≤ ∥f∥L2(Ω) ∥uh∥L2(Ω;Th) + ∥uN∥L2(ΓN ) ∥ûh∥L2(Ω;ΓN ).

Choosing Γ in the Poincaré inequality (5.16) and the trace inequality (5.19) both to be ΓD. As(∫
ΓD

ûh ds

)2

≤ |ΓD|
(∫

ΓD

(ûh)
2 ds

)
= |ΓD| ∥ûh∥2L2(Ω;ΓD),

we can rewrite (5.16) and (5.19) as

(5.22)
∥uh∥2L2(Ω;Th)

≲ (1 + h2
K)∥ppph∥2LLL2(Ω;Th)

+ hK∥uh − ûh∥2L2(Ω;∂Th)
+

(∫
ΓD

ûh ds

)2

≲ ∥ppph∥2LLL2(Ω;Th)
+ τ∥uh − ûh∥2L2(Ω;∂Th)

+ ∥ûh∥2L2(Ω;ΓD)

and

(5.23)
∥ûh∥2L2(Ω;∂T b

h ) ≲ (1 + hK)∥ppph∥2LLL2(Ω;Th)
+ ∥uh − ûh∥2L2(Ω;∂T b

h ) +

(∫
Γ

ûh ds

)2

≲ ∥ppph∥2LLL2(Ω;Th)
+ τ∥uh − ûh∥2L2(Ω;∂Th)

+ ∥ûh∥2L2(Ω;ΓD)

Using these estimates, together with (5.21) and (5.10c) with v̂h = ûh, we get

∥ppph∥2LLL2(Ω;Th)
+ τ∥uh − ûh∥2L2(Ω;∂Th)

+ ∥ûh∥2L2(Ω;ΓD)

= (f, uh)Th
+ ⟨uN , ûh⟩ΓN

+ ⟨uD, ûh⟩ΓD

≲
(
∥f∥L2(Ω) + ∥uN∥L2(ΓN ) + ∥uD∥L2(ΓD)

) (
∥ppph∥2LLL2(Ω;Th)

+ τ∥uh − ûh∥2L2(Ω;∂Th)
+ ∥ûh∥2L2(Ω;ΓD)

) 1
2

It gives the desired estimate (5.20).
When |ΓD| = 0, the scenario simplifies to a pure Neumann problem. According to classical elliptic theory,

the solution to a Neumann problem is unique up to a constant [41]. Hence, to ensure uniqueness in the
numerical scheme, one could introduce an additional condition such as:∫

∂Ω

ûh ds = 0 or

∫
Ω

uh dx = 0.

Incorporating this condition into the numerical scheme eliminates the arbitrary constant, thereby securing a
unique solution. The analysis procedure previously discussed remains applicable, as the Poincaré and trace
inequalities would work to derive (5.20). The details are omitted here to avoid redundancy, as it repeats the
earlier process.
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