
Towards Sustainable SecureML: Quantifying Carbon
Footprint of Adversarial Machine Learning

Syed Mhamudul Hasan1,2, Abdur R. Shahid1,2, Ahmed Imteaj1
1School of Computing, Southern Illinois University, Carbondale, IL, USA

2Secure and Trustworthy Intelligent Systems (SHIELD) Lab
syedmhamudul.hasan@siu.edu, shahid@cs.siu.edu, imteaj@cs.siu.edu

Abstract—The widespread adoption of machine learning (ML)
across various industries has raised sustainability concerns due
to its substantial energy usage and carbon emissions. This issue
becomes more pressing in adversarial ML, which focuses on
enhancing model security against different network-based attacks.
Implementing defenses in ML systems often necessitates additional
computational resources and network security measures, exacer-
bating their environmental impacts. In this paper, we pioneer
the first investigation into adversarial ML’s carbon footprint,
providing empirical evidence connecting greater model robustness
to higher emissions. Addressing the critical need to quantify
this trade-off, we introduce the Robustness Carbon Trade-off
Index (RCTI). This novel metric, inspired by economic elasticity
principles, captures the sensitivity of carbon emissions to changes
in adversarial robustness. We demonstrate the RCTI through
an experiment involving evasion attacks, analyzing the interplay
between robustness against attacks, performance, and carbon
emissions.

Index Terms—Adversarial Machine Learning, Carbon Emis-
sion, Sustainability, Artificial Intelligence (AI)

I. INTRODUCTION

In recent years, the rapid evolution of ML has ex-
panded beyond the tech industry, affecting diverse sectors and
heralding a new era of AI-driven innovation. However, the
widespread adoption of ML raises environmental concerns due
to their significant energy consumption and associated carbon
emissions[1], [2]. For instance, training a single advanced
language model can emit carbon equivalent to 125 round-trip
flights between New York and Beijing[1]. The Information
and Communication Technology (ICT) industry, integral to
AI, is projected to account for 14% of global emissions[3],
emphasizing the urgent need to address ML’s environmental
impact.

This research gap is particularly evident in adversarial ML
— a domain at the intersection of ML and cybersecurity.
Adversarial ML investigates the vulnerabilities of ML systems,
crafts attack techniques for exploitation by malicious entities
through trusted and untrusted networks, and develops defenses
to enhance system resilience. Studies reveal how attackers can
manipulate vulnerabilities in various ML phases, launching
attacks to degrade model performance or inducing erroneous
inferences, as illustrated in figure 1. An attacker might utilize
the network to execute different vulnerable or, sometimes,
robust systems with zero-day vulnerabilities. As most systems
need networks to communicate with each other, there might be
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Fig. 1. Sustainable SecureML: (Adversarial ML landscape) (a) An ML model
lifecycle when dealing with data sources hosted on untrusted networks, (b) a
classification of the adversarial attacks related to the ML lifecycle phases,
(c) various defense mechanisms to defend against adversarial attacks, (d)
an illustration of the attacks and their defenses, demonstrating the dynamic
interplay of attack and defense tactics in untrusted network settings (figure
credit: ART Toolbox[4]), and (e) the scope of our work: the intersection of
ML, cybersecurity, and environmental sustainability.

some data alteration when data is transmitted, especially in the
data collection phase. Moreover, in the data collection phase,
the data can be collected from some adversarial source where
the attacker intentionally sends some fake or crafted data to the
training of the ML model.

