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Abstract. Wearable collaborative robots stand to assist human wear-
ers who need fall prevention assistance or wear exoskeletons. Such a
robot needs to be able to predict the ego motion of the wearer based on
egocentric vision and the surrounding scene. In this work, we leveraged
body-mounted cameras and sensors to anticipate the trajectory of hu-
man wearers through complex surroundings. To facilitate research in ego-
motion prediction, we have collected a comprehensive walking scene nav-
igation dataset centered on the user’s perspective. We present a method
to predict human motion conditioning on the surrounding static scene.
Our method leverages a diffusion model to produce a distribution of po-
tential future trajectories, taking into account the user’s observation of
the environment. We introduce a compact representation to encode the
user’s visual memory of the surroundings, as well as an efficient sample-
generating technique to speed up real-time inference of a diffusion model.
We ablate our model and compare it to baselines, and results show that
our model outperforms existing methods on key metrics of collision avoid-
ance and trajectory mode coverage.

Keywords: Egocentric Trajectory Prediction · Diffusion Model · Scene
Understanding

1 Introduction

The integration of autonomous systems into human-centric environments, par-
ticularly through collaborative robotics, necessitates acute awareness and predic-
tion of human motion. These systems, whether external like autonomous vehicles
and mobile robots or wearable like exoskeletons, require precise motion predic-
tion to ensure safety and enhance collaboration. External systems predict human
trajectories from a distance to avoid collisions or facilitate physical collabora-
tion, whereas wearable systems, mounted directly on users, rely on an egocentric
perspective to predict the wearer’s motion for functional response.

Predicting motion from an egocentric perspective involves deciphering the
complex relationship between past movements, task semantics, and potential fu-
ture actions. This task is complicated by the need to account for multi-modal
outcomes, such as which path a person might choose at a divergence. Factors
influencing these decisions range from high-level objectives to immediate envi-
ronmental constraints like obstacles and walkable paths. A generative machine
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Fig. 1: Different red ribbon illustrates different possible modes in the scene and the
size of the ribbon denotes the likelihood.

learning model can learn to predict the motion of a human by observing hu-
man data of individuals walking in different scenes. Such models are improved
and more efficient when curated features are provided. Scene semantics can help
provide curated features that improve generative model prediction.

In this paper, we propose a generative modeling approach to predict the
distribution of future trajectories of a person given the environment seman-
tics observed from the egocentric view, as illustrated in Fig. 1. To address the
under-constrained and multi-modal nature of the navigation problem, we employ
a diffusion model to predict the future trajectories conditioned on the egocentric
observation of the environment and the user’s past walking trajectory. We intro-
duce a compact representation of the environment to capture a short history of
visual observations from the egocentric perspective. This "visual memory" rep-
resentation encodes both appearance and semantics information of the world. To
achieve real-time inference, we introduce a hybrid generation technique that bal-
ances between quality and speed of sample generation from the trained diffusion
model. Using our hybrid generation method, we can rapidly sample multiple fu-
ture trajectories in real time, providing downstream applications a distribution
of the possible paths a person might take, rather than predicting a single path.

We evaluate our predictive model using real-world navigation data. We collect
a comprehensive walking scene navigation dataset centered on user’s perspective
in diverse indoor and outdoor scenarios. We show that our model can accurately
predict a distribution of future trajectories representing human preference taking
scene context into account, outperforming the baseline methods on various eval-
uation metrics. We also conduct ablation studies to validate the design choices
in visual memory representation and hybrid generation technique. The dataset
and the trained model will be made publicly available.
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2 Related Work

Path prediction of humans is an area of interest across robotic and computer
vision applications. In this section, we highlight key works in the domains of
autonomous vehicles predicting the motion of pedestrians, the prediction of hu-
mans during sports activities, and the prediction of humans in social settings
leveraging social context. We also highlight recent advances in diffusion models
as a method of predicting trajectories.

