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Abstract

This paper addresses two problems needed to support four-dimensional (3d+
t) spacetime numerical simulations. The first contribution is a general al-
gorithm for producing conforming spacetime meshes of moving geometries.
Here, the surface points of the geometry are embedded in a four-dimensional
space as the geometry moves in time. The geometry is first tessellated at
prescribed time steps and then these tessellations are connected in the pa-
rameter space of each geometry entity to form tetrahedra. In contrast to
previous work, this approach allows the resolution of the geometry to be
controlled at each time step. The only restriction on the algorithm is the
requirement that no topological changes to the geometry are made (i.e. the
hierarchical relations between all geometry entities are maintained) as the
geometry moves in time. The validity of the final mesh topology is veri-
fied by ensuring the tetrahedralizations represent a closed 3-manifold. For
some analytic problems, the 4d volume of the tetrahedralization is also ver-
ified. The second problem addressed in this paper is the design of a system
to interactively visualize four-dimensional meshes, including tetrahedra (em-
bedded in 4d) and pentatopes. Algorithms that either include or exclude a
geometry shader are described, and the efficiency of each approach is then
compared. Overall, the results suggest that visualizing tetrahedra (either
those bounding the domain, or extracted from a pentatopal mesh) using a
geometry shader achieves the highest frame rate, in the range of 20 − 30
frames per second for meshes with about 50 million tetrahedra.
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1. Introduction

Many physical phenomena exhibit time-dependent features that are chal-
lenging to predict when the domain of interest is bounded by complex ge-
ometries. Some examples involve predicting the flow physics of a rotating
wind turbine (Fig. 1 right) or over an aircraft wing when flaps are deployed
(Fig. 1 left). Numerical simulations offer time- and cost-efficient methods
for predicting these flows and, within the realm of numerical simulations,
spacetime numerical simulations have gained recent attention due to their
potential to reduce the overall cost of the computation [1].
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Figure 1: Examples of 3d geometries moving in spacetime (4d). The wind turbine geometry
was adapted from a post on the LATEX Stack Exchange [2].

Spacetime numerical simulations consist of embedding a three-dimensional
(3d) geometry into four-dimensional (4d) space, where the fourth dimension
is time (t in Fig. 1). Finite element simulations can then be performed in
this coupled space-time domain[1, 3, 4, 5, 6, 7]. Visualizing the mesh and
resulting solution fields associated with these 4d simulations is necessary to
be able to both debug meshing techniques and investigate features in the
solution. Four-dimensional visualization techniques can be categorized as ei-
ther projection-based or intersection-based, both of which use a 4d camera
to transform the 4d objects into a 3d viewing space which can then be ren-
dered with standard 3d techniques [8]. In projection-based methods, points
are transformed to the 3d viewing space using a projection matrix, for ex-
ample, defined by a perspective projection transformation. This approach is
commonly used to visualize a tesseract in which one of the bounding cubes
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of the tesseract appears smaller [8] since it is further from the observation
point. Intersection-based methods (or cross-sections [8]) involve slicing the
four-dimensional tetrahedra or pentatopes with a four-dimensional hyper-
plane. Any mesh edges that cross the hyperplane can be intersected with the
plane, thus providing three-dimensional coordinates in the basis of the hyper-
plane or, equivalently, in the frame of reference of the 4d camera. This also
requires tessellating the portion of the cell (tetrahedron or pentatope) that is
intersected by the hyperplane. Previous work involves computing these inter-
sections as a pre-processing step, and then rendering the resulting polyhedra
[7] or tetrahedra [9]. In the current work, the intersection-based method is
preferred over the projection-based approach since it can be used to exactly
visualize the geometry at specific times. This concept has been explored by
Zhang [10] in the development of a 4d physics game engine. Zhang uses a
compute shader to calculate the intersection regions interactively and render
simple shapes defined by relatively few tetrahedral elements. The goal, in this
work, is to visualize meshes with tens of millions of elements while ensuring
interactivity is maintained. Whenever the hyperplane definition is changed
(e.g. by user input), the primitives that need to be passed to the rendering
system change. While they can be rebuffered to the GPU, this can slow
down the rendering of each frame which impacts interactivity. Thus, the pri-
mary goal is to develop a system for interactively visualizing four-dimensional
meshes, where interactivity is defined (in this work) as achieving a frame rate
of 20 − 30 frames per second for relatively large meshes - about 50 million
(M) elements. But, in order to study such techniques, we need meshes to
visualize. Thus, a method for generating fully unstructured 4d tetrahedral
meshes of moving geometries has also been developed.

Work in unstructured 4d meshing has primarily focused on mesh adap-
tation [7, 11, 12] whereby an initial pentatope mesh is adapted via point
insertion, edge collapse, edge flips and vertex smoothing, all within the cav-
ity operator framework introduced by Coupez and Loseille [13, 14, 15, 16].
The work of Caplan [7, 17] assumes an initial 4d mesh can be obtained, using
the Coxeter-Kuhn-Freudenthal triangulation [18] as a starting point, which
restricts the simulations to a tesseract domain. An important question re-
maining from the aforementioned work is: how can we generate an initial
mesh for complex, moving geometries?.

Existing work in 4d mesh generation includes extrusion-based [4, 19],
elasticity-based [20, 21] or advancing front [22, 23, 24, 25, 26] approaches.
For example, Behr [4] creates prisms by extruding an initial spatial mesh -

3



prisms are then subdivided into tetrahedra by inserting vertices along the
temporal direction. In elasticity-based approaches, an initial 4d mesh can
be modeled as an elastic solid - vertex coordinates can then be moved to
conform to the moving domain boundaries (with topology changes) while
keeping the mesh topology fixed [21]. The Tent Pitcher algorithm of Üngör
and Sheffer [22] (extended to 4d by Mont [25]) is similar to advancing front
methods. This method starts from an initial spatial mesh and inserts points
in the temporal direction to satisfy constraints on the dihedral angles of
the internal mesh faces with respect to the spatial domain. Other techniques
locally modify the mesh topology to accommodate the geometry motion [27].
The aforementioned methods have focused primarily on the generation of
pentatope meshes but are restricted in the way complex geometries with
large movements are handled.