To counter these attacks, several mechanisms have been
explored to enhance the security of the ML systems, which
often involve ML models designed to discern benign from
malignant inputs. Consequently, the implementation of addi-
tional security-related computations throughout the lifecycle
of adversarial ML leads to more carbon emissions. Given
the direct correlation between computation and emissions,
adversaries might intentionally craft attacks to escalate compu-
tational demands, further exacerbating carbon emissions. This
situation underscores the urgent need to integrate environmental
considerations into the development of secure ML systems,
a responsibility that falls on researchers, practitioners, and
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policymakers alike.
Our Contributions: This paper is the first to investigate

the carbon footprint of adversarial ML systems, exploring the
relationship between model robustness, environmental impact,
and adversarial attacks. Central to our study is the corre-
lation between adversarial robustness and carbon emissions,
providing insights into the environmental cost of achieving a
robust ML model. We use the concept of point elasticity from
economics, which examines how a specific price change affects
demand [5]. Our contributions are as follows:

• We pioneer the first work to study the carbon footprint
of adversarial ML systems. Our study provides empirical
evidence of a direct relationship between the robustness
of an adversarial ML model and its associated carbon
emissions, illustrating a crucial environmental dimension
in secure and robust ML system design.

• We propose the Robustness-Carbon Trade-off Index
(RCTI), an innovative metric inspired by the well-
established economic principle of point elasticity. By
using a customized index, the RCTI effectively measures
the relationship between a model’s carbon footprint and
its ability to withstand attacks from other models by
suggesting the optimal improvement of resilience based
on specific needs and ML model resilience.

II. RELATED WORK

A. Sustainable and Green ML

Machine Learning (ML) models are highly sensitive to
computational demands in terms of resources like CPUs, GPUs,
and RAM, leading to increased carbon emissions. This en-
vironmental concern extends across various ML paradigms.
For instance, LLMs require substantial computational power
for training and testing, contributing to high carbon emissions
[1][6]. Generative AI, which expands on LLM capabilities to
create diverse contents, further intensifies this computational
demand and associated carbon footprint [7]. In response, the
concepts of sustainable AI and green AI have emerged to make
AI computations more environmentally friendly by minimizing
computational demands. This approach becomes especially
pertinent as data centers significantly contribute to carbon
emissions in the need for sustainable AI hardware and energy-
efficient ML models [8]. Green AI, focusing on reduced com-
putational costs, further contributes to sustainability, mitigating
the environmental impact of ML training and testing [9].

However, quantifying the carbon footprint of ML systems
is an ongoing challenge. Recent research efforts have aimed
to assess ML systems’ carbon emissions, considering factors
like computational resources, data center efficiency, energy
sources, model complexity, and operational efficiency [2], [10],
[11], [12], [13]. A sustainable approach to ML, therefore,
involves balancing robust model performance with minimal
environmental impact.

B. Adversarial Attack on ML

Adversarial attacks in machine learning can be categorized
based on their operational phases (figure 1). Adversaries uti-
lize various sophisticated techniques to execute these attacks,
including data poisoning [14], gradient-based attacks [15], and
especially evasion attacks [16]. To counter these attacks, several
mechanisms have been explored, including differential privacy
[17], federated learning [18], cryptographic techniques [19] and
adversarial training [20].

Evasion attacks, the center of our experiment in this paper,
are especially concerning in applications where security and
reliability are paramount. Two notable methods of evasion
attacks are the Fast Gradient Sign Method (FGSM) and the
Projected Gradient Descent (PGD). FGSM works by exploiting
the gradients of the loss function with respect to the input data.
It perturbs the input data in the direction of these gradients,
resulting in notable changes in the model’s output. FGSM’s
simplicity and speed make it a popular choice for demonstrating
the vulnerability of neural networks to adversarial attacks.
On the other hand, PGD is considered a more powerful and
iterative version of FGSM. It involves applying multiple small
gradient updates and projecting these updates back into the
allowable input space, if necessary. Adversarial training [21]
is one key method for countering evasion attacks in ML.
This approach involves intentionally generating adversarial
examples and including them in the training set. By doing so,
the model learns to recognize and correctly classify not only
the regular input data but also these adversarially perturbed
inputs.

As far as our research indicates, there is no prior work
that dealt with the carbon emissions of adversarial ML. This
study represents the first attempt to assess the environmental
implications of the robustness of an adversarial ML model.

