
1

Orchestrating Mixed-Criticality Cloud Workloads in
Reconfigurable Manufacturing Systems

Marco Barletta, Marcello Cinque, Davide De Vita
University of Naples Federico II Via Claudio 21, 80125 Naples, Italy

macinque@unina.it

Abstract—The adoption of cloud computing technologies in the
industry is paving the way to new manufacturing paradigms. In
this paper we propose a model to optimize the orchestration
of workloads with differentiated criticality levels on a cloud-
enabled factory floor. Preliminary results show that it is possible
to optimize the guarantees to deployed jobs without penalizing the
number of schedulable jobs. We indicate future research paths
to quantitatively evaluate job isolation.

I. INTRODUCTION

The ongoing digitalization of industries, following the In-
dustry 4.0 (I4.0) revolution is pushing the use of cloud tech-
nologies as a means to create Reconfigurable Manufacturing
Systems (RMSs) that support the rapid addition, removal, or
modification of process controls, functions, and/or operations,
through reconfigurable hardware and software, to scale pro-
duction capability and capacity [1].

The use of cloud and virtualization technologies in industrial
settings [2] allows a simplification of the RMS management,
adopting well consolidated practices on software orchestration
and DevOps. This enables the use of commodity and cheap
hardware on the factory floor or the consolidation of multiple
functionalities, implemented as virtual machines or containers
on heterogeneous machines. This meets SWaP (Size, Weight
and Power) requirements, enabling the management of scala-
bility and failovers with the same approaches used for cloud
services, such as replication and migration.

In such settings, when the factory floor needs to be re-
purposed for different productions, (virtual) Programmable
Logic Controllers can be flexibly deployed side-by-side with
a supervisory system (e.g., a SCADA) and a management
GUI, even all on the same machine, disrupting the strict
layered architecture mandated by the Computer Integrated
Manufacturing (CIM) pyramid [3]. However, this type of
flexibility requires to run workloads with differentiated real-
time and safety requirements on the same shared hardware,
which is typical of Mixed-Criticality Systems [4].

To meet such requirements, cloud orchestration platforms
(e.g, Kubernetes, Docker Swarm) must be extended [5]–[7]
with the notion of workload criticality and assurance level of
computing nodes, i.e., the degree of isolation and dependabil-
ity that a node can provide based on its hardware/software
characteristics and current load. It is desirable to deploy
highly critical workloads on high-assurance nodes, capable of
isolating their execution from interferences through techniques
like partitioning hypervisors and/or real-time CPUs.

In this paper we complement the orchestration model
presented in our previous work, named K4.0s [6], with a
scheduling model and an algorithm to optimally place mixed-
criticality workloads on nodes with different assurance lev-
els. The scheduling problem is modeled as a multi-objective
problem that accounts for job acceptance, total assurance, and
free resources. Preliminary results show, in a simulated envi-
ronment, the benefits of accounting for the assurance levels
during the scheduling. Finally, we indicate future research
directions to quantitatively compute and predict the assurance
levels through causal reasoning and Bayesian networks, which
are a good fit for the proposed scheduler.

II. ORCHESTRATION MODEL

We adopt the model defined in [6], simplifying it to use only
abstractions required in this paper. Hence, we model a Worker
Node as 𝑊𝑁𝑖 =< ⃗𝐵𝑅𝑖, 𝐴𝑖(𝑡), 𝑅𝑇𝑖, 𝐽𝑜𝑏𝑠𝑖 > 𝑖 ∈ 𝐍, where ⃗𝐵𝑅𝑖
is a vector of basic hardware resources total capacities (CPU,
Disk and Memory). 𝑅𝑇𝑖 ∈ {𝑅𝑇 , 𝑛𝑜𝑛𝑅𝑇 } is the node’s real-
time capability. 𝐽𝑜𝑏𝑠𝑖 is the set of jobs assigned to the node
𝑖. 𝐴𝑖(𝑡) = 𝑓 (𝛼𝑖, 𝛽𝑖, 𝛾𝑖(𝑡)) ∈ [0, 1] is the assurance level, where
𝛼𝑖 and 𝛽𝑖 accounts for, respectively, hardware and software;
while 𝛾𝑖(𝑡) is inversely related to the load of the node.