The current problem definition consists of tetrahedralizing the volume
traced by a moving geometry in 4d. The most recent work in this area
is that of Anderson et al. [28], in which spacetime meshes of moving ge-
ometries are created by dividing the temporal interval of the domain into
discrete slabs. Within a single slab, the coordinates of each (surface) mesh
vertex from the previous time step are advanced according to the local ge-
ometry velocity and, finally, projected to the moving geometry at the next
time step. Surface mesh triangles at the initial and terminating temporal
planes are then connected to form prisms, maintaining the number of ver-
tices and surface mesh topology from one time step to the next. The prisms
are subsequently subdivided to form tetrahedra in 4d, whereby each prism
is subdivided into 14 tetrahedra (though the authors note a conformal sub-
division into 10 tetrahedra is possible), thus introducing several vertices in
between the initial and terminating planes of each time slab. Furthermore,
Ko and Sakkalis remark upon the difficulty of projecting to a CAD geometry
in the most general settings, since there is no perfect algorithm to solve the
problem of orthogonal projection that satisfies high accuracy, robustness and
efficient computation time simultaneously [29]. Ko and Sakkalis also mention
that care needs to be taken in degenerate cases near singularities.

Here, the goal is to develop a general algorithm for creating fully unstruc-
tured spacetime tetrahedral meshes of complex, moving geometries that can
finally be used to evaluate the developed interactive visualization system.
The proposed method minimizes the addition of vertices in between time
steps and avoids projecting to the CAD geometry. Furthermore, the res-
olution of the geometry (and resulting topology of the surface meshes) is
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also allowed to change over time, thus demonstrating a fully unstructured
spacetime mesh generation algorithm for 3d + t (4d) geometries. It should
be noted that the focus here is on producing conforming tessellations of the
spacetime geometries so they can be visualized - improving the quality of
these meshes for numerical simulations is left for future work. The correct-
ness of the algorithm is verified by measuring the volume of the resulting
tetrahedra for simple analytic problems. The tessellation algorithm is also
demonstrated on more complex geometries that include sharp features, (e.g.
at the tip or trailing edge of a wing) and singularities (e.g. at the poles of
a sphere). Finally, these meshes enable the evaluation of several techniques
for interactively visualizing a moving geometry, whereby the meshes (either
tetrahedral or pentatopal) are intersected with a user-defined hyperplane.
Solutions with or without the use of geometry shaders [30] are presented,
and the interactivity is investigated by measuring the resulting frame rate.

2. Tessellating moving geometries.

The proposed method for tessellating the volume traced by a moving 3d
geometry is an extension of classical algorithms for tessellating 3d surfaces
consisting of several patches. These algorithms typically start by discretizing
the CAD Edges, and then fix these discretizations when tessellating each
surface patch (Face). Each surface patch references the unique vertices in the
discretization of the CAD Edges, as well as those placed on the CAD Nodes,
thus providing a conformal tessellation of the entire geometry. Please note
that, in the current work, CAD Nodes, Edges and Faces are distinguished
from mesh nodes (usually, vertices), edges, and faces (usually, triangles) by
the capitalization of the first letter of each entity.

First, the temporal axis is discretized into n discrete slabs (see Fig. 2)
and it is assumed that the time-dependent geometry can be determined at
some time t. It is also assumed that a 3d tessellation of the geometry can be
obtained at time steps tk and tk+1, i.e. a tessellation at all n+ 1 time steps.
The goal is to connect the tessellations at time steps tk and tk+1 which should
be understood to lie on the temporal boundaries of the current time slab. The
inputs are thus (1) a tessellation T k(G(tk)) for the geometry G evaluated at
time t, and (2) another tessellation T k+1(G(tk+1)) for the geometry evaluated
at time tk+1. Note that on the next time slab, T k+1(G(tk+1)) becomes the
first input, thus ensuring conformity between neighboring time slabs. For
brevity, the notation (G) will be dropped when denoting the tessellations -
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t

(tk,Gk)

(tk+1,Gk+1)

Figure 2: Illustration of how the time-dependent geometry is tessellated at discrete time
steps (left) and how a time slab is defined between time steps (right).

tessellations at the boundaries of each slab will simply be written as T k and
T k+1.

Each tessellation T k is composed of the tessellations of the underlying
CAD Faces, Edges and Nodes, which are denoted as Fk, Ek and N k at time
step tk. At the next time step tk+1, these are denoted as Fk+1, Ek+1 and
N k+1 which form the tessellation T k+1. Assuming a simplicial tessellation,
Fk is composed of triangles, Ek is composed of edges and N k is a collection
of vertices. Each of these is further subscripted with the unique index of each
Node, Edge or Face in the geometry. For example, Fk

i might be one of the
surface patches of the wind turbine blade at time tk and Fk

j might be one of
the surface patches on the cylindrical mast of the wind turbine at time tk.
Note that N k

i is a single vertex.
The approach for tessellating a moving geometry (illustrated in Fig. 3)

consists of connecting each tessellation from time tk to its sibling tessellation
at time tk+1. For example, connecting N k

γ to N k+1
γ traces a 4d curve, which

can be discretized with a single edge. Connecting Ek
β to Ek

β traces 4d surface

which can be triangulated, and connecting Fk
α to Fk+1

α traces a 4d volume to
be tetrahedralized. Note that α, β and γ denote the unique integer identifiers
assigned to each geometry entity. The method to tessellate the moving Nodes
(resulting in a 4d curve), Edges (resulting in a 4d surface) and Faces (resulting
in a 4d volume) are described in the following sections.
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Step 1: Extract surface tessellations
at tk (blue) and tk+1 (red).