III. METHODOLOGY: MEASURING ROBUSTNESS- CARBON
TRADE-OFF INDEX OF ADVERSARIAL ML

A. Design Goal

Our objective is to develop a universal and dynamically
adaptable metric for adversarial ML models, emphasizing eco-
friendliness and versatility across various ML techniques. The
key design goals of this metric are:

• Robustness Adjustable Adversarial ML Metric: This
metric is adjustable to the different ML systems, allow-
ing tuning the balance between robustness in adversarial
models and their carbon footprint. This feature enables
quantification based on the different attack parameters
and environmental factors, in our case, carbon emissions,
ensuring a customized approach to sustainability in ML.

• Adaptable Framework Across ML Techniques: This
framework offers an adaptable applicability to a wide
spectrum of ML settings and techniques used in adver-
sarial model training, such as Transfer Learning, Rein-
forcement Learning, Federated Learning, and Generative



AI, facilitating the quantification and fulfillment of sus-
tainability objectives.

B. An Economic Approach to Quantify The Robustness and
Carbon Emission Trade-Off

The concept of measuring carbon emissions in adversarial
machine learning (ML) presented in this paper is consistent
with existing methods used for quantifying the environmental
impact of ML models. We define a model’s carbon emissions
as a function of the system’s overall energy consumption and
carbon intensity, as outlined in prior research [1], [22], [23].
Let C be the carbon intensity of the electricity consumed for
computation, expressed in grams of CO2 per kilowatt-hour
(g/kWh), and E be the energy consumed by the computational
infrastructure to train and test a model, expressed in kilowatt-
hours (kWh). Then, the total carbon emissions (C) can be
expressed in grams of CO2:

C = C × E grams

Moving forward, we explore the link between adversarial
robustness and carbon footprint in adversarial ML models,
which are designed to counter specific attacks with a attack
parameter ϵ, reflecting the balance between the model’s re-
silience to attacks and its functional utility. Adversarial ML
aims to optimize both model performance and robustness, a
goal that introduces a complex trade-off. Operational factors in
this optimization may inadvertently increase carbon emissions,
thereby having an environmental impact.

A baseline model is defined as performing ML tasks without
any adversarial training. Figure 2 shows our baseline model
architecture, where we use a convolutional neural network
(CNN) to classify the MNIST dataset. Assuming the adversarial
model exhibits particular performance metrics with respect to
attack parameter ϵ, we can define some important properties
for model M:

• Pi(ϵi) : Performance of the model at arbitrary ϵi
• Ci(Mi): Carbon emission of the model Mi

• Ri(ϵi): Robustness, given the attack parameter ϵi
Considering a baseline model, Mbase, achieving a cer-

tain performance level, Pbase, under baseline carbon emis-
sion, Cbase. Due to the vulnerability of adversarial perturba-
tions—either introduced during training (poisoning) or testing
(evasion) phases—this performance of the model Mi can
drastically diminish to Pi(ϵi), with a corresponding carbon
emission of Ci(Mi). Our aim is to engineer an adversarial
model Mi that not only enhances resilience against such
attacks but also reduces environmental carbon footprints.

We quantify the robustness of Mi with a certain attack pa-
rameter ϵi as a relative improvement or degradation compared
to the baseline performance as:

∆Ri(ϵi) =
Pi(ϵi)− Pbase

Pbase
(1)

Where a positive ∆Ri(ϵi) means model Mi outperforms
the baseline, while ∆Ri(ϵi) = 0 indicates equivalent perfor-
mance, and a negative value suggests model Mi underperforms
compared to the baseline.

TABLE I
ELASTICITY OF ROBUSTNESS CORRESPONDING TO RCTI OF AN

ADVERSARIAL MODEL

Elasticity
of Robustness

RCTI Explanation

Eco-Critical very
high or
∞

Even a minimal improvement in ro-
bustness causes a massive increase in
carbon emissions.

Eco-Costly > 1 For a given change in robustness, there
is a large change in carbon emissions.