We model a job as 𝐽𝑗 =< ⃗𝐵𝑅𝑗 , 𝐶𝑗 , 𝑅𝑇𝑗 > 𝑗 ∈ 𝐍, where
𝑅𝑇𝑗 is the same as defined above; ⃗𝐵𝑅𝑗 accounts for the min-
imum (required) and maximum (to handle overloads) amount
of resources to be allotted to a job (respectively 𝑏𝑟𝑟𝑒𝑞𝑢𝑒𝑠𝑡 and
𝑏𝑟𝑙𝑖𝑚𝑖𝑡, ∀𝑏𝑟∈ ⃗𝐵𝑅𝑗

); 𝐶𝑗 ∈ {𝑁𝑂,𝐿𝑂𝑊 ,𝐻𝐼𝐺𝐻} is the criticality
level. We define the 𝜃𝐿𝑂𝑊 and 𝜃𝐻𝐼𝐺𝐻 thresholds of minimum
assurance required at anytime to keep hosting critical jobs.

A. Scheduling optimization problem
We model the scheduling problem as a multi-objective prob-

lem. Our objective function is a weighted sum of the following
objective functions to maximize, each of them designed such
that the codomain is [0; 1]:

∙ Acceptance rate: percentage of jobs that the scheduler
managed to assign to its nodes.
∑

𝑖 |𝐽𝑜𝑏𝑠𝑖|
𝑚 , with 𝑚 number of pending + active jobs

This function forces the scheduler to assign jobs instead
of rejecting them.

∙ Node assurances: current cluster average assurance
∑

𝑖∶𝑅𝑇𝑖=𝑅𝑇
𝐴𝑖(𝑡)∕ ∑

𝑖∶𝑅𝑇𝑖=𝑅𝑇
1

The function accounts for the assurance loss that the
jobs may cause to already loaded nodes, and to ensure

2

that incoming critical jobs find suitable nodes to host
them. The assurance value is a percentage of 𝛼 + 𝛽,
which increases in thresholds defined by the minimum job
criticality level that has guaranteed resources and whether
the guaranteed resources are minimum or maximum.

∙ Residual capacity: sum of nodes’ squared free resources
∑

𝑖

|

⃗𝐵𝑅𝑖|
∑

𝑧=1
(⃗𝐵𝑅𝑖(𝑧)−

∑

𝑗∈𝐽𝑜𝑏𝑠𝑖 𝐵𝑅𝑗 (𝑧)𝑙𝑖𝑚𝑖𝑡)2∕
|

⃗𝐵𝑅𝑖|
∑

𝑧=1
(⃗𝐵𝑅𝑖(𝑧))2

The terms are squared to achieve an effect similar to the
MostAllocatedFirst Kubernetes strategy1, leaving some
nodes free to host any incoming heavy job.

Based on this model, we designed a scheduling algorithm
for K4.0s. The scheduler addresses two use cases: i) the arrival
of a new job, ii) the rescheduling of a job from a node to
another. The scheduler uses a greedy strategy that, for each
new job, evaluates, for each eligible worker node, what would
the objective function score be if the job was assigned to the
node. The re-balancing use case computes for each node how
much it would benefit from removing each job; selecting the
(𝑛𝑜𝑑𝑒, 𝑗𝑜𝑏) pair with the highest increase of objective function
score, if the reschedule improves the overall score.

Due to the denominator, accepting a job causes progres-
sively small increases of the acceptance rate. Hence, the
scheduler eventually rejects any incoming job not to decrease
the score. To overcome this issue, we use as objective function
(OF) the product of the weighed sum times the acceptance rate.

III. PRELIMINARY RESULTS

We tested our K4.0s scheduler comparing it with three
possible Kubernetes scheduling configurations1:

∙ LeastAllocated: it prefers nodes with more free resources
to reduce interferences among jobs.