Step 2: Extract tessellations of each
Edge Eβ at tk (blue) and tk+1 (red)
and triangulate in (s, t).

Step 3: Extract tessellations of Face
Fα in parametric space (u, v) at tk

(blue) and tk+1 (red).

Step 4: Form a closed surface in (u, v, t) space for each Face Fα and tetrahedralize. This
step requires computing the (u, v) coordinates of each vertex in the discretization of the
bounding Edges of Face Fα (including those at the Nodes), which can be done by evaluat-
ing the parametric curves associated with each bounding Edge Eβ .

Figure 3: Description of the algorithm for tessellating a moving geometry within a time
interval [tk, tk+1]. When a CAD Face (F), Edge (E) or Node (N ) is overscored with a
tilde (˜), it should be understood that the entity is in some parametric space, whether it
be that of an Edge (s) or Face (u, v). A Node N can be mapped to the parametric spaces
of either an Edge E or Face F . The subscripts (α, β, γ) denote the unique identifiers
assigned to each entity.
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2.1. Tessellating Nodes (curves) and Edges (surfaces)

The discretization of each Node within a single spacetime slab is trivial
since it simply consists of a single edge connecting the two vertices placed on
N k

γ and N k+1
γ . For each CAD Edge Eβ, the discretizations at times tk and

tk+1 are first extracted - these are the set of edges on Edge Eβ at time steps
tk and tk+1. The goal is then to triangulate the 4d surface traced by Eβ as it
moves between time steps. The geometry engine used here (EGADS) [31, 32]
provides the parametric coordinate of each vertex in the discretization of
Eβ. This is a single coordinate since Eβ is a 1-manifold - this coordinate is
typically represented as t but is denoted as s to avoid confusion with time
in this article. Combined with the edges connecting the Nodes bounding Eβ,
the next step consists of extracting the set of edges defining a closed curve
in a two-dimensional (s, t) space. The closed region bounded by this curve
is then triangulated (Step 2 in Fig. 3) - here, Triangle [33] is used, but
note that this domain is actually rectangular, so simpler algorithms could
be implemented. This process is repeated for each Edge in order to produce
triangulations of each Edge of the geometry.

2.2. Tessellating Faces (volumes)

Next, each CAD Face is treated in a similar fashion, whereby the goal is
now to tetrahedralize the volume traced by each Face Fα as it moves in 4d.
Again, the geometry engine used here provides the parametric coordinates
(u, v) of each interior vertex in the disretizations of Fk

α and Fk+1
α . The

boundary vertices in the tessellation of Fα lie on the Edges bounding the
Face and, therefore, only contain a single s parameter coordinate. Geometry
kernels typically provide a function to compute the (u, v) coordinates of a
vertex on a Face, given some s value along the Edge (i.e. evaluating the
parametric curves associated with the Edge in the Face). With EGADS, this
can be achieved with the getEdgeUV function.

The triangulations of the Faces (now defined in parametric (u, v) space)
are now embedded into a 3d (u, v, t) space by placing the vertices of Fk

α at
tk and those of Fk+1

α at tk+1 (Step 3 in Fig. 3). To define a closed surface, it
is necessary to extract the triangulations of the CAD Edges that bound the
Face (computed using the algorithm described in Section 2.1). This closed
surface now encloses the volume traced by the face as it moves from time tk

to tk+1, which is tetrahedralized using TetGen [34] (Step 4 in Fig. 3).
Note that it is very possible TetGen adds Steiner vertices in the interior

of the (u, v, t) volume. Each of these Steiner vertices lies in between the
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two time steps, for which an analytic description of the geometry is not
available. The first two coordinates define the (u, v) coordinates along Face
Fα, so Fk

α and Fk+1
α are both evaluated, and the weighted average of the

results (weighted by t) is used to determine the 3d coordinates of this Steiner
vertex, which are then embedded in 4d.

2.3. Ensuring a closed 3-manifold mesh.

Taking a step back to 3d for a moment - assume only manifold geometries
are considered, meaning each CAD Edge is incident to exactly two CAD
Faces. When creating a volume mesh for a manifold 3d domain, the bounding
surface mesh typically needs to be closed - that is, each mesh edge in the
surface mesh needs to be adjacent to exactly two boundary triangles.

The same idea extends to the 4d setting: the boundary of the 4d domain
needs to consist of a tetrahedralization in which each triangle is adjacent
to exactly two tetrahedra. Thus, the indices of the mesh vertices need to
be carefully synchronized when the tetrahedralization of a time slab is ap-
pended to the final mesh. Furthermore, two additional tetrahedralizations
are required at the extreme boundaries of the domain along the temporal
axis, i.e. at the initial and final times of the entire spacetime domain. Once
these two tetrahedralizations are obtained, they are appended to the final
mesh and the 3-manifold property (each triangle is adjacent to exactly two
tetrahedra) is checked to ensure the meshes are valid.

It should be noted, however, that it may not always be possible to recover
the segments (edges) during the tetrahedralizations in Section 2.2. In partic-
ular, Steiner vertices may be left on boundary mesh edges, specifically if the
parameter space triangulations contain very poor-quality triangles which are
considered intersecting and thus, not recoverable by the constrained Delau-
nay tetrahedralization algorithm. When this is detected, the original surface
mesh is recovered (necessary to ensure the final mesh is valid) by simply
deleting the Steiner vertex, hence collapsing the unwanted segment along
with any attached tetrahedra.