For autonomous vehicles (AV), predicting the motion of other vehicles and
pedestrians is crucial for the AV to plan safe, informed trajectories [12]. Re-
cent approaches focus on extracting motion prediction from demonstrations [6].
Traditionally algorithms for trajectory prediction relied on sequential predic-
tion methods such as recurrent neural networks (RNNs), LSTMs, or GRUs [22].
However, these models show limitations when confronted with complex, multi-
modal sensor data due to the hidden state size and forgetting information in
long sequences. Transformer-based models provide a powerful alternative offering
benefits in multi-modal sensor streams and the ability to handle long-sequence
inter-dependence’s [9, 23]. For AVs, it is often convenient to reconstruct the en-
vironment from a birds-eye-view (BEV) or 2D occupancy grid provided sensory
inputs [3, 16, 20]. While such representations are easy to interpret when predic-
tions are limited to a small set of modes or choices, they introduce a “long tail"
problem which is particularly impactful when the environment has less struc-
ture, presenting a need for research in representations that balance structure
and flexibility in trajectory prediction [13]

Trajectory prediction of players during sports is another application with rich
existing datasets where there is inherent context related to the strategy of the
game being played [2]. These sporting scenarios usually take place where there
are few static objects/obstacles, and playing grounds are usually flat, leaving
game strategy as the sole motion intent informer [2, 21].

Trajectory prediction of humans in social settings provides motion scenarios
where behaviors are conditioned on social norms and settings, and leading models
(SocialGAN, SociaLSTM) take these factors into account during prediction [1,4].
Such models have been applied to pedestrian dynamics, showcasing the poten-
tial for robots to coexist seamlessly with humans in crowded public spaces. [14]
Prominent datasets facilitating these studies include UCY/ETH [7] and the Stan-
ford Drone Dataset [14], which predominantly offer a BEV of pedestrian move-
ment, simplifying the trajectory prediction challenge to a two-dimensional prob-
lem. This top-down perspective allows for the tracking of pedestrians through
bounding boxes, offering an effective means to study and model pedestrian tra-
jectories in a simplified setting.

The diffusion model, inspired by the physical diffusion process, was originally
proposed in 2015 [17] but gained significant traction with the introduction of
Denoising Diffusion Probabilistic Models (DDPM) in 2020 [5]. Unlike initial
attempts that struggled to predict denoised inputs directly, DDPM introduced
an approach that predicts the noise to be removed, marking a breakthrough in
model performance. Subsequent developments, such as Latent Diffusion Models
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Fig. 2: Overview of the proposed method: We maintain a 5-second buffer of logs
that is most relevant to the prediction and organize them into a visual memory frame.
All input and output of the prediction module are in the ego-centric frame.

[15] for complex generation tasks, DDIM [18] for accelerated processing, and
various guidance and conditioning techniques [8], have expanded the application
of diffusion models to image, video, and action generation. These models excel
in generating detailed and coherent outputs across a range of generative tasks,
proven by many successes in image, video, and even action generation tasks.

3 Method

3.1 Problem Formulation

The goal of this work is to predict the possible paths of a person in a cluttered
environment. A trajectory τ is a sequence of 6D poses (translation and orien-
tation) of a person navigating in the 3D world. At each time step t, our model
uses the past trajectory τ1:t to predict likely future trajectories τt:t+T . In ad-
dition, the prediction must be conditioned on the observation of surroundings.
The visual observation S encodes the appearance, geometry, and semantics of
the environment captured by wearable visual and depth sensors. Our goal is to
model the probability distribution of the future trajectories:

τ̂t:t+T ∼ pθ(·|τ1:t, S) (1)

We learn the model pθ that best approximates the future trajectory, recog-
nizing that the expected path may be sampled from a multi-modal distribution
given the environment. An example of this would be a fork in the path, both
paths may be viable, and multiple sampling from the model output distribution
should recognize the distributed likelihood.