Eco-Neutral = 1 The trade-off between robustness and
carbon emissions is balanced.

Eco-Efficient < 1 Robustness can be improved with a
minimal increase in carbon emissions.

Eco-Ideal = 0 Robustness can be improved without
any increase in carbon emissions!

Similarly, we can define the relative change in the carbon
emission of Mi compared to the baseline Cbase as follows:

∆Ci(Mi) =
Ci(Mi)− Cbase

Cbase
(2)

Where, a positive ∆Ci(Mi) denotes a carbon emission level
that exceeds the baseline. Conversely, a negative ∆Ci(Mi)
indicates that emissions are lower than the baseline. When
∆Ci(Mi) is zero, it signifies that the emissions are on par
with the baseline.

Algorithm 1: Process of Measuring RCTI
Data: Architectures for baseline model and n adversarial

robust models, attack parameter {ϵ1, . . . ϵn}
Result: List of adversarial robust models with robustness,

and carbon emissions, and RCTI values
1 M← ∅: Initialize list for model data
2 (Mbase, Pbase, Cbase)← Train baseline model, measure its

performance (e.g., accuracy), and calculate baseline carbon
emissions

3 for i ∈ 1 . . . n do
4 (Mi, Pi(ϵi), Ci(Mi)← Train the adversarial robust i-the

model with ϵi, and measure its performance and
emissions

5 ∆Ri(ϵi)← Pi(ϵi)−Pbase
Pbase

: Calculate robustness
6 ∆Ci(Mi)← Ci(Mi)−Cbase

Cbase
: Measure the relative carbon

emissions
7 RCTIi(Mi, ϵi)←

∣∣∣∆Ci(Mi)
∆Ri(ϵi)

∣∣∣: Calculate
Robustness-Carbon Trade-Off Index

8 M←M∪ (Mi, RTCIi(Mi, ϵi),∆Ri(ϵi),∆Ci(Mi))
9 end

10 Return M

By utilizing these two metrics for robustness and relative
carbon emissions of an adversarial model, we quantify the re-
lationship between adversarial robustness and carbon footprint



to interpret how increasing robustness affects carbon emis-
sions. To encapsulate this relationship, we employ a concept
analogous to point elasticity—a method extensively utilized
in economics to evaluate how the quantity demanded of a
commodity responds to a price change at a particular point
on its demand curve [5]. By adapting this approach to our
context, we introduce the Robustness-Carbon Trade-off Index
(RCTI). This index is a novel metric that quantifies the trade-
off between enhancing a model’s robustness and its resultant
carbon emissions. For an adversarial model Mi, the RCTI is
defined as the ratio of the relative change in carbon emissions to
the change in model robustness. Formally, it can be expressed
as follows:

RCTIi(Mi, ϵi) =

∣∣∣∣∆Ci(Mi)

∆Ri(ϵi)

∣∣∣∣ (3)

This ratio effectively captures the sensitivity of carbon emis-
sions to alterations in model robustness. This concept of RCTI
of an adversarial robust ML model M and attack parameter
ϵ mirrors economic elasticity robustness elasticity relative to
carbon emissions, as outlined in table I.

We define five main categories of robustness: Eco-Critical,
Eco-Costly, Eco-Neutral, Eco-Efficient, and Eco-Ideal, based
on how each unit of change in RCTI value impacts men-
tioned in Table I. While Eco-Ideal robustness is indeed the
most desirable yet often impractical, practically, an approach
would aim to find a model with eco-efficient robustness in
which robustness can be improved with a minimal increase
in carbon emissions. The Algorithm 1 shows the process of
selecting the most effective model that balances robustness with
environmental sustainability and calculates robustness, carbon
emissions, and RCTI for various adversarial models.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Setup

Fig. 2. MNIST baseline and adversarial
classifier model architecture

1) Environment and
Dataset: In our experiment,
we utilize Codecarbon, a
Python library for quantifying
carbon emissions based on
metrics like CPU, RAM, GPU
usage, carbon emissions, etc.
[22], and the Adversarial
Robustness Toolbox (ART),
a widely-used Python
framework for adversarial
ML model implementation
[4]. We conducted the experiment on an Intel (R) Xeon (R)
CPU at 2.20 GHz, 12.67834 GB of RAM, Google Colab’s
Linux 5.15.120, and no GPU, which is located in South
Carolina, USA. To demonstrate our hypothesis on carbon
emissions, we selected adversarial training with MNIST
dataset.