3. Efficiently visualizing tetrahedra and pentatopes in 4d.

A 4d mesh can be visualized using either a projection-based approach or
an intersection-based approach [8]. Here, the intersection-based approach is
preferred since it directly lends to visualizing the geometry. In this approach,
a four-dimensional hyperplane H is defined by a normal direction n⃗ and a
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point on the plane c⃗. Any mesh entities that contain vertices on either side of
H define an intersection region that needs to be visualized. As the definition
of H changes (e.g. interactively by a user), the number of intersected mesh
entities changes. Thus, the main challenge consists of designing an efficient
system that can compute these intersection regions and render them inter-
actively. Here, “interactive” is defined such that the resulting frame rates
should be at least 20 FPS for reasonably large meshes (about 50M elements).

One method for computing intersection regions within a rendering pipeline
involves the use of a geometry shader to generate the rendering primitives
defining the intersection. In this approach, mesh entities (vertices, connec-
tivities) can be written to texture units [35] and a single invocation of the
geometry shader can be used to process a single mesh entity (triangle, tetra-
hedron, pentatope). Within the shader, the hyperplane H can then be used
to compute whether the mesh element intersects H and then output the
necessary primitives (either a line primitive for a mesh triangle or triangle
primitives for a tetrahedron or pentatope). As noted by Maunoury [36], the
injection of a geometry shader into the rendering pipeline (even as a pass-
through shader) can significantly reduce the resulting frame rate. As a result,
solutions that either include or exclude the use of a geometry shader are ex-
plored. Both of these solutions rely on the same mechanics for computing
intersection primitives, which are described in Section 3.1 below.

Note that the focus is on intersecting tetrahedra with a hyperplane H
since pentatopes can be visualized by simply passing the five bounding 4d
tetrahedra of a single pentatope to the same tetrahedron-hyperplane inter-
section algorithm.

3.1. Computing intersection primitives.

In this work, intersection primitives (also referred to as rendering prim-
itives) are defined as the simplicial decomposition of the intersection region
between a mesh entity and the 4d hyperplane which is to be rasterized (e.g.
with OpenGL). Let us focus on the case in which the mesh entity is a tetrahe-
dron since this defines the moving geometry of the previous section. Given a
tetrahedron κ and a hyperplane H, the task is to produce triangles (if any)
that represent the intersection κ ∩ H. Similar to a tetrahedron-plane inter-
section in 3d, a tetrahedron-hyperplane intersection in 4d results in either
(1) an empty intersection, (2) a triangle or (3) a quadrilateral intersection
primitive.
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Figure 4: Description of the hyperplane-tetrahedron intersection algorithm. Intersections
are listed in the same order as the Marching Tetrahedra algorithm [37]. Only 8 rows of
the look-up table are shown due to symmetry (the symmetric values of r are labelled in
parentheses). The intersection region (to be decomposed into rendering primitives) are
shown in red. For each case, red vertices are on one side of the hyperplane H whereas the
black vertices are on the other side.
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Determining the intersection region can be reduced to determining which
of the six edges of κ intersect H. Either 0, 3 or 4 edges will be intersected
for any given tetrahedron - the cases in which H exactly touches some of
the tetrahedron vertices are treated in the same way (some of the points of
the resulting rendering primitive will simply collapse onto each other). A
naive implementation would consist of using a series of conditional state-
ments to determine which edges are intersected and how that produces a
rendering primitive. However, implementing these conditional statements
within a shader (running on a GPU) can cause control divergence between
the individual threads processing different tetrahedra, which can significantly
impact performance [38]. When the threads are grouped in such a way that
the branches taken by each thread are the same, then performance will not
necessarily be impacted. While the likelihood that each thread group follows
a similar branching pattern can be improved (e.g. by performing a spatial
ordering of the input cells [39, 40]), there is still no guarantee that thread
execution will not diverge from SIMD execution.

As a result, the algorithm developed here is designed to minimize the
possibility of control divergence in the tetrahedron-hyperplane intersection
routine. The developed method is inspired by the Marching Tetrahedra algo-
rithm [37] in which all possible tetrahedron-plane intersections are encoded as
a four-bit number. Look-up tables are then defined for the 16 possible cases
that directly provide information as to how the intersection points should be
calculated.

Fig. 4 describes the geometry and associated look-up table entries for
each intersection, using the same order as the original Marching Tetrahedra
algorithm [37]. First, the side of each of the four vertices of the tetrahedron
is determined and is assigned to 0 if the vertex is on the positive side of the
plane (red, in the direction of n⃗) and 1 otherwise (black). The sides of all
four vertices can be interpreted as a 4-bit number for the given tetrahedron,
which represents which of the 16 cases needs to be addressed. A 16× 4 look-
up table is then used to determine which edges are intersected for each case
- the second dimension of the table is 4 because there are at most 4 edges
intersected. When the result corresponds to a triangle, the fourth entry is set
in such a way that the quadrilateral still represents a triangle, thus avoiding
a conditional to treat triangles or quadrilaterals (set to −1 in the table of
Fig. 4). The only conditional appears when the result indicates an empty
intersection (the tetrahedron lies entirely on one of the plane sides). This is
acceptable when tetrahedra are spatially close to each other since they are

12



more likely to follow the same branching sequence (either no intersection or
some intersection).

Another table is then used to look up the tetrahedron vertices of each
intersected edge (not shown in Fig. 4), as well as a table to determine if
the opposite edge of an intersection point is “visible” (0 or 1). The visibility
value weights the altitude of the intersection point within a triangle rendering
primitive. The latter is used in the solid wireframe model [41] to render the
edges of the intersection primitive (the four edges of a quadrilateral or the
three edges of a triangle).

