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We investigate the elastic behavior of two-dimensional crystalline membrane embedded into real
space taking into account the presence an arbitrary number of flexural phonon modes dc (the number
of out-of-plane deformation field components). The bending rigidity exponent η is extracted by
numerical simulation via Fourier Monte Carlo technique of the system behaviour in the universal
regime. This universal quantity governess the correlation function of out-of-plane deformations at
long wavelengths and defines the behaviour of renormalized bending rigidity at small momentum
κ ∼ 1/qη. The resulting numerical estimates of the exponent for various dc are compared with the
numbers obtained from the approximate analytical techniques.

Membranes are two-dimensional (2D) surfaces that,
depending on external conditions, can be found in dif-
ferent states on the phase diagram. The discovery of
graphene [1–3] and other atomically thick materials [4]
led to renewed interest to 2D crystalline membranes and
the emergence of new field of flexible 2D materials [5]. In
the case of crystalline membranes, when analyzing their
behavior, the presence of non-zero resistance to shear
cannot be neglected, which leads to the appearance of ef-
fective long-range interaction between out-of-plane defor-
mations. Such an effective interaction, in fact, mediated
by the coupling between in-plane and out-of-plane (flexu-
ral) deformations, is stiffening the membrane, renormal-
izing the bending rigidity, and allowing the stabilization
of the flat low-temperature phase, within which long-
wave fluctuations define a new class of universality [6].
A 2D crystalline membrane in this low-temperature flat
phase demonstrates peculiar elastic properties dubbed
as anomalous elasticity. These unusual elastic effects
include crumpling transition controlled by temperature
and disorder, power-law scaling of elastic modules with
the system size, and consequently, the nonlinear Hooke’s
law, negative Poisson ratios, negative thermal expansion
coefficient, etc. [6–21]. Currently, there has been sig-
nificant progress in our theoretical understanding of the
anomalous elasticity of crystalline membranes [22–44].
The key property of the low-temperature flat phase

is the power law dependence of the renormalized bend-
ing rigidity characterized by the value of the so-called
bending rigidity exponent, η. The latter determines the
behavior of the correlation function of out-of-plane de-
formations (OPD) at small momenta. Due to symme-
try constraints [10, 12], the remaining exponents can be
related with η using simple scaling relations. For this
reason, the accurate calculation of the magnitude of η
and verification of the consistency of results obtained by
different approaches is an extremely important issue.

Unfortunately, an exact analytical treatment of the
bending rigidity exponent is not possible. For this reason

various approximate analytical methods for its calcula-
tion have been proposed [6–9, 12, 14, 42, 45]. The earliest
perturbative calculations gave a naive result: η = 1 [7].
The recent 4 − ε-expansion analysis gives the following
values of η: 0.8872 [42] and 0.8670 [46], within the three-
and four-loop approximation, respectively. These esti-
mates can be improved by applying various resumma-
tion techniques for asymptotic series. In particular, the
simplest Padé approximation already gives a value of
0.806 [46]. Apart from that, the calculations were also
carried out within the nonperturbative renormalization
group. For example, in Ref. [45], the authors extracted
the following estimate: η = 0.849.
An alternative is the lattice numerical calculations

based on the Monte Carlo method. There are various
techniques [47–50]. One can work in both real and mo-
mentum spaces. The authors believe that one of the most
effective methods is the Fourier Monte Carlo (MC) tech-
nique. This technique is described in Ref. [51]. Its great
advantage is that the acceptance rates during the simu-
lations can be adjusted for each wave vector separately.
This allows one to reduce the impact of critical slowing
down, thereby increasing the accuracy of the final nu-
merical estimates. The authors of this technique have
previously analyzed the critical behavior of membranes
for the single-component case in their work [50] and ex-
tracted the following value: η = 0.795(10). In this paper,
we will use this approach to obtain the results for the
multi-component case. In Table I, we summarize numer-
ical values of η obtained for a single-component flexural
phonon by various approaches.
If we assume further that the out-of-plane deforma-