3.2 Method Overview

Our method takes as input the past trajectory of the person recorded by an
Intel Realsense T265 camera and a short history of RGBD images recorded by
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Fig. 3: Channels in Visual Memory: The visual memory integrates frames from
various time steps into a single panorama. It consists of depth channel, color channel,
and intensity-encoded 8-class semantic channel. 4 channels are shown in the figure.

an outward-facing stereo camera worn by the person and predicts the future
trajectories the person might take (Figure 2. The color images are semantically
labeled by DINOv2 [10], while the depth images go through a preprocessing
pipeline that filters out erroneously filled edges. We transform the past trajec-
tory from a global coordinate frame to an egocentric frame defined by the +Z as
opposite to the gravity vector and forward-facing direction as +X. Taking the se-
mantically labeled images, RGB images, and processed depth images, we project
and align the images to create a single panorama in the egocentric coordinate
frame, referred to as "visual memory". Conditioning on the visual memory and
the past ego trajectory, a diffusion model is trained to predict the future trajec-
tory along with encoded visual observations, as auxiliary outputs. The diffusion
model starts from a random noise and performs a number of denoising steps to
generate the clean prediction sequence. The clean sequence is a concatenation of
encoded visual memory and future ego pose trajectory. Finally, we use the VAE
decoder to recover the expected future panorama.

3.3 Construction of Visual Memory

Visual memory is defined as an ego-perspective, panoramic view representation
of the surroundings. The visual memory is constructed from aligned color, depth,
and semantic images. Given the camera’s intrinsic and extrinsic parameters,
images in different frames can be projected to a single point cloud in the global
frame. A distance-based filter is applied to remove points too far away from the
current pose. The points are then projected back to the current ego frame to
form a coherent representation of all the scene information gathered.

It is important to note that the visual memory representation holds a lot
more relevant information than just a single image. As shown in Fig. 4, A single
image from a stereo camera only has a narrow FOV pointing directly in front.
It fails to capture the objects and paths in the scene that are highly relevant
to the prediction, requiring many individual frames to be sent to the predic-
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Fig. 4: Comparing depth frame with visual memory: A raw depth frame from
stereo camera have only 90 degrees of narrow FOV and often misses important scene
information. In the figure, depth frame only sees the open space in front, did not capture
the stairs, the right turn path, or the wall directly to the left. The black regions are
the uncovered area when stitching frames from different time step.

tion module, relying on the model’s capability to extract useful information.
Meanwhile, the visual memory stitches the past frames together and integrates
multi-modal inputs all into one single image, greatly improving the model and
storage efficiency.

3.4 Hybrid Generation of Future Trajectories with Diffusion Model

The prediction part of the method heavily relies on a UNet diffusion model with
multi-head self-attention layers between blocks. The self-attention layers help
to relate the visual memory encoding to different parts of the trajectory, thus
facilitating a deeper understanding of how humans interact with environmental
features. The prediction is conditioned on a single 64-dimensional encoded visual
memory, and full 100 steps of 6d pose trajectory in 20 Hz. We utilize the full
100 steps as we believe in some cases the ego-centric trajectory prediction task
can violate pure Markovian assumption. For example, a different past trajectory
could likely affect the visibility of the scene in visual memory, causing differ-
ent exploration preferences in trajectory selection. We compared it to a pure
Markovian assumption in the ablation.

The output of the diffusion model is a denoised sequence that contains both
normalized 100 steps of ego-centric trajectory prediction and 100 steps of visual
memory encoding. The visual memory encoding can be decoded to show how
visual memory is expected to march forward by the model. Including the vi-
sual memory encoding in the diffusion process also provides a foundation for the
model to base the predicted trajectory. In practice, we notice that the trajectory
prediction samples are more stable with the visual memory prediction. In infer-
ence time, the model will take in the same condition and generate a batch of
15 different samples, forming a discrete distribution of the expected future ego
trajectory modes.
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We used Smooth L1 loss for diffusion model training. The VAE is trained on
the same dataset as the diffusion model. For VAE, a combination of InfoLoss [25],
Cross-entropy loss, and L1 loss is used. InfoLoss makes sure the encoding is
highly correlated to the input, L1 loss is performed on RGBD channels, and
Cross-entropy is performed on the one-hot semantic channels.