The resulting intersection points are then 4d points that lie on H. De-
pending on the definition of the normal vector of H, the 3d coordinates in
the basis of H then form the 3d coordinates that are to be visualized. These
are transformed to clip space by the standard model-view-projection ma-
trix, thus connecting the visualizer to user input such as zooming in/out,
translating or rotating the meshes.

3.2. Rendering 4d tetrahedra with a geometry shader.

A tetrahedral mesh embedded in 4d (e.g. produced by the algorithm
described in Section 2) can be visualized using the intersection algorithm
described in the previous section. First, the tetrahedron indices and vertex
coordinates are buffered to the GPU so this data can be retrieved within the
shaders using texture fetches. The rendering pipeline is then invoked using
glDrawArrays with the count as the number of tetrahedra to render. The
vertex shader simply passes the invocation ID to the geometry shader. The
geometry shader then uses the invocation ID (the tetrahedron index) to com-
pute the intersection region (triangles) using Alg. 1. The output intersection
primitives are then rasterized, leaving the fragment shader to evaluate the
Phong reflection model with some specified diffuse reflection coefficient. In
the renderings presented in later sections, this diffuse reflection coefficient will
often be a color associated with the unique identifier assigned to a geometry
entity, which is used to distinguish between different surface patches.
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processTetrahedron

input: tetrahedron index (int), hyperplane definition: n⃗ (vec4), c⃗ (vec4)
output: intersection primitives (triangles)

1 Retrieve vertex indices (ivec4) of tetrahedron.
2 Retrieve vertex coordinates of tetrahedron (4 × vec4).
3 Determine side (int) of each vertex with respect to the hyperplane: s0, s1, s2, s3.
4 Compute the result code r = s0 + s1 << 1 + s2 << 2 + s3 << 3.
5 Use the look-up table in Fig. 4 to determine intersected edges.
6 Compute the intersection point p⃗ for each intersected edge using r, along with any

necessary varyings for each emitted vertex (triangle normal, altitude).
7 Project each intersection point p⃗ to the basis of the hyperplane.
8 Compute output triangle coordinates p⃗′ by transforming each p⃗

by the usual model-view-projection matrix.

Algorithm 1: Algorithm to compute the intersection region for a single tetrahedron
within a geometry shader. Here, it is assumed that the input is a tetrahedron index which
is the invocation ID of the shader.

3.3. Rendering 4d tetrahedra without a geometry shader.

As noted by Maunoury and Loseille [36], the injection of a geometry
shader into the rendering pipeline may diminish the resulting frame rate
of the visualization. Furthermore, one of the shader optimization techniques
suggested by Halladay consists of moving computation to a vertex shader [38].
As a result, a solution that involves calculating intersections directly in the
vertex shader will now be presented. For a tetrahedral mesh with nt tetrahe-
dra, notice that there will be at most 2nt triangles and 6nt vertices that need
to be rendered. The rendering pipeline can be invoked (using glDrawArrays)
with a count equal to 6nt (using GL TRIANGLES as the mode). This spawns
a vertex shader invocation for each vertex (6nt invocations in total), and
the algorithm described in Section 3 can be used to determine whether this
vertex is part of an intersection primitive to be rasterized. This procedure
is outlined in Alg. 2. The invocation ID encodes (1) which tetrahedron and
(2) which triangle vertex (of the intersection primitive) are being processed -
these can be extracted using modular arithmetic on the invocation ID. The
intersection algorithm then proceeds as in the previous section, outputting
3d coordinates in clip space. Another look-up table is then used to determine
the “opposite” vertices in each possible rendering primitive. The latter is nec-
essary to calculate the altitude of the output vertex for the solid wireframe
model used to visualize the boundary of the intersection primitives.
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processVertex

input: index of vertex in triangle (gl VertexID), hyperplane definition: n⃗ (vec4), c⃗ (vec4)
output: transformed vertex coordinates (in 3d)

1 Determine which tetrahedron is being processed: tet = gl VertexID / 6.
2 Determine which vertex in the triangle is being processed: vtx = gl VertexID - 6 * tet.
3 Retrieve vertex indices (ivec4) of tetrahedron tet.
4 Retrieve vertex coordinates of tetrahedron (4 × vec4).
5 Determine side (int) of each vertex with respect to the hyperplane: s0, s1, s2, s3.
6 Compute the result code r = s0 + s1 << 1 + s2 << 2 + s3 << 3.
7 Determine which edge is intersected using a look-up table: e = v2e[6 * shape + vtx]

� // const int v2e[18] = int[](0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 1, 3, 2);
� // shape is 0 (no intersection), 1 (triangle) or (2) quad, found using a look-up table on r.

8 Compute the intersection point p⃗ for the intersected edge using r, along with any
necessary varyings for each emitted vertex (triangle normal, position in triangle).

9 Project the intersection point p⃗ to the basis of the hyperplane.
10 Compute output coordinates p⃗′ by transforming p⃗ by the usual model-view-projection matrix.
11 When drawing the wireframe of the intersections (borders of the intersection regions), also

look up the opposite vertices in the triangle to determine the altitude of the processed vertex.

Algorithm 2: Algorithm to compute the clip space coordinates of a vertex in a render-
ing triangle (or quadrilateral) if the corresponding tetrahedron intersects the user-defined
hyperplane.

3.4. Rendering 4d triangles with a geometry shader.

The renderings presented in Section 4 also contain thick red lines repre-
senting the CAD Edges. Recall that each CAD Edge is associated with a
triangulation from Section 2. These red lines are thus computed as the in-
tersection of the used-defined hyperplane with each triangle associated with
the CAD Edges (saved in the final output mesh that contains the tetrahe-
dralizations). The intersection between a 4d hyperplane with a triangle in 4d
is a line, and a geometry shader can be used to calculate these line rendering
primitives. The efficiency of this approach is not explored since the Edge
triangulations are typically much smaller than the tetrahedralizations.