tion field can be multi-component (arbitrary number of
flexural phonon modes), then the quantity 1/dc can be
used as expansion parameter when constructing a pertur-
bation theory. In particular, the 1/dc-expansion within
first order approximation gives the following series for
the exponent: η = 2/dc + O(1/d2c) [9]. It is clear that
one should not expect any proper numerical estimates for
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TABLE I. Numerical estimates of bending rigidity exponents
η obtained by means of different theoretical approaches and
numerical calculations. In the table the following notations
are used: MC – Monte Carlo simulation; MC IP and MC
OP stand for Monte Carlo simulations with monitoring mean
squared fluctuations of in-plane and out-of-plane phonons, re-
spectively; SCSA – self-consistent screening-approximation;
Sp. cor. – space correlator; NPRG – nonperturbative
renormalization-group approach; Mol. dyn. – molecular dy-
namics; FMC – Monte Carlo simulations in Fourier space; ε
exp.: 3l – three-loop ε expansion calculation; ε exp.: 4l – four-
loop ε expansion calculation; [2/2] Padé – result obtained by
means of resummation of four-loop ε series by means of [2/2]
Padé- approximant.

Method Ref. η Method Ref. η

MC [47] 0.60(10) NPRG [45] 0.849

MC OP [48] 0.72(4) Mol. dyn. [49] 0.85

MC IP [48] 0.750(5) SCSA [14] 0.821

Sp. cor. [52] 0.78(02) ε exp.: 3l [42] 0.8872

Sp. cor. [53] 0.62 ε exp.: 4l [46] 0.8670

FMC [50] 0.795(10) [2/2] Padé [46] 0.806

such a short series when dc ≈ 1. Another widespread cal-
culation technique is self-consistent screening approxima-
tion (SCSA), which instead sums up a certain subset of
perturbation theory diagrams; in pioneering work in this
direction, a value of 0.821 for dc = 1 was extracted [14].
The general formula within this approximation reads as
follows [14]

η =
4

dc +
√
16− 2dc + d2c

. (1)

This non-analytical expression is still approximate, and
the issue of 1/dc-corrections to it is important. Quite
recently, the authors in Ref. [34] managed to extend the
results obtained previously in Ref. [9], by calculating the
next order of perturbation theory. They found the fol-
lowing truncated series:

η =
2

dc
+

73− 68ζ(3)

27

1

d2c
+O

(
1

d3c

)
. (2)

In the case of a one-component field, such an expansion
gives poor estimates that do not in any way compare
with the results of lattice calculations. Paradoxically,
the formally incorrect SCSA gives much closer value of η
that differ by no more than 10 percent from the results
of the MC simulations.

In this Letter we explore the behavior of Green’s func-
tion of out-of-plane deformations at long wavelengths
with respect to a given reference plane governed by the
bending rigidity exponent η. Using the Fourier Monte
Carlo technique, we present the results of a generaliza-
tion of this method to the case when the number of flexu-
ral phonons differs from unity (dc > 1). These estimates
make it possible to check the convergence of the approxi-
mate analytical results that were found previously within

the 1/dc-expansion method, as well as the SCSA approx-
imation itself.
Model. We consider a continuous elastic model of a two-
dimensional crystalline membrane with D6h or D3h point
group embedded in 2 + dc dimensional space. Using
the Monge representation, the out-of-plane deformations
(heights) with respect to a given two-dimensional refer-
ence plane with coordinates x = (x1, x2) can be param-
eterized by the vector function hx, where dc-component
structure of height-function corresponds to the presence
of multiple flexural (out-of-plane) phonon modes. The
main physical meaning is contained in the case dc = 1.
As was said above, by allowing the height function to
be a vector, we test the results of alternative perturba-
tive approaches whose numerical estimates of observables
have to be asymptotically correct in dc → ∞ limit.
Having integrated the in-plane deformations, in the ab-

sence of external stress, the effective energy functional of
this model depending only on out-of-plane deformations
can be written as follows [7, 15, 18, 19]:

Feff[h]=
κ0

2

∫
dx(∆h)2 +

Y0

2

∫
dx

[
P⊥
ijKij

]2
, (3)

where Y0=4µ0(µ0+λ0)/(2µ0+λ0) is the bare magnitude
of the Young modulus of 2D crystal and κ0 is the
bare bending rigidity. Here λ0 and µ0 are the bare
Lamé constants. Also we introduced transverse projec-
tor P⊥

ij = δij − ∂i∂j/∆, and auxiliary quadratic quan-
tity Kij = ∂ih∂jh/2. From a field-theoretical point of
view, we have an action with an unusual quadratic part
that no longer depends on the square, but on the fourth
power of momentum, as well as a nonlocal quartic term
that describes the effective long-range interaction of out-
of-plane deformations induced by their in-plane counter-
parts. This nonlocality makes the MC simulations within
real space rather complicated. To overcome this difficul-
ties, one can rewrite the effective energy functional (or
action) in momentum space. For this purpose, the con-
tinuous Fourier amplitudes of height function hx can be
introduced via the following relation

hx =

∫

Ω

dq

(2π)2
hqe

iqx (4)

where the integration space Ω is restricted by |q| < Λ =
π/a and |q| > 2π/L. The first constraint corresponds to
the condition up to which the continuum model approx-
imation remains valid, or this can be called ultraviolet
cutoff (the length a ≃