A conventional DDPM sampling method, while capable of producing high-
quality predictions, operates at a pace that is impractical for applications requir-
ing immediate responses, such as navigational aids or interactive systems. This
limitation is further pronounced when attempting to generate a distribution of
future trajectories, as multiple denoising sequences are necessary to produce a
substantial number of samples, exacerbating the time constraints. Conversely,
while DDIM offers a considerable acceleration in generating predictions, it does
so at the expense of sample quality—a compromise that is untenable for appli-
cations where the fidelity of predicted trajectories directly impacts functionality
and safety.

To address these challenges, we introduce a hybrid generation scheme that
synergizes the strengths of both methods. Hybrid generation operates by initi-
ating the generation process with a DDIM-like approach to quickly approximate
the trajectory distribution, followed by a refinement phase using the DDPM
framework. Essentially retaining the multimodal gradient landscape at the end
of the diffusion process, ensuring that the final output maintains the intricate
details and nuanced variations captured by a traditional DDPM without the
accompanying latency.

4 Egocentric Navigation Dataset

Our Egocentric Navigation Dataset is collected within a university campus and
its vicinity on human participants (under the approval of IRB-60675). The
dataset comprises 34 carefully selected collections, each lasting approximately
7 minutes and spanning over 600 meters, designed to capture a wide range of
interactions with the environment. These interactions are critical for testing
and enhancing trajectory prediction models, particularly in densely populated
or complex areas. The dataset is characterized by its diversity, encompassing
various weather conditions (rain, sunny, overcast), surface textures (glass, solid,
glossy, reflective, water), and environmental features (stairs, ramps, flat grounds,
hills, off-road paths), alongside dynamic obstacles, including humans. Such va-
riety ensures the dataset’s applicability across a wide spectrum of egocentric
navigation and prediction tasks.

Recorded at a 20Hz sampling rate, the dataset includes comprehensive state
and visual information to capture the nuances in human behavior: 6 degrees of
freedom (dof) torso pose in a global frame, leg joint angles (hips and knees of
both legs), torso linear and angular velocity, and gait frequency. Visual data
comprise aligned color and depth images, semantic segmentation masks, and
visual memory frames generated to aid in trajectory prediction. This extensive
collection amounts to 198 minutes of data (over 400GB). In practice, we find it
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Fig. 5: The dataset contains a mix of weather, road, lighting, and traffic conditions

is possible to train a very high-quality model even with a smaller dataset size.
Therefore we curated a high-quality pilot dataset with roughly 15% of the full
data. This allows us to quickly iterate with faster training and an acceptable
amount of performance degradation. The performance has been qualitatively
compared in Sec. 5.

Acknowledging the limitations of existing datasets in this domain, such as
the TISS dataset [11], our Egocentric Navigation Dataset addresses critical gaps
by providing dense, high-frequency logs with rich visual and state information.
Previous datasets have often suffered from sparse content, low logging frequen-
cies, and lack of access to raw data or pre-trained decoder weights, hindering
the development of sophisticated models and methods. To foster innovation and
accessibility in egocentric trajectory prediction research, we are committed to
open-sourcing our dataset following the de-identification of all faces within the
data. We believe this approach will democratize access to high-quality data,
enabling researchers to explore new methodologies and applications in the field.

5 Evaluation

5.1 Hardware Setup

We followed the hardware setup illustrated in this previous work [24]. To ac-
commodate data collection in both indoor and outdoor environments, we opted
for a setup that does not rely on GPS due to its indoor limitations and avoids
IMU localization to minimize drift over extended periods. For precise localiza-
tion, we employ an Intel Realsense T265 for SLAM-based tracking. We upgraded
the stereo camera to an Intel Realsense D455, benefiting from its longer stereo
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Fig. 6: Overview of metrics: The collision-free score (CFS) only considers points
with selected semantics. All subsequent trajectories will be marked as collided. CFS
and Smoothness are both higher the better, as opposed to Best of N.

baseline to enhance depth perception and extend the observable range. Consid-
ering the variability in lighting conditions, especially outdoors, we chose not to
use LiDAR, despite its accuracy in optimal settings. The entire software stack,
including real-time panorama generation and data storage, and physically power-
ing the sensor is handled by an Apple Silicon MacBook Pro housed in a backpack.
This setup ensures mobility and flexibility during data collection.