3.5. Rendering pentatopes.

In the experiments of Section 4, the performance of the aforementioned
algorithms with pentatopal meshes will also be evaluated. Within a pen-
tatope mesh, each pentatope is bounded by five tetrahedra, so these can be
extracted within a single invocation of the geometry shader, and then passed
to the same 4d tetrahedron visualization algorithm described above. Since
the tessellation algorithm described in Section 2 only produces tetrahedra,
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readily available pentatopal meshes produced by avro [17] are used to study
the interactive performance when rendering pentatopes.

4. Numerical Experiments

The meshing algorithm described in Section 2 will now be demonstrated.
The resulting meshes will then be used to evaluate the performance of the
visualization system described in Section 3. All meshes are saved in the
libMeshb format [42], which was extended to handle 4d coordinates as well
as pentatopes.

The meshing algorithm was implemented in C++, using EGADS as the geom-
etry backend. The visualization algorithms were implemented using OpenGL

with either Core OpenGL (Apple) or EGL (Linux) backends, building upon
the wings framework [43].

4.1. Verification with analytic geometries.

To begin, the volume of the tetrahedral meshes obtained from the tes-
sellation algorithm are compared with the expected volume for analytically-
defined moving geometries. In particular, the geometry of a sphere and a
torus will be studied. It is important to note that, despite these geometries
having analytical definitions, they are still represented as solid bodies in the
EGADS framework. As a result, it is possible that the results are limited by
geometry tolerancing internally used by OpenCASCADE [44, 45].

All geometries are contained within a cube with sides of length ℓ, similar
to how a far-field would be added in a realistic simulation. For these cases, the
moving geometry traces a total volume (v) equal to the sum of the volume
traced by the six faces of the cube plus the volume traced by the interior
geometry (vi):

v = 6ℓ2(tf − t0) + vi + vt0 + vtf , (1)

where t0 and tf are the initial and final times of the geometry movement,
respectively. Without loss of generality, the entire motion is parametrized
to be within the interval [0, 1], so t0 = 0 and tf = 1. The volumes vt0 and
vtf are the volumes of the initial and final tetrahedralizations (at t0 and tf ,
respectively). The volume traced by the interior geometry will be described
in each analytic case below.

Meshes were computed for varying resolutions of the geometry using 10
time slabs for each case. Once the final meshes were computed, the total
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volume of the tetrahedra was evaluated using the method described by Ka-
han [46]. Sample visualizations are provided in the test case descriptions
below. Fig. 5 summarizes the results for the analytic geometries consid-
ered here, which shows that the error between the computed volume and
the expected volume converges close to the expected second-order rate for
straight-sided tetrahedra [28].

10 24 × 10 3 6 × 10 3 2 × 10 2

(# tetrahedra) 1/3

10 6

10 5

10 4

10 3v vexact

2

Stationary Sphere
Expanding Sphere
Expanding Torus

Figure 5: Convergence of the volume error for analytic geometries.

Expanding sphere. This test case considers a sphere of radius r0 = 0.1 con-
tained within a cube with a unit side length (ℓ = 1). The sphere linearly
expands to a final radius of rf = 0.125 at tf = 1. This linearly expanding
sphere traces the geometry of a hypercone in 4d, specifically a truncated
hypercone. Thus the interior volume (vi) is the volume of this truncated
hypercone, which can be derived as:

vi = vhcs(rf , a+ 1)− vhcs(r0, a), where vhcs(r, h) =
4πr2

3

√
r2 + h2, (2)
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where a = r0/(rf − r0) is the height of the portion of the hypercone that is
truncated. The subscript “hcs” denotes a hypercone with a spherical base.
The volumes at the initial and final hyperplanes are vt0 = ℓ3 − 4

3
πr30 and

vtf = ℓ3 − 4
3
πr3f , respectively.

The case of a static sphere (no expansion) is also considered, which simply
traces the geometry of a hypercylinder, so vi = 4πr20(tf − t0) and the volumes
at the initial and final hyperplanes are vt0 = vtf = ℓ3 − 4

3
πr30.

Visualizations of the expanding sphere are provided in Fig. 6. The al-
gorithms described in Section 3 were used to visualize sample tetrahedral-
izations produced by the algorithm of Section 2 at t = 0, t = 0.75 and
t = 0.975. At t = 0, the slice of the tetrahedral mesh only results into
triangular intersection primitives, whereas both triangle and quadrilateral
rendering primitives are apparent at t = 0.75 and t = 0.975.

It is worth mentioning that the tessellation parameters (passed to EGADS)
were specified so as to maintain roughly the same edge lengths in the geom-
etry tessellation as the sphere expands. As a result, the number of vertices
and triangles in the geometry tessellation varies between each time step in
order to maintain the geometry resolution.

(a) t = 0 (b) t = 0.75 (c) t = 0.975

Figure 6: Visualization of the tetrahedral mesh for the expanding sphere case sliced at
t = 0, t = 0.75 and t = 0.975.

Expanding torus. This test case consists of an expanding torus with an initial
tube (minor) radius of r0 = 0.1 and an initial major radius of R0 = 0.4. The
expanding torus is contained within a cube of side length ℓ = 1. A linear
time-dependent scaling is applied to the torus such that it expands to a
final tube radius of rf = 0.125 and a final major radius of Rf = 0.5. The
analytic volume calculation follows a similar idea to the expanding sphere of
the previous section, where the volume is that of a truncated hypercone. The
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base of the cone is a 3d torus, so the interior volume traced by the expanding
torus is

vi = vhct(rf , Rf , a+1)−vhct(r0, R0, a), where vhct(r, R, h) =
4π2rR

3

√
R2 + h2,

(3)
where a = R0/(Rf − R0). The subscript “hct” denotes a hypercone with
a toroidal base. The volumes at the initial and final hyperplanes are vt0 =
ℓ3 − 2πr20R0 and vtf = ℓ3 − 2πr2fRf , respectively.