√
κ0/Y0 is of the order of the

lattice spacing). In turn, cutting from below can be in-
terpreted as infrared cutoff, where L stands for the size
of the membrane. In terms of Fourier amplitudes the
energy functional can be rewritten now in the following
form:

F̃eff[h] = F̃ (2)
eff [h] + F̃ (4)

eff [h], (5)

where the bending energy is

F̃ (2)
eff [h] =

κ0

2

∫
dp

(2π)2
p4 (hph−p) , (6)
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while the second term corresponds to anharmonic nonlo-
cal part and reads

F̃ (4)
eff [h] =

Y0

8

∫
dk

(2π)2
dk′

(2π)2

∫
dq

(2π)2
[k× q̂]

2
[k′ × q̂]

2

× (hkh−k−q) (hk′h−k′+q) , (7)

here q̂ = q/|q| is normalized momentum vector.
All the necessary information about the elastic proper-

ties of the membrane is contained in the Green’s function,
which is determined by the following relation:

⟨(hk)i(h−k)j⟩ = Ĝij(q) = δijĜ(q). (8)

In the case when there is no shear resistance (liquid mem-
branes), i.e. the shear modulus µ vanishes, and, as a
consequence, the Young’s modulus is also zeroed, the
remaining harmonic part of the action (5) leads to the
following behaviour of Green’s function:

Ĝ0(q) =
T

κ0q4
. (9)

However, such an approximation is absolutely not suit-
able for the case of crystalline membranes, whose elastic
properties are strongly modified the presence of effec-
tive long-range interaction between out-of-plane defor-
mations, which is expressed in the second term of the
action (5). Indeed, without the second term, the flat
phase cannot be stable, which is clearly seen from the
expression for the stretching factor (see Ref. [25] for a
review)

ξ2 = 1− ⟨Kjj⟩ = 1− dc
2

∫
dq

(2π)2
q2Ĝ0(q)

= 1− dcT

4πκ0
ln

L

2a
, (10)

zeroing of which indicates the transition to the crum-
pled phase. Physically, the appearing of long-range in-
teraction can be interpretated as stiffening of the mem-
brane at large scales. From the other hand, following
the renormalization group terminology, the presence of
the second term (7) leads to a renormalization of the
bare bending rigidity κ0 and Young’s modulus, which
become a momentum-dependent [6, 9]: κ ∼ q−η and
Y0 ∼ q2−2η, where η is bending rigidity exponent. This
in turn changes the behavior of the Green’s function,
Ĝ(q) ∼ |q|η−4 and also changes the equation of state
ξ2 − 1 ∼ dcT/κ0η, thus stabilizing the flat phase at low
temperatures. Thus, the numerical value of quantity η is
key in the theory.

Having obtained the basic understanding of the model,
below we present a discrete analogue of the action (5),
which is used in specific calculations, as well as some
technical aspects of the formalism used earlier in [50] for
dc = 1 and generalized in our work.
Technical details. We consider a two-dimensional square
lattice Ω of linear dimension aN × aN with periodic

boundary conditions, where a is lattice constant and N
is integer characterizing the number of lattice periods of
the sample. In order to employ the Fourier transform we
define vector product by its value in the first Brillouin
zone and continue it from there by periodicity. We in-
troduce correspondence between the representations of a
microstate of the system by the set of real field-values
hx and one given by the collection of Fourier amplitudes
h̃q with the same physical dimension(hq = a2h̃q) as the
discretized field hx:

hx =
1

N2

∑

q∈Ω̃q

h̃qe
iqx, h̃q =

∑

x∈Ω

hxe
−iqx. (11)

These asymmetric conventions allow for easy translation
of continuum formulae. For the simulation, the expres-
sion (5) is rewritten in the following discrete dimension-
less form [50, 54]:

F̃eff,d[h̃] =
∑

m̸=0

{
1

2
∆2

s,m

∣∣∣h̃m

∣∣∣
2

+
2π

3

p28
N2

|Sm|2
}
, (12)

with summation over m = {m1,m2}, where
m1,2 = 1, . . . , N , and Laplacian operator defined as:

∆s(m) = 4
[
sin2

(πm1

N

)
+ sin2

(πm2

N

)]2
. (13)

Here and further, we replace all momenta qi = 2πmi/N
by the sin-based functions which is connected with repre-
sentation of derivatives via Fourier transforms of nearest
neighbor finite difference operators (see p. 7 in Ref. [50]).
In the same way, the function Sm is introduced

Sm =
∑

n̸=0

p(n,m)h̃nh̃n+m, (14)

where the summation is performed over n = {n1, n2},
n1,2 = 1, . . . , N , using the auxiliary function p(n,m)

which replaces the square of cross product [k× q̂]
2
and

reads

p(n,m) = (15)

=

[
sin

(
2πn1

N

)
cos

(
2πm2

N

)
−cos

(
2πn2

N

)
sin

(
2πm1

N

)]2

4
[
sin2

(πm1

N

)
+ sin2

(πm2

N

)] .

The quantity p8 contains information about in-
teraction strength measured in dimensionless units.
Such a constant can be roughly estimated as
p8 = a

√
3Y0kBT/16πκ2

0 = aq∗/
√
2, where we in-

troduced a Ginzburg wave vector q∗, which serves as a
boundary point, passing through which a crossover oc-
curs from mean-field behavior (where phonon interaction
can be neglected) to the critical one with a non-zero ex-
ponent η. In particular, for graphene the relevant pa-
rameters are as follows: lattice constant a = 2.46 Å,
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N= 200, dc = 5
N= 220, dc = 5
N= 240, dc = 5
N= 260, dc = 5
N= 280, dc = 5
N= 300, dc = 5
N= 320, dc = 5
N= 340, dc = 5
N= 360, dc = 5

FIG. 1. The log–log plot of inverse Green’s function

Ĝ(2πq/N)−1 for different lattice sizesN = 200, 220, . . . , 360
with dc = 5. The multi-colored data points obtained from
the FMC simulations refer to different lattice sizes N . The
plot shows three analytical functions on a log-log scale: two
of them correspond to the initial distribution of the height
vector h̃ (red and blue dashed lines), and the last one repre-
sents linear fit in the area close to zero (green dashed line),
the slope of which is the calculated η.

Y0 ≃ 22 eV·Å−2 and κ0 ≃ 1.1 eV. For T = 300 K it
gives p8 = 0.41.
Everything starts with an initial distribution for the

height field h̃k, which is chosen in the same way for all
components. Usually the following dependency is taken
as the initial one: hi,k ∼ 1/k2, for i = 1, . . . , dc. After
initialization, the Monte Carlo step is calculated, which
can be divided into two stages: calculating the lattice
energy functional, or rather its change ∆F , and applying
the Metropolis–Hastings (MH) algorithm for the energy
functional under shift. The Fourier Monte Carlo (FMC)
moves correspond to the following change:

h̃q 7→ h̃q + a(q0, dc)zδq,q0 + a(−q0, dc)0z̄δq,−q0
, (16)

where z is a random complex vector, which each ran-
dom component has a bounded modulus, a(q, dc) is a
phase exploration q-dependent step, and the wave vector
q0 ∈ Ω̃ chosen at random. For each specific dc, we choose
a real-valued a(q0, dc) by hands so that acceptance rate
varies between 30 – 60%. Let us provide additional com-
ment here. As the number of components dc increases, in

the case of uniform and dc-independent choice for func-
tion a = a0 the acceptance rate rapidly drops to zero,
which is a manifestation of the phenomenon of critical
slowing down. It is easy to understand when looking at
the individual acceptance rates for moves of type (16)
for different wave vectors q0. One can see that this be-
havior is a result of the fact that with a uniform choice
of the shift, the acceptance coefficients for “small” q0-
vectors are close to 100%, whereas for large momenta,
which however make up the vast majority of q-vectors,
they can fall well below 30%. For this reason, it is nec-
essary to choose different values of a(q, dc) for different
q0, which, however, does not violate the detailed bal-
ance, which in turn frees the FMC algorithm from critical
slowing down [50]. Despite this, the calculation of MC
steps itself becomes more difficult as the number of com-
ponents of the height vector increases, which, combined
with a decrease in the numerical value of the critical ex-
ponent as dc grows, leads to an increase in the relative
error of calculating η.