5.2 Evaluation Metrics

To comprehensively evaluate the predicted trajectories, we introduce three key
metrics: collision-free score, smoothness, and best of N (including best of 1 as a
subset for comparison with unimodal predictions). These metrics are designed
to reflect the multifaceted nature of trajectory prediction, capturing aspects of
physical feasibility, motion quality, and alignment with potential human prefer-
ences. An infographic summarizing these metrics is depicted in Fig. 6.

Collision-free Score This metric assesses the feasibility of the predicted tra-
jectories by ensuring they do not intersect with impermeable objects within the
environment. Given the absence of ground truth environmental meshes, we eval-
uate collisions against a discrete point cloud, defining a collision as the presence
of more than 10 scene points within a 0.16m radius of the predicted position.
The collision-free score tallies the number of consecutive prediction steps where
the trajectory avoids collision with static obstacles such as the ground, stairs,
walls, and rough terrains, excluding doors and movable objects. A higher score,
up to the total number of prediction steps, indicates better performance.

Smoothness The smoothness metric quantifies the continuity and fluidity of
movement in the generated trajectories. Calculated as the reciprocal of the sum
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Fig. 7: BEV: Typical input and output are visualized top-down. Five trajectories are
predicted in this case, each with a different shade of red. Visual memory is projected
to a point cloud and color-coded same as semantic.

of the mean absolute errors (MAE) of speed and acceleration compared to ground
truth, this metric relates higher values to smoother trajectories. This adjustment
ensures that higher scores correspond to desirable attributes, aligning with the
intuitive understanding that smoother trajectories are preferable.

Smoothness = 1/(

∑n
i=1 |Vi − V̂i|

n
+

∑n
i=1 |ai − âi|

n
) (2)

Best of N & Best of 1 Recognizing the inherent multiplicity of valid trajec-
tories for any given scenario, the Best of N metric evaluates the model’s ability
to encapsulate the ground truth trajectory within its distribution of predictions.
This approach mirrors the minADE-K metric used in autonomous vehicle re-
search, focusing on the minimum average displacement error across a set of K
predictions. The Best of 1 metric complements this by assessing the accuracy of
a single prediction, facilitating comparison with models that do not generate a
multimodal distribution. It also shows how well the estimated distribution aligns
with the ground truth under the assumption that the ground truth mode should
have the highest likelihood in the given scenario. Together, these metrics ensure
a balanced evaluation of the model’s predictive capacity and its versatility in
capturing the range of plausible ego-motions.

5.3 Prediction Evaluation

Our evaluation focuses on assessing the model’s capacity for future trajectory
prediction and its ability to generate expected future visual memory encod-
ings, as detailed in Sec. 3. Operating over a 100-step (5-second) prediction
horizon—aligned with the typical visibility range (8-meter radius) and walking
speeds—our method ensures the generation of predictions that are both relevant
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Fig. 8: Analysis of fail prediction: A failed prediction (bright red) is picked to
analyze the failure mode. Predicted visual memory frames are sampled along the tra-
jectory to show the model’s expectation. Visual memory is always centered to forward
direction, turning can be observed by following the centerline. BEV plot: Blue trajec-
tory is past, and green is the ground truth. Point clouds follow semantic color codes.

and plausible within the observable environment. The inclusion of future visual
memory alongside trajectory predictions enhances our ability to visually validate
the model’s anticipations of scene evolution, providing a robust cross reference
for trajectory prediction and insight into the model’s typical failure modes.