TABLE II
STATISTICS ON THE HARDWARE AND SOFTWARE ASPECTS OF BASELINE

AND ADVERSARIAL ROBUST MODELS UNDER EVASION ATTACKS

Attacks Model ϵ CPU
energy

Ram
energy

Total
energy

Accuracy
(%)

Duration Emission

Fa
st

G
ra

di
en

t
(F

G
)

B
as

el
in

e

0 0.000032 3.65E-06 3.63E-05 98.42 2.773725 3.74E-06
0.1 0.000302 3.38E-05 3.36E-04 83.70 25.59460 9.59E-05
0.2 0.000495 5.54E-05 5.51E-04 30.31 41.97932 0.000157
0.3 0.000688 7.69E-05 7.65E-04 3.51 58.32820 0.000218
0.4 0.000885 9.90E-05 9.84E-04 0.46 75.03156 0.000281
0.5 0.001082 0.000121 0.001203 0.31 91.71211 0.000343

R
ob

us
t

0 2.76E-05 3.08E-06 3.08E-06 97.36 2.340474 8.75E-06
0.1 0.000433 4.84E-05 4.84E-05 95.06 36.66551 0.000137
0.2 0.000700 7.83E-05 7.83E-05 91.74 59.35047 0.000222
0.3 0.000994 0.000111 0.000111 86.88 84.23761 0.000316
0.4 0.001304 0.000146 0.000146 40.16 110.4968 0.000414
0.5 0.001572 0.000176 0.000176 13.83 133.1732 0.000499
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0 0.000108 1.20E-05 1.20E-04 97.88 2.773725 3.42E-05
0.1 0.000394 4.41E-05 4.38E-04 78.00 33.42132 0.000125
0.2 0.000594 6.64E-05 6.60E-04 7.00 50.33107 0.000188
0.3 0.000817 9.13E-05 0.000908 1.00 69.24905 0.000259
0.4 0.001032 0.000115 0.001148 0 87.48648 0.000328
0.5 0.001256 0.000140 0.001397 0 106.4692 0.000399

R
ob

us
t

0 2.76E-05 3.08E-06 3.08E-06 97.36 2.340474 8.75E-06
0.1 0.000444 4.96E-05 0.000493 98.00 37.61262 0.000141
0.2 0.000763 8.53E-05 0.000848 92.00 64.67232 0.000242
0.3 0.001061 0.000119 0.00118 87.00 89.92401 0.000337
0.4 0.001377 0.000154 0.001531 2.00 116.6996 0.000437
0.5 0.001699 0.000190 0.001889 0 143.9541 0.000539

Energy = kWh, Duration = Second, Emission = gCO2/kWh
⋆The cell color intensity visually approximately reflects the values.

2) Baseline and Adversarial Model Training: Figure 2 illus-
trates the architecture of the baseline and adversarial models.
Initially, we we train a model without any adversarial input to
establish the baseline. Subsequently, we train adversarial robust
models with a varying proportion of adversarial samples. These
models are different from the baseline model as they employ
optimized loss functions designed for quicker convergence to
local minima. We implement evasion attacks using the Fast
Gradient (FG) and Projected Gradient Descent (PGD) methods,
which we described in detail in the related work. In the ART
implementation of FG and PGD, the hyperparameter ϵ is used
to control the perturbation of the adversarial sample generation
to train an adversarial robust model as well as the attack. In
other words, the higher the value of ϵ, the stronger the attack.
We consider the ϵ range of one percent (0.01) to fifty percent
(0.50) to generate different perturbations. A tracker is used to
track the emissions from the various stages (ϵ) of these two
methods. The source code for training the baseline and robust
models, including their architectures, as well as for conducting
evasion attacks and adversarial training, is available on GitHub
[24].