Thus, having completed the MC step (16), we de-
termine the magnitude of the energy change and com-
pare −∆F with the logarithm of a uniformly distributed
random number R ∈ [0, 1]. If the condition of the
Metropolis-Hastings algorithm works for the resulting
change (−∆F > lnR), then the energy functional
changes to a new one, and the configuration of the height

1 3 5 7 9
dc

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η

ε3l
ε4l

7 9

0.20

0.25

0.30

FO
SO
SCSA

FMC

FIG. 2. Dependencies of η on the number of components
of the height vector obtained within the first-order (FO) in
1/dc (blue dashed line), and within the second-order (SO)
in 1/dc (2) (red dashed line), by self-consistent screening ap-
proximation (SCSA) (1) (yellow solid line), by three-loop ε
expansion (ε3l) (purple dash-dotted line), by four-loop ε ex-
pansion (ε4l) (green dash-dotted line) and by means of FMC
approach with applied errors (gray vertical lines at points
corresponding to odd natural values dc = 1, 3, 5, 7, 9, linearly
connected by a dotted line).



5

TABLE II. The results of FMC simulations for η for differ-
ent number of components dc. Let us add values of η for
dc =5, 7, 9 computed via first-order within 1/dc (FO), second-
order within 1/dc (SO), self-consistent screening approxima-
tions (SCSA), three-loop ε expansion (ε3l) and four-loop ε
expansion (ε4l). ”TW” stands for ”this work”.

Ref. dc = 5 dc = 7 dc = 9

η TW 0.370(29) 0.287(42) 0.208(55)

ηFO [9] 0.4 0.286 0.222

ηSO [34] 0.387 0.279 0.218

ηSCSA [14] 0.379 0.283 0.224

ηε3l [42] 0.560 0.448 0.358

ηε4l [46] 0.456 0.318 0.214

field h̃q0
shifts by a(q0, dc)z, and h̃−q0

is shifted by
a(−q0, dc)z.
After thermalization and performing a certain number

of Monte Carlo steps, we find the average value for the
Green’s function for each component of the height vector:

Gi(q) = ⟨|hi,q|2⟩MC ∼ 1

q4−ηi
, (17)

where each i maps the component (i = 1, 2, . . . , dc).
Putting points from all ln (1/Gi(q)) on same figure,
we should fit the data by the following expression
c+ (4− η) ln (q).

Numerical experiments were carried out for different
lattice sizes N = 200, 220, . . ., 360 and for different num-
ber of components dc = 1, 3, 5, 7, 9. For completeness,
we present the behavior of the Green’s function on a dou-
ble logarithmic scale in the Fig. 1. For convenience, we
plot a linear fit, on the basis of which the values of the
critical exponent η are extracted.
Results and discussion. Our main result for η is shown
in the form of a trend in the Fig. 2, and through the
numbers presented in a separate Table II. In this figure,
for comparison, we depict the results of the 1/dc expan-
sion in both the first and second orders of perturbation
theory (2); in addition, the trends obtained based on the
SCSA formula (1) and ε expansions within three- and
four-loop approximations are plotted. First of all, Fig. 2
shows quite an important feature – all the methods be-
gin to converge to each other as dc increases, at least up
to the observed value dc = 9 (although for three loops
in ε this is not so obvious). Moreover, one can see that
SCSA and 1/dc within both orders begin to fully coincide
in the vicinity of dc = 7, but for dc = 9 they begin to
diverge slightly and, as a result, SCSA turns out to be
higher than first-order and second-order approximations
in 1/dc. As for the ε expansion, its convergence is not so
fast, but also noticeable. On the other hand, for small
values of dc (dc ≲ 3), we can conclude that only formally
incorrect SCSA technique and ε expansion (in both or-
ders) pass the strength test, relying on our numerical

calculation, within which for small dc we can guarantee
a small error. It would be interesting to see whether the
critical exponent will continue to pursuit closer to SCSA
or whether there will be a turning point when the result
begins to press closer to the first- and second-order trends
in 1/dc. However, this check is beyond current technical
capabilities, since it will require very high accuracy of
calculations during very long simulations.