Sample visualizations of the expanding torus are provided in Fig. 7. Sim-
ilar to the visualizations of the expanding sphere, the slice of the tetrahedral
mesh at t = 0 only contains triangular intersection primitives, whereas both
triangle and quadrilateral rendering primitives are apparent at t = 0.75 and
t = 0.975.

(a) t = 0 (b) t = 0.75 (c) t = 0.975

Figure 7: Visualization of the tetrahedral mesh for the expanding torus case sliced at at
t = 0, t = 0.75 and t = 0.975.

4.2. Application of the meshing algorithm to complex geometries.

Wing-flap deployment. Now the algorithms described in this paper will be
used to create and visualize spacetime meshes of more complex geometries,
beginning with the geometry illustrated in Fig. 1 in order to model a wing-flap
configuration of an aircraft. The wing and flap geometries were generated
with OpenCSM [47] using partspanflap1.csm in the Engineering Sketch Pad
data directory. To define the geometry at each time step t, the flap body
was rotated by an angle θ(t) about the z-axis (spanwise direction), centered
at the point (0.8, 0, 0), where θ(t) = −30 + 60(t/N) (degrees) and N is
the number of spacetime slabs. A farfield parallelepiped was added to the
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geometry where the length of each side is a factor of (10, 50, 2) in the x-, y-
and z- directions, respectively, of the bounding box lengths of the wing.

Sample visualizations of the sliced tetrahedral mesh (produced with the
algorithms in Section 3) are shown in Fig. 8.

Figure 8: Visualization of the wing-flap deployment at t = 0.425 and t = 0.975 seconds.

A total of 10 time slabs was used to create coarse- and fine-resolution
meshes for this moving geometry, consisting of approximately 12M and 45M
tetrahedra, respectively. The resolution of the geometry for these two cases
is controlled by the parameters passed to the EGADS tessellator at each time
step. Table 1 summarizes the final mesh statistics for these meshes, as well
as some timing data of the current algorithm (run on a 2021 10-core Apple
M1 Pro). Ultimately, very few Steiner vertices were inserted relative to the
total number of vertices for each mesh: 46 in the case of the coarser mesh
(of about 2M vertices) and 536 in the case of the finer mesh (of about 7.8M
vertices).
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Coarse Fine
# tetrahedra 11,943,904 45,070,546

# vertices 2,029,491 7,780,008
total time (sec.) 172 874

initial/final tetrahedralization (sec.) 11 68
geometry construction (sec.) 0.804 0.815
geometry tessellation (sec.) 57 352

edge triangulation (sec.) 0.002 0.008
face tetrahedralization (sec.) 92 410

# Steiner vertices 46 536

Table 1: Mesh and timing statistics of the tessellation algorithm for the wing-flap geometry.

Rotating wind turbine blades. The developed tessellation and visualization
algorithms were also applied to the wind turbine geometry illustrated in
Fig. 1. The rotor was generated using the prop1.csm file (with 3 blades)
in the data/basic directory of the Engineering Sketch Pad. The cylindrical
mast has a length of 20 (aligned with the z-direction), with a base of radius
rm = 0.125 centered on (0.35, 0, 0). A hub was added where the rotor meets
the cylindrical mast, and the nose was modified to create a flat surface in
order to circumvent issues when creating meshes near the nose tip.

The entire rotor was linearly rotated by an angle of 360◦ over the time
interval [0, 1] seconds. A total of 30 time slabs were used to create coarse-
and fine-resolution mesh for this geometry, which resulted in meshes with
approximately 34M and 86M tetrahedra, respectively. Again, the number of
Steiner vertices (added in between time slabs) is relatively small compared
to the total number of vertices, about 0.07% of the vertices in the coarse-
resolution mesh and about 0.02% of the vertices for the finer mesh. Table 2
contains details of the final meshes, as well as the timing breakdown of the
algorithm, which was also run on a 10-core Apple M1 Pro (2021). Sample
visualizations of the sliced tetrahedral meshes for this test case are shown in
Figs. 9 (t = 0.425) and 10 (t = 0.975).
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Figure 9: Visualization of the wind turbine mesh at t = 0.425 seconds.

Figure 10: Visualization of the wind turbine mesh at t = 0.975 seconds.
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Coarse Fine
# tetrahedra 34,395,682 85,849,469

# vertices 5,525,545 14,086,607
total time (sec.) 556 2024

initial/final tetrahedralization (sec.) 9.5 18
geometry construction (sec.) 6.4 8.0
geometry tessellation (sec.) 164 1063

edge triangulation (sec.) 0.001 0.004
face tetrahedralization (sec.) 275 581

# Steiner vertices 3,918 2,688

Table 2: Mesh and timing statistics of the tessellation algorithm for the wind turbine
geometry.

4.3. Performance of the visualization algorithms.

Equipped with tetrahedral meshes of moving geometries, the performance
of the visualization algorithm (of Section 3) will now be evaluated. The aver-
age rendering time over 50 samples is used to measure the performance, where
the scene parameters (model rotation, hyperplane slicing location) were de-
fined randomly for each sample. Triangle rendering (for the CAD Edges) was
turned off for the analysis that follows in order to purely evaluate the ren-
dering time for tetrahedra or pentatopes with the two approaches discussed
in Section 3. These two approaches are labelled “GS” for the geometry-
shader-based approach described in Section 3.2 and Alg. 1 and “VS” for the
vertex-shader-based approach described in Section 3.3 and Alg. 2.