∙ MostAllocated: it prefers the nodes with less free resource
that can host a job (see §II-A).

∙ RequestedToCapacityRatio: it prefers nodes with less per-
centage of free resources after allocating the job.

In our simulation, all four schedulers filter out worker nodes
not eligible to host a job 𝐽 in the same way; then our scheduler
selects the pair (𝑛𝑜𝑑𝑒, 𝑗𝑜𝑏) with the highest OF score, while
the others use the above described rules. We extend default
Kubernetes’ eligibility tests, adding:

∙ Assurance compliance: ∀𝑘∈𝐽𝑜𝑏𝑠𝑖∪{𝑗}𝐴
∗
𝑖 ≥ 𝜃𝑘 where 𝐴∗

𝑖 is
the assurance level of node 𝑖 if job 𝑗 were assigned to it,
and 𝜃𝑘 is the assurance threshold of node 𝑘 based on its
criticality level 𝐶𝑘

∙ Real-time compliance: ¬𝑅𝑇𝑗 ∨ 𝑅𝑇𝑖
The simulation starts with a random number of nodes (be-

tween 4 and 10) and jobs (between 300 and 1000). During the
experiment, other nodes are randomly added to the cluster and
jobs are randomly terminated, freeing the resources allotted
to them. Each scheduling algorithm receives the same input
sequence, in terms of nodes and jobs.

The plots in Fig. 1 show that co-optimizing the assurance
level introduced in our model ensures more guarantees to
critical jobs without necessarily penalizing the acceptance rate
compared to default schedulers.

1https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins

(a) Comparison of acceptance rate

(b) Comparison of average assurance

Fig. 1: Comparison of the objective functions values during
the simulation. (Weights for K4.0s: 52.5, 42.5, 5)

IV. CONCLUSION

These results show the benefit of considering the assur-
ance in the orchestration of mixed criticality environments.
However, currently, the assurance is qualitatively computed
with a rule-based approach. In our future research, we aim at
quantitatively computing and predicting the assurance varia-
tion through causal reasoning and Bayesian networks, which
perfectly fit with our what if scheduling algorithm.

ACKNOWLEDGMENT
This study was carried out within the MICS (Made in Italy – Circular

and Sustainable) Extended Partnership and received funding from the Eu-
ropean Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E
RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO
1.3 – D.D. 1551.11-10-2022, PE00000004). This manuscript reflects only the
authors’ views and opinions, neither the European Union nor the European
Commission can be considered responsible for them.

REFERENCES

[1] J. Morgan, M. Halton, Y. Qiao, and J. G. Breslin, “Industry 4.0 smart
reconfigurable manufacturing machines,” Elsevier Journal of Manufac-
turing Systems, 2021.

[2] M. Cinque, D. Cotroneo, L. De Simone, and S. Rosiello, “Virtualizing
mixed-criticality systems: A survey on industrial trends and issues,”
Elsevier Future Generation Computing Systems, 2021.

[3] C. Yu, X. Xu, and Y. Lu, “Computer-integrated manufacturing, cyber-
physical systems and cloud manufacturing‚ concepts and relationships,”
Elsevier Manufacturing Letters, 2015.

[4] A. Burns and R. I. Davis, “Mixed criticality systems-a review,” York,
2022.

[5] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. V. Pa-
padopoulos, “Hierarchical resource orchestration framework for real-time
containers,” ACM Transactions on Embedded Computing Systems, 2024.

[6] M. Barletta, M. Cinque, L. De Simone, and R. D. Corte, “Criticality-
aware monitoring and orchestration for containerized industry 4.0 envi-
ronments,” ACM Transaction on Embedded Computing Systems, 2024.

[7] F. Lumpp, F. Fummi, H. D. Patel, and N. Bombieri, “Enabling kubernetes
orchestration of mixed-criticality software for autonomous mobile robots,”
IEEE Transactions on Robotics, 2023.