B. Analysis of Energy, Accuracy, Time Consumption, and Emis-
sions Under Attacks

We provide a thorough analysis of the performance of the
different machine learning models under adversarial attack
scenarios in terms of energy consumption, accuracy, duration,
and emissions.

1) Energy consumption: In both attack scenarios, the ad-
versarial robust models consume more energy compared to
the baseline models, which is expected as robust models often



TABLE III
ROBUSTNESS AND CARBON EMISSIONS TRADE-OFF

Attacks ϵ ∆R(ϵ) ∆C(M) RCTI(M, ϵ) Elasticity
of Robustness

FG

0 -0.01077 -1.59E-01 14.73085 Eco-Costly
0.1 0.13570 4.29E-01 3.15769 Eco-Costly
0.2 2.02672 0.41401 0.20427 Eco-Efficient
0.3 23.7521 0.44954 0.01892 Eco-Efficient
0.4 86.3043 0.473309 0.005484 Eco-Efficient
0.5 43.6129 0.454810 0.010428 Eco-Efficient

PG
D

0 -0.01077 -1.59E-01 14.73085 Eco-Costly
0.1 0.25641 0.128 0.49921 Eco-Efficient
0.2 12.14285 0.28723 0.02365 Eco-Efficient
0.3 86 0.301158 0.00350 Eco-Efficient
0.4 ∞ 0.00043 ∞ Eco-Critical
0.5 ∞ 0.00053 ∞ Eco-Critical

require more computational resources to resist attacks. For both
robustly trained models, the energy increases approximately ten
times with the increase of ϵ. The more we add the perturbation,
the more energy is needed to train the model, thus increasing
the training energy requirement, as shown in the table II.

2) Accuracy: With the increase in the ϵ, the accuracy of
the baseline model seems to be decreasing drastically. It holds
true for robust models as well, but they are less susceptible
to accuracy droppage than baseline models to a certain extent.
On the table II, the accuracy of the robust classifier of PGD at
ϵ = 0.5 is zero. It is justifiable because when the perturbation
of data is equal to or greater than the original sample, the
ML model cannot function properly. That signifies a boundary
in adversarial training. Focusing on the accuracy metrics, we
note different impacts across different attack types. For the
FG, the robust model maintains higher accuracy compared to
the baseline as the attack strength increases. Similarly, in FG,
the robust model has an accuracy of 95.06% at ϵ = 0.1.
Furthermore, the baseline model at ϵ = 0 maintains a high
accuracy of 98.42%, which drops significantly as the attack
strength increases. The robust model starts with a lower ac-
curacy of 97.36% at ϵ = 0 but maintains higher accuracy as
the attack strength increases compared to the baseline. In both
scenarios, similar behavior with an increasing level of attack
parameter, ϵ, correlates with increased carbon emissions from
the models. This underscores a fundamental trade-off between
model robustness and operational efficiency, requiring a more
detailed exploration, which we presented in the subsequent
analysis.

3) Time Consumption: When considering the computational
efficiency aspect of model performance, adversarial attacks
introduce a significant computational burden. For both baseline
and robust models, the duration drastically increases with the
presence of adversarial samples in the dataset. For instance, in
the case of the baseline model, for ϵ = 0.1, the computation
time was 25.59460 seconds compared to its value of 2.773725
seconds for ϵ = 0 (without any adversarial samples in the
dataset). A similar trend is observed for the robust models.
This is concerning, as adversaries might take advantage of this
vulnerability to dismantle time-critical ML systems.
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Fig. 3. Robustness of adversarial models under ϵ-based different evasion
attacks with (left) Fast Gradient (FG) and (right) Projected Gradient Descent
(PGD). For PGD, ∆R(ϵ) was set to 0 in case of ϵ = 0.4 and 0.5 for
visualization purpose. Their original values were ∞ as shown in table III
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Fig. 4. Carbon emission (∆C) under ϵ-based different evasion attacks with
(left) Fast Gradient (FG) and (right) Projected Gradient Descent (PGD)