A pertinent example of this evaluation is depicted in Fig. 8, where visual
memories associated with the red trajectory prediction reveal a challenge com-
monly encountered by generative models: the occasional "hallucination" of non-
existent features in scenarios of occluded vision or gaps in the observable scene.
For instance, as a person navigates a hallway, gaps in conditioning visual memo-
ries might occur due to changes in view angle or partial occlusions. At a specific
timestep (T3), the model inaccurately anticipates that approaching a gap would
reveal a larger, unexplored space (as in T6), leading it to "hallucinate" an exten-
sion of the hallway based on patterns observed in the training data. This results
in the model predicting a trajectory that erroneously veers into this fictitious
extension (T8), as evidenced by the gradual shift of the actual hallway from the
center of the predicted path.

5.4 Ablations

To test the effectiveness of individual modules proposed in our method, we con-
ducted the following ablation studies. The individual ablations and correspond-
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ing metrics are summarized in Tab. 1. As mentioned in Sec. 4, we have a full
dataset for the best possible performance and a curated pilot dataset for quick
iteration. All of the ablation training, unless specifically mentioned, are trained
on the pilot dataset. The entries in the table have been sorted by the collision-
free score in the second column. The ground truth trajectory did not receive a
perfect score (99) in collision avoidance, due to the inaccuracies in the SLAM
pose estimation and depth artifacts from the stereo camera. In rare occasions,
ground truth trajectory collides with a part of the point cloud that appears a
considerable distance away from the ground truth surface of the scene.

Scalability To quantify the difference between training on a large dataset
and the pilot dataset, we trained two versions of the baseline one on each dataset.
The full dataset model is better on all of the evaluation metrics as expected.
However the gap is quite small on the collision metric, we believe the collision
avoidance performance is highly dependent on the accuracy of the point cloud,
otherwise the model would think that the ground truth demonstration has pen-
etrated some points despite the points being from artifacts and misestimations.
On the other hand, the added samples have greatly improved the variance of the
generation and hence better Best of n scores in general.

Transformer UNet vs UNet Adding in the multi-head self-attention lay-
ers (MHSA) between down and up blocks in UNet significantly blows up the
size of the model, fortunately, the inference and training speeds have remained
largely unchanged. Without attention layers, the most significant degradation
in performance is in collision avoidance. This corroborates our expectation that
the MHSA layers help to relate encoded visual memory with trajectory samples.

Hybrid Generation As proposed in Sec. 3, hybrid generation can greatly
speed up generation at the expense of a slight decrease in quality (as quantified
in ablation), up to 50 trajectory predictions per second on a single Nvidia A5000
GPU. In this experiment, our hybrid generation uses 20 steps of DDIM, followed
by 10 steps of DDPM to refine the generation. Compared to a full 1000-step
DDPM baseline, this method is 33 times faster, but the quantitative metrics
only decreased slightly. To show the effectiveness, we also include the same 30-
step generation result except from DDIM. Both collision and smoothness scores
were negatively impacted especially the smoothness score. The best-of-n metrics
remain similar, showing that while the DDIM is converging in the right direction,
it does not converge to a strong solution like DDPM.

Past Condition Length To achieve the best possible performance, we are
using a non-Markovian assumption when performing prediction. This requires us
to provide a long history of past trajectories. We are curious as to how well the
Markovian assumption will hold for this task and are interested in potentially
reducing the number of inputs to the model for more efficient use of computation.
Therefore we trained a variant that only takes in 3 steps of past trajectory
steps, essentially only providing information up to the order of acceleration.
The resulting model did not suffer too much from the change, showing that the
Markovian assumption largely holds for most of the scenarios.
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Table 1: Metric comparison table across ablations