These approaches are evaluated using three GPUs: (1) that integrated
with a 10-core Apple M1 Pro (2021), (2) an NVIDIA L4 GPU and (3) an
NVIDIA P100 GPU (16 GB). Each sample was rendered off-screen to an
800×600 canvas, and the render time was measured using a GL TIME ELAPSED

query over the invocation of the rendering pipeline.
The frame rate obtained when rendering the tetrahedral meshes of Sec-

tion 4.2 is shown in Fig. 11, again with the labels denoting the geometry-
shader-based (GS) or vertex-shader-based (VS) approaches. With the M1
GPU, the performance of both approaches is about the same, whereas the
NVIDIA L4 GPU exhibits a higher frame rate (measured as the number of
frames per second) when using the approach that includes a geometry shader.
With this approach, the frame rate is greater than 30 FPS for the 45.1M
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Figure 11: Frame rate obtained when rendering the meshes described in Section 4.2 with
the geometry-shader- and vertex-shader-based approaches on three GPUs.

tetrahedra mesh, and drops to about 20 FPS for the 85.8M tetrahedra mesh.
A similar pattern is observed with the NVIDIA P100 GPU whereby higher
frame rates are observed when using the geometry-shader-based algorithm.

Pentatopal meshes. Since the visualization algorithm also supports rendering
pentatopal meshes, the visualizer was also tested using meshes created by
avro [7, 17]. Here, avro was used to generate an anisotropic 4d mesh within
a [0, 1]4 tesseract with a metric field designed to align with an expanding
spherical wave.

Sample visualizations produced by the current visualization algorithm for
these meshes are shown in Fig. 12 for t = 0, t = 0.25 and t = 0.95 seconds.

Again, the rendering time was sampled 50 times for the various ap-
proaches: (1) the geometry-shader-based approach applied directly to the
pentatopes, (2) the geometry-shader-based approach applied to the unique
tetrahedra extracted from the pentatope mesh and (3) the vertex-shader-
based approach applied to the unique tetrahedra extracted from the original
pentatope mesh. The frames per second for each approach (with meshes
of various resolutions) are plotted in Fig. 13 - some of these meshes were
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(a) t = 0 (b) t = 0.25 (c) t = 0.95

Figure 12: Visualization of the pentatopal meshes used to evaluate the performance of the
visualization system.

obtained as uniform subdivisions of the pentatopes of the original meshes
produced by avro. Note that the horizontal axis also labels the number of
extracted tetrahedra of the pentatopal meshes in parantheses. Similar to the
results for the wing-flap and wind-turbine meshes, the geometry-shader-based
approaches generally perform better than the vertex-shader-based approach.
On an Apple M1 Pro, the frame rate is roughly 30 frames per second for the
12M pentatope mesh (37.4M tetrahedra), and 22 frames per second when
using an NVIDIA P100 GPU. The geometry-shader-based approach with an
NVIDIA L4 GPU achieves a frame rate of over 20 frames per second for the
22.7M pentatope mesh (70.9M tetrahedra).

5. Perspectives

This paper presented and demonstrated solutions to two problems nec-
essary for enabling future research in 3d + t (4d) spacetime meshing. The
first solution addresses the need for closed tetrahedral meshes of moving
geometries. Each n-dimensional geometry entity (CAD Edge or Face) at
two time step locations were mapped to the parameter space of the entity
and augmented to a (n + 1) dimensional space where either triangulations
(Edges) or tetrahedralizations (Faces) were computed. This approach allows
the resolution of the geometry to vary between time steps. The method was
demonstrated on simple geometries as well as more complex geometries with
rigid-body transformations, and could also be used if the surface definitions
change in time.

Next, two solutions for rendering spacetime meshes (either tetrahedral or
pentatopal meshes) were presented. These consisted of vertex-shader- and
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Figure 13: Frame rate obtained when rendering the pentatope meshes with the geometry-
shader- and vertex-shader-based approaches on three GPUs.

geometry-shader-based approaches for computing the mesh-hyperplane inter-
sections directly in the rendering pipeline. The approaches using a geometry
shader performed best, achieving frame rates of about 20 − 30 frames per
second for relatively large meshes (about 50 million tetrahedra).

Though the tessellation method was successful for the geometries studied
in this work, future work should address some open problems. First, the
triangles in the parameter spaces of each entity can be poorly shaped, par-
ticularly if the geometry contains singularities or if the face is bounded by a
degenerate edge. These issues could be solved by either improving the trian-
gulations in (u, v) space, or by introducing an intermediate mapping of the
entity to improve the triangle quality for the constrained tetrahedralization
algorithm. Furthermore, although the number of Steiner vertices is kept to a
minimum (only introduced if necessary by the constrained tetrahedralization
algorithm), the calculation of the 4d coordinates of these vertices could be
improved. Currently, a weighted average of the coordinates at each bounding
time step is used, but this does not necessarily lie on the geometry at the
precise time coordinate. An analytic description of the geometry in between
time steps is not known, but the parametrization of each surface patch could
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be augmented to a trivariate spline representation [48] to obtain a complete
parametrization of the surfaces in time.

Future work could consist of extending the meshing algorithm to handle
topology changes in the geometry, e.g. if a hole were created, or a body ap-
pears/disappears at a particular time. It would also be worthwhile to develop
a pentatope meshing algorithm that respects the constraints defined by the
tetrahedralizations produced by the current meshing algorithm. Though the
focus here is on producing meshes for visualization, the resulting meshes are
conforming and techniques for improving the quality of the tetrahedra could
also be explored.
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