4) Emission: The total emissions, with the increase of ϵ in
adversarial training, are also increasing, which is evident in
the table II. As it takes more computation with the increase in
the perturbation parameter, we propose a correlation between
robustness and emission in the adversarial machine learning
domain and provide a holistic analysis of the RCTI metric in
the subsequent section.

C. Analysis of Robustness and Carbon Emission Trade-Off
(RCTI) Under Attacks

Using the values extracted for both baseline and adver-
sarial robust models, we next analyze the trade-off between
robustness and adversarial attacks and the associated carbon
emissions in table III, and figures 3, 4, and 5. The initial insight
from these results is that for both kinds of attacks, an increase
in the perturbation ϵ correlates with heightened robustness
∆R(ϵ), indicating the enhanced resilience of adversarial robust
models over their baseline counterparts under evasion attacks.
However, after some improvement, the robustness starts to
decrease (figure 3). Specifically, in the case of a PGD attack,
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Fig. 5. RCTI (Robustness-Carbon Trade-off Index) of (left) Fast Gradient (FG)
and (right) Projected Gradient Descent (PGD) under different ϵ. For PGD,
RCTI was set to 0 in case of ϵ = 0.4 and 0.5 for visualization purpose.
Their original values were ∞ as shown in table III.



the robustness becomes ∞ when ϵ is 0.4 or above, coinciding
with the point where the accuracy of an adversarial model
regresses to zero. This is a foreseeable outcome, as with so
much noisy data, a model naturally finds it increasingly difficult
to generalize over the data, adversely impacting accuracy.

We observe a similar trend in the relative change in carbon
emissions ∆C(M), as it typically rises with increasing ϵ. This
trend corroborates the patterns observed in table II. Notably,
the negative ∆C(M) values at ϵ of 0 suggest that, initially,
robust models are more carbon-efficient than baseline models
when assessed on the original test data.

Does this mean stronger robustness comes at a higher cost
of higher carbon emissions? To answer this, let us take a
look at the RCTI values. Positively, the RCTI value actually
decreases with ϵ, with lower values generally being better as
they suggest a more favorable robustness-to-emission ratio.
Using the elasticity of robustness metric, we can classify these
different models based on whether they are eco-friendly or not.
As shown in table III, the elasticity of robustness shifts from
eco-costly at ϵ = 0 to eco-efficient as ϵ increases, reflecting a
better environmental impact with increasing robustness, up to
ϵ = 0.3 for the PGD evasion attacks. However, at ϵ = 0.4, it be-
comes eco-critical, signaling a tipping point where the trade-off
becomes environmentally unsustainable. This is encouraging
news for secureML researchers, developers, and practitioners,
as it underscores the potential to control carbon emissions
while still advancing the development of robust adversarial
ML models. Moreover, the elasticity of robustness provides an
intuitive understanding of the relationship between a model’s
explainability, its robustness, and its environmental footprint.

V. CONCLUSION

This paper presents the first attempt at assessing the carbon
footprint implications in the context of adversarial machine
learning. Our proposed RCTI metric can measure the connec-
tion between robustness and sustainability, which helps with
figuring out how much better security for machine learning
systems costs the environment and allows a customizable man-
ner tailored to specific system demands and security settings. In
our future research, we will evaluate this multi-objective metric
with additional dimensions like financial costs and model fair-
ness with the goal of sustainable robustness of ML. Expanding
the evaluation across diverse datasets, model architectures, and
attack types will enrich insights into this trade-off index.
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