Ablation | Collision ↑| Smoothness ↑| Best of 1 ↓| Best of 15↓

Ground Truth 97.6 - - -
Ours (Full dataset) 90.6 4.76 0.81 0.41
w/o visual memory prediction 89.3 3.13 0.91 0.50
Ours (Pilot Dataset) 89.2 2.04 0.87 0.47
w/ Markovian past state 88.8 1.56 1.04 0.52
w/ Hybrid generation (I20 P10) 88.7 2.17 0.89 0.49
w/o attention 86.6 2.78 1.00 0.49
w/ DDIM generation (n=30) 85.3 0.46 0.92 0.52
w/o semantic (RGBD only) 84.1 4.17 0.91 0.53
w/o visual input (Traj only) 82.5 2.04 1.19 0.48

Semantic Segmentation To test the effectiveness of semantic segmenta-
tion. The VAE and diffusion model are trained on the same dataset except
without a semantic channel. We see a significant drop in collision avoidance per-
formance. This stems from the same origin as the quality issue we mentioned
in Scalability above. Without semantics, the model will not be able to differen-
tiate between penetrating the door and the wall and, thus tends to ignore the
geometric constraints provided in the visual memory.

Visual Input Empirically, the removal of the visual input results in the
worst-performing model. This emphasizes again the effectiveness of contextual
structure provided by the visual memory. Upon inspecting the results, many of
the generated samples are simply memorizing what was in the training set and
the distribution is incorrect (which also corresponds to a high best-of-1 score as
mentioned in Evaluation Metrics of Sec. 5).

5.5 Comparison with Baselines

The proposed method is compared to existing methods LSTM and CXA Trans-
former. For consistency, all three methods are based on the same pre-trained
VAE. And they are all trained and evaluated on the pilot dataset. Results are
shown in Tab. 2. We would like to highlight that some key differences between our
model and the baselines are: 1) Our model does not rely on auto-regressive gen-
eration and, therefore less affected by compounding error problems. Our model
also generally requires less pass through the generation model, which means
faster speed. 2) Our model is inherently based on a random process, therefore it
learns an implicit distribution of preferences instead of simply an average.

VAE-LSTM One of the most common paradigms to the trajectory predic-
tion task in the existing literature [11,24] is to use an encoder head to understand
the visual input, and then pass the state information along with encoded visual
cues into a recurrent model to auto-regressively predict the future states. The
quality of the output is usually pretty good. The biggest drawback of this ap-
proach is that the prediction is deterministic, as the variance only exists in the
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Table 2: Metric comparison table across baselines

Model | Collision ↑ | Smoothness ↑ | Best of 1 ↓ | Best of 15 ↓

CXA Transformer 80.3 3.70 1.25 N/A
LSTM-VAE 84.5 0.09 1.01 N/A
Ours 89.2 2.04 0.87 0.472

encoding process of the visual input, not in the trajectory latent space. And since
there is only one deterministic prediction in each scenario, there is zero guaran-
tee of the temporal consistency of the prediction between consecutive scenarios.
Despite the drawbacks, the auto-regressive model excels at generating smooth
motion as every step is based on the previous predictions, which is also confirmed
by the smoothness score. We implemented the LSTM baseline according to the
receipt provided in this egocentric trajectory prediction paper [24]. The LSTM
model in the baseline performs surprisingly well at avoiding obstacles, given its
tiny size of fewer than 1 million parameters.

CXA-Transformer One of the newer approaches is to use the transformer
instead of the recurrent modules [11]. The transformer models, at its core, rely
on attention mechanisms to process the sequence so it suffers less from forgetting
and improves computational efficiency for scaling. One of the most recent works
aiming to tackle egocentric trajectory prediction in a similar setup proposes a
Cascaded Cross-Attention(CXA) Transformer. It uses a transformer encoder for
each modality of input including surrounding people’s pose, semantic segmenta-
tion, and past trajectories, and a cross-attention module to fuse in multi-modal
information. Similar to other transformer models, it uses a transformer decoder
to produce a prediction of the most likely future path auto-regressively. CXA
transformer is implemented strictly as outlined and uses hyper-parameters in
the paper. In training and evaluation, we noticed a strong tendency to overfit
to the training set, despite adding a significant amount of dropouts and many
hyper-parameter tuning. The best result we can get is shown in the table.