Conclusion. In our study we successfully determine the
bending rigidity exponent η for two-dimensional crys-
talline membranes embedded in a real space, considering
various numbers of flexural phonon modes. The numer-
ical simulations conducted through Fourier Monte Carlo
technique reveal the universal behavior of the system,
offering insights into the correlation function of out-of-
plane deformations and the renormalized bending rigid-
ity at small momentum scales. By comparing the numeri-
cal estimates with approximate analytical techniques, the
Letter provides a comprehensive understanding of the
elastic behavior of such membranes, shedding light on
their physical properties in different scenarios. Based on
the results, it can be seen that the 1/dc-expansion begins
to work well somewhere around dc = 5. Surprisingly, the
SCSA result (1), which has no formal analytical justifi-
cation except the limit dc → ∞, gives very reasonable
estimate for numerical value of η for dc ⩽ 5.

As a further development of this work we will apply our
simulations to the model with a random curvature [15,
18, 19] in order to detect the finite T transition between
clean flat phase and rippled flat phase predicted in Ref.
[35] within 1/dc expansion and in Ref. [55] by means of
two-loop ε expansion for 4− ε dimensional membrane.

Other direction in which numerical methods used in
our work can be applied is numerical calculation of the
differential and absolute Poisson’s ratios. Although, their
values are predicted by means of perturbation theory at
dc ≫ 1 [32, 34], their dependence on dc at small dc is not
known.

Finally, our numerical scheme could be generalized to
the case of a crystalline membrane with orthorhombic
crystal symmetry. It would be possible to verify the pre-
diction of Ref. [43] that in this case of reduced symmetry
the renormalization of the bending rigidity tensor is still
controlled by the exponent η.

Acknowledgement. We are grateful to David Saykin for
the hints relative to Monte Carlo calculations in the one-
component case. We acknowledge the computing time
provided to us at computer facilities at Landau Insti-
tute. The work of I.S.B. was funded in part by Rus-
sian Ministry of Science and Higher Education (project
FFWR-2024-0015) as well as by Basic research program
of HSE. The work of A.K. is supported by the Ministry of
Science and Higher Education of the Russian Federation
(Goszadaniye, project No. FSMG-2023-0011).



6

∗ danil.ivanov@metalab.ifmo.ru
† andrewkudlis@gmail.com
‡ burmi@itp.ac.ru

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.
Firsov, Science 306, 666 (2004).

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and
A. A. Firsov, Nature 438, 197 (2005).

[3] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature
438, 201 (2005).

[4] K. S. Novoselov and A. H. C. Neto, Phys. Scr. T146,
014006 (2012).

[5] P. Avouris, T. F. Heinz, and T. Low, eds., 2D materi-
als: Properties and devices (Cambridge University Press,
2017).

[6] J. A. Aronovitz and T. C. Lubensky, Phys. Rev. Lett.
60, 2634 (1988).

[7] D. Nelson and L. Peliti, Journal de Physique 48,
1085–1092 (1987).

[8] M. Paczuski, M. Kardar, and D. R. Nelson, Phys. Rev.
Lett. 60, 2638 (1988).

[9] F. David and E. Guitter, Europhysics Letters 5, 709
(1988).

[10] J. Aronovitz, L. Golubovic, and T. C. Lubensky, J. Phys.
(Paris) 50, 609 (1989).

[11] E. Guitter, F. David, S. Leibler, and L. Peliti, Phys. Rev.
Lett. 61, 2949 (1988).

[12] E. Guitter, F. David, S. Leibler, and L. Peliti, J. Phys.
(Paris) 50, 1787 (1989).

[13] J. Toner, Phys. Rev. Lett. 62, 905 (1989).
[14] P. Le Doussal and L. Radzihovsky, Phys. Rev. Lett. 69,

1209 (1992).
[15] D. C. Morse, T. C. Lubensky, and G. S. Grest, Phys.

Rev. A 45, R2151 (1992).
[16] D. R. Nelson and L. Radzihovsky, Europhysics Letters

(EPL) 16, 79 (1991).
[17] L. Radzihovsky and D. R. Nelson, Phys. Rev. A 44, 3525

(1991).
[18] D. C. Morse and T. C. Lubensky, Phys. Rev. A 46, 1751

(1992).
[19] D. Bensimon, D. Mukamel, and L. Peliti, Europhysics

Letters (EPL) 18, 269–274 (1992).
[20] L. Radzihovsky and J. Toner, Phys. Rev. Lett. 75, 4752

(1995).
[21] L. Radzihovsky and J. Toner, Phys. Rev. E 57, 1832

(1998).
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