6 Conclusion

This paper presented a pipeline to predict future trajectories using diffusion
model conditioned on the past trajectory and scene semantics. We show that it
benefits from semantic segmentation, and outperforms existing methods. Limi-
tations of our method include the current assumption that the scene is static,
despite it is implicitly handled by semantic segmentation, it can still get quite
challenging when there are numerous people around.

Future work in this area includes employing monocular depth estimation
models for dense depth and more informative scene capture. Accounting for dy-
namic obstacles in the scene. Upgrading the latent diffusion model to consistency
model [19] for real-time generation is also desirable especially when deploying
the model to mobile platforms.
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7 Appendix

7.1 Dataset Detail

All the data are collected at a rate of 20Hz, both state and visual inputs. State
information includes 6 dof torso localization in the global frame, leg joint angles
(left, right calf and thigh), torso velocity, torso angular velocity, and average
gait frequency in 2 seconds moving window. Visual information includes RGB
images, an aligned depth frame from D455 at a resolution of 848x480, semantic
segmentation masks by DINOv2 + Mask2Former segmentation head, as well as
panoramas with all the aforementioned channels projected to 360 view. This
brings the total dataset to 198 minutes, and over 400GB.

We optimize storage by retaining depth frames only when there’s a signif-
icant change in camera position—specifically, an angular movement exceeding
15 degrees or a translation beyond 1 meter. This strategy reduces the point
cloud processing rate to approximately 1 keyframe per second at normal walk-
ing speeds, thus conserving computational resources for semantic segmentation.
Visual memories are generated in a separate process at a 20Hz, aligned with
the current camera pose and buffered depth frames, to support timely model
inference.

The raw data from stereo cameras often requires prepossessing to enhance
quality. We apply a tuned Canny edge filter to mitigate artifacts along object
edges, removing up to 10 pixels around the disjoint edges, and preparing the
depth frames for more accurate panorama construction.

We define eight semantic classes for this purpose: No label, normal ground,
stair, door, wall, obstacle, movable, and rough ground. The collision evaluation
framework specifically considers ground, stairs, walls, obstacles, and rough ter-
rains to accurately differentiate between navigable and non-navigable spaces.

7.2 Diffusion Model Detail

Fig. 9 illustrates the detailed model architecture. We use the transformer encoder
blocks which contains multi-head self-attention layers. They are stacked between
the Down and Up blocks of the UNet. The conditions of the generation (past
trajectory and most recent visual memory) are first turned into embeddings, and
then passed into the Down and Up blocks.

In training, instead of cutting up the dataset into unique sub-trajectories,
we take overlapping sub-trajectories to further augment the dataset. This way,
there is a total of more than 220,000 diverse sub-trajectories for the model to
train on.

At inference time, one can either use DDIM, DDPM or our hybrid inference
method. Specifically the hybrid inference involves first getting a rough conver-
gence with 20 steps of DDIM, the time steps are sub-sampled uniformly from
the total steps. And then the last 5 steps are performed with DDPM step 5 to 0
to bring the sample to full convergence. The variance we used in DDPM is fixed
small, or mathematically:
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Fig. 9: Diffusion Model: Architecture and hybrid generation details

xt−1 =
1

√
αt

(xt −
1− αt√
1− ᾱt

zθ(xt, t)) + σtz (3)

Where:

σt =
1− ᾱt−1

1− ᾱt
βt (4)

7.3 Collision-Free Metric Detail

To calculate the collision-free metric, we first re-project the visual memory pro-
vided as prediction condition into a 3D point cloud. At each predicted time step,
we retrieve the closest 20 points in the point cloud by K-D Tree. If there are
more than 10 points within the 16cm radius circle, the current and all subsequent
time steps are deemed collided. The collision metric value will then be the index
collided time step. Therefore the maximum score is n-1 if prediction contains n
steps. The parameters are tunable, and these are the empirical values we found
to be most reasonable